Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 495
Filtrar
1.
J Cancer Res Clin Oncol ; 150(10): 438, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352477

RESUMEN

BACKGROUND: Preclinical models of pancreatic cancer (PDAC) suggest a synergistic role for combined MEK and autophagy signaling inhibition, as well as MEK and CDK4/6 pathway targeting. Several case reports implicate clinical activity of the combination of either trametinib and hydroxychloroquine (HCQ) in patients with KRAS-mutant PDAC or trametinib with CDK4/6 inhibitors in patients with KRAS and CDKN2A/B alterations. However, prospective data from clinical trials is lacking. Here, we aim to provide clinical evidence regarding the use of these experimental regimens in the setting of dedicated precision oncology programs. METHODS: In this retrospective case series, PDAC patients who received either trametinib/HCQ (THCQ) or trametinib/palbociclib (TP) were retrospectively identified across 11 participating cancer centers in Germany. RESULTS: Overall, 34 patients were identified. 19 patients received THCQ, and 15 received TP, respectively. In patients treated with THCQ, the median duration of treatment was 46 days, median progression-free survival (PFS) was 52 days and median overall survival (OS) was 68 days. In the THCQ subgroup, all patients evaluable for response (13/19) had progressive disease (PD) within 100 days. In the TP subgroup, the median duration of treatment was 60 days, median PFS was 56 days and median OS was 195 days. In the TP subgroup, 9/15 patients were evaluable for response, of which 1/9 showed a partial response (PR) while 8/9 had PD. One patient achieved a clinical benefit despite progression under TP. CONCLUSION: THCQ and TP are not effective in patients with advanced PDAC harboring KRAS mutations or alterations in MAPK/CDKN2A/B.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Hidroxicloroquina , Neoplasias Pancreáticas , Piperazinas , Piridinas , Piridonas , Pirimidinonas , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Femenino , Anciano , Piridonas/administración & dosificación , Piridonas/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Pirimidinonas/administración & dosificación , Pirimidinonas/uso terapéutico , Piridinas/uso terapéutico , Piridinas/administración & dosificación , Hidroxicloroquina/uso terapéutico , Hidroxicloroquina/administración & dosificación , Piperazinas/uso terapéutico , Piperazinas/administración & dosificación , Adulto , Anciano de 80 o más Años
2.
IJU Case Rep ; 7(5): 375-378, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39224677

RESUMEN

Introduction: BRAF mutations in bladder cancer are rare. MEK inhibitors have excellent clinical benefits in the treatment of melanoma. Case presentation: A 60-year-old male was diagnosed with muscle-invasive bladder cancer and underwent total cystectomy and ileal conduit diversion. Despite 4 cycles of gemcitabine and cisplatin chemotherapy and 3 courses of pembrolizumab, the left obturator lymph node enlarged. Cancer multi-gene panel testing confirmed the BRAF G469A mutation and trametinib was recommended. Three months after the initiation of trametinib (2 mg, qd), the left obturator lymph node shrank by more than 50%. The disease has remained stable for more than 18 months. Conclusion: The present case indicates the potential of trametinib to treat mBUC patients with the BRAF G469A mutation in this setting.

3.
Neurooncol Pract ; 11(5): 660-664, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39279775

RESUMEN

Background: Combined BRAF and MEK inhibition is effective for some BRAFV600E-altered gliomas, a cancer for which there are few effective therapies. While recent clinical trials demonstrate objective response rates of 30%-40%, tolerable adverse event rates are 70%-90%, and 12%-15% of patients stop therapy for toxicity. There are no clear guidelines regarding the timing and reinitiation of BRAF-targeted therapies following drug holidays. Here, we describe 4 patients with rapid disease progression during periods of treatment interruption. All patients experienced a response upon resumption of targeted therapy. Methods: This is a multi-institutional, retrospective review of 4 patients. Results: Three patients were diagnosed with BRAFV600E mutated anaplastic pleomorphic xanthoastrocytoma (aPXA) and 1 with epithelioid glioblastoma. The age range was 32 to 46; 3 patients were female and one patient was male. All patients were initially treated with radiation and were subsequently treated with BRAF/MEK inhibitors after disease progression. All patients with aPXA required the targeted therapy to be held due to toxicity and 1 patient held the therapy prior to transitioning to a novel BRAF-targeted agent. All patients were restarted on BRAF/MEK inhibitors after a drug holiday. Three patients required a dose reduction and all improved clinically following reinitiation. Conclusions: Clinical and radiographic progression may occur rapidly upon holding BRAF-targeted therapy, warranting judicious dose reductions and minimization of drug holidays.

5.
Cancer Med ; 13(17): e70210, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39240189

RESUMEN

BACKGROUND: High-grade endometrial cancers (EAC) are aggressive tumors with a high risk of progression after treatment. As EAC may harbor mutations in the RAS/MAPK pathways, we evaluated the preclinical in vitro and in vivo efficacy of avutometinib, a RAF/MEK clamp, in combination with the focal adhesion kinase (FAK) inhibitors defactinib or VS-4718, against multiple primary EAC cell lines and xenografts. METHODS: Whole-exome sequencing (WES) was used to evaluate the genetic landscape of five primary EAC cell lines. The in vitro activity of avutometinib and defactinib as single agents and in combination was evaluated using cell viability, cell cycle, and cytotoxicity assays. Mechanistic studies were performed using Western blot assays while in vivo experiments were completed in UTE10 engrafted mice treated with either vehicle, avutometinib, VS-4718, or their combination through oral gavage. RESULTS: WES results demonstrated multiple EAC cell lines to harbor genetic derangements in the RAS/MAPK pathway including KRAS/PTEN/PIK3CA/BRAF/ARID1A, potentially sensitizing to FAK and RAF/MEK inhibition. Five out of five of the EAC cell lines demonstrated in vitro sensitivity to FAK and/or RAF/MEK inhibition. By Western blot assays, exposure of EAC cell lines to defactinib, avutometinib, and their combination demonstrated decreased phosphorylated FAK (p-FAK) as well as decreased p-MEK and p-ERK. In vivo the combination of avutometinib/VS-4718 demonstrated superior tumor growth inhibition compared to single-agent treatment and controls starting at Day 9 (p < 0.02 and p < 0.04) in UTE10 xenografts. CONCLUSIONS: Avutometinib, defactinib, and to a larger extent their combinations, demonstrated promising in vitro and in vivo activity against EAC cell lines and xenografts. These preclinical data support the potential clinical evaluation of this combination in high-grade EAC patients.


Asunto(s)
Neoplasias Endometriales , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino , Humanos , Animales , Ratones , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/patología , Neoplasias Endometriales/genética , Línea Celular Tumoral , Carcinoma Endometrioide/tratamiento farmacológico , Carcinoma Endometrioide/patología , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/metabolismo , Secuenciación del Exoma , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Proliferación Celular/efectos de los fármacos , Clasificación del Tumor , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Oxazepinas , Sulfonamidas , Pirazinas , Benzamidas , Imidazoles
6.
Cells ; 13(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39273076

RESUMEN

Epithelial-to-mesenchymal transition (EMT) plays a major role in breast cancer progression and the development of drug resistance. We have previously demonstrated a trans-differentiation therapeutic approach targeting invasive dedifferentiated cancer cells. Using a combination of PPARγ agonists and MEK inhibitors, we forced the differentiation of disseminating breast cancer cells into post-mitotic adipocytes. Utilizing murine breast cancer cells, we demonstrated a broad class effect of PPARγ agonists and MEK inhibitors in inducing cancer cell trans-differentiation into adipocytes. Both Rosiglitazone and Pioglitazone effectively induced adipogenesis in cancer cells, marked by PPARγ and C/EBPα upregulation, cytoskeleton rearrangement, and lipid droplet accumulation. All tested MEK inhibitors promoted adipogenesis in the presence of TGFß, with Cobimetinib showing the most prominent effects. A metastasis ex vivo culture from a patient diagnosed with triple-negative breast cancer demonstrated a synergistic upregulation of PPARγ with the combination of Pioglitazone and Cobimetinib. Our results highlight the potential for new therapeutic strategies targeting cancer cell plasticity and the dedifferentiation phenotype in aggressive breast cancer subtypes. Combining differentiation treatments with standard therapeutic approaches may offer a strategy to overcome drug resistance.


Asunto(s)
Diferenciación Celular , PPAR gamma , Pioglitazona , PPAR gamma/metabolismo , PPAR gamma/agonistas , Humanos , Animales , Ratones , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Femenino , Pioglitazona/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipogénesis/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Rosiglitazona/farmacología , Azetidinas/farmacología , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Piperidinas/farmacología
7.
Front Med (Lausanne) ; 11: 1436774, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39314226

RESUMEN

Clonal MAPK-pathway activating mutations in the MAP2K1 (MEK1) gene are present in approximately 9% of cutaneous melanomas. These mutations are divided into three classes: RAF-dependent, RAF-regulated, RAF-independent. Cell lines with class-2 or RAF-regulated MAP2K1-mutations are most responsive to MEK-inhibitors. We present a patient with a class-2 MAP2K1-mutant stage IV-M1d melanoma who experienced extra- and intracranial progressive disease following treatment with immune-checkpoint inhibitors. The patient was treated with the MEK-inhibitor trametinib (2 mg OD) to which a low-dose of dabrafenib (50 mg BID) was added to mitigate skin-toxicity. Following documentation of a partial response (PR), she developed one new, and increase in volume of two pre-existing brain metastases that were treated with stereotactic radiosurgery (SRS) while continuing trametinib and dabrafenib. Thereafter, a deep partial radiologic and metabolic response both extra-and intra-cranially was achieved and is ongoing 88 weeks after initiating trametinib. She experienced no grade > 2 adverse events. Focal post-radiation necrosis at site of an irradiated brain metastasis developed 9 months after SRS and is successfully being treated with low-dose bevacizumab. This is the first published case of a durable intracranial disease control with the MEK-inhibitor trametinib of a stage IV-M1d class-2 MAP2K1-mutant melanoma. This illustrates the utility of NGS profiles that include class-1/2 MAP2K1-mutations in patients with melanoma and other malignancies to provide valuable information on a potentially active individualized treatment option. A prospective clinical trial that further evaluates the efficacy of MEK-inhibitor therapies in MAP2K1-mutated tumors is justified.

8.
Cancer Manag Res ; 16: 933-939, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39099762

RESUMEN

The treatment landscape for advanced and metastatic melanoma has drastically changed in recent years, with the advent of novel therapeutic options such as immune checkpoint inhibitors and targeted therapies offering remarkable efficacy and significantly improved patient outcomes compared to traditional approaches. Approximately 50% of melanomas harbor activating BRAF mutations, with over 90% resulting in BRAF V600E. Tumors treated with BRAF inhibitor monotherapy have a high rate of developing resistance within six months. Combination therapy with MEK inhibitors helped to mitigate this treatment resistance and led to improved outcomes. Due to the up-regulation of PD-1/PD-L1 receptors in tumors treated with BRAF/MEK inhibitor therapy, further studies included a third combination agent, anti-PD-1/PD-L1 inhibitors. This triple combination therapy may have superior efficacy and a manageable safety profile when compared with single or double agent therapy regimens.


Effective treatment of advanced and metastatic melanoma can be challenging. Newer treatment methods for patients with BRAF-mutated tumors include a combination of drugs with different complementary mechanisms. These drugs include BRAF-inhibitors, MEK-inhibitors, and PD-1/PD-L1 inhibitors. When these three medications are used in combination, patients may have better response rates and survival outcomes, when compared to using just one or two of these medications together. Toxicity rates are higher with a triple-medication regimen, so careful patient selection is important to consider.

9.
Cancer Sci ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39175203

RESUMEN

Patients with BRAF-mutated colorectal cancer (BRAFV600E CRC) are currently treated with a combination of BRAF inhibitor and anti-EGFR antibody with or without MEK inhibitor. A fundamental problem in treating patients with BRAFV600E CRC is intrinsic and/or acquired resistance to this combination therapy. By screening 78 compounds, we identified tretinoin, a retinoid, as a compound that synergistically enhances the antiproliferative effect of a combination of BRAF inhibition and MEK inhibition with or without EGFR inhibition on BRAFV600E CRC cells. This synergistic effect was also exerted by other retinoids. Tretinoin, added to BRAF inhibitor and MEK inhibitor, upregulated PARP, BAK, and p-H2AX. When either RARα or RXRα was silenced, the increase in cleaved PARP expression by the addition of TRE to ENC/BIN or ENC/BIN/CET was canceled. Our results suggest that the mechanism of the synergistic antiproliferative effect involves modulation of the Bcl-2 family and the DNA damage response that affects apoptotic pathways, and this synergistic effect is induced by RARα- or RXRα-mediated apoptosis. Tretinoin also enhanced the antitumor effect of a combination of the BRAF inhibitor and anti-EGFR antibody with or without MEK inhibitor in a BRAFV600E CRC xenograft mouse model. Our data provide a rationale for developing retinoids as a new combination agent to overcome resistance to the combination therapy for patients with BRAFV600E CRC.

10.
BMC Pulm Med ; 24(1): 379, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090580

RESUMEN

BACKGROUND: Lung cancer, accounting for a significant proportion of global cancer cases and deaths, poses a considerable health burden. Non-small cell lung cancer (NSCLC) patients have a poor prognosis and limited treatment options due to late-stage diagnosis and drug resistance. Dysregulated of the mitogen-activated protein kinase (MAPK) pathway, which is implicated in NSCLC pathogenesis, underscores the potential of MEK inhibitors such as binimetinib. Despite promising results in other cancers, comprehensive studies evaluating the safety and efficacy of binimetinib in lung cancer are lacking. This systematic review aimed to investigate the safety and efficacy of binimetinib for lung cancer treatment. METHODS: We searched PubMed, Scopus, Web of Science, and Google Scholar until September 2023. Clinical trials evaluating the efficacy or safety of binimetinib for lung cancer treatment were included. Studies were excluded if they included individuals with conditions unrelated to lung cancer, investigated other treatments, or had different types of designs. The quality assessment was conducted utilizing the National Institutes of Health tool. RESULTS: Seven studies with 228 participants overall were included. Four had good quality judgments, and three had fair quality judgments. The majority of patients experienced all-cause adverse events, with diarrhea, fatigue, and nausea being the most commonly reported adverse events of any grade. The objective response rate (ORR) was up to 75%, and the median progression-free survival (PFS) was up to 9.3 months. The disease control rate after 24 weeks varied from 41% to 64%. Overall survival (OS) ranged between 3.0 and 18.8 months. Notably, treatment-related adverse events were observed in more than 50% of patients, including serious adverse events such as colitis, febrile neutropenia, and pulmonary infection. Some adverse events led to dose limitation and drug discontinuation in five studies. Additionally, five studies reported cases of death, mostly due to disease progression. The median duration of treatment ranged from 14.8 weeks to 8.4 months. The most common dosage of binimetinib was 30 mg or 45 mg twice daily, sometimes used in combination with other agents like encorafenib or hydroxychloroquine. CONCLUSIONS: Only a few studies have shown binimetinib to be effective, in terms of improving OS, PFS, and ORR, while most of the studies found nonsignificant efficacy with increased toxicity for binimetinib compared with traditional chemotherapy in patients with lung cancer. Further large-scale randomized controlled trials are recommended.


Asunto(s)
Bencimidazoles , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Bencimidazoles/uso terapéutico , Bencimidazoles/efectos adversos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Antineoplásicos/efectos adversos , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/efectos adversos , Supervivencia sin Progresión
11.
Acta Neuropathol Commun ; 12(1): 127, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127699

RESUMEN

The two types of craniopharyngioma, adamantinomatous (ACP) and papillary (PCP), are clinically relevant tumours in children and adults. Although the biology of primary craniopharyngioma is starting to be unravelled, little is known about the biology of recurrence. To fill this gap in knowledge, we have analysed through methylation array, RNA sequencing and pERK1/2 immunohistochemistry a cohort of paired primary and recurrent samples (32 samples from 14 cases of ACP and 4 cases of PCP). We show the presence of copy number alterations and clonal evolution across recurrence in 6 cases of ACP, and analysis of additional whole genome sequencing data from the Children's Brain Tumour Network confirms chromosomal arm copy number changes in at least 7/67 ACP cases. The activation of the MAPK/ERK pathway, a feature previously shown in primary ACP, is observed in all but one recurrent cases of ACP. The only ACP without MAPK activation is an aggressive case of recurrent malignant human craniopharyngioma harbouring a CTNNB1 mutation and loss of TP53. Providing support for a functional role of this TP53 mutation, we show that Trp53 loss in a murine model of ACP results in aggressive tumours and reduced mouse survival. Finally, we characterise the tumour immune infiltrate showing differences in the cellular composition and spatial distribution between ACP and PCP. Together, these analyses have revealed novel insights into recurrent craniopharyngioma and provided preclinical evidence supporting the evaluation of MAPK pathway inhibitors and immunomodulatory approaches in clinical trials in against recurrent ACP.


Asunto(s)
Evolución Clonal , Craneofaringioma , Sistema de Señalización de MAP Quinasas , Recurrencia Local de Neoplasia , Neoplasias Hipofisarias , Proteína p53 Supresora de Tumor , Animales , Femenino , Humanos , Masculino , Ratones , beta Catenina/genética , beta Catenina/metabolismo , Evolución Clonal/genética , Craneofaringioma/genética , Craneofaringioma/patología , Craneofaringioma/metabolismo , Progresión de la Enfermedad , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/fisiología , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/patología , Neoplasias Hipofisarias/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
12.
Pharmaceutics ; 16(8)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39204325

RESUMEN

Effectively utilizing MEK inhibitors in the clinic remains challenging due to off-target toxicity and lack of predictive biomarkers. Recent findings propose E-cadherin, a breast cancer diagnostic indicator, as a predictor of MEK inhibitor success. To address MEK inhibitor toxicity, traditional methodologies have systemically delivered nanoparticles, which require frequent, high-dose injections. Here, we present a different approach, employing a thermosensitive, biodegradable hydrogel with functionalized liposomes for local, sustained release of MEK inhibitor PD0325901 and doxorubicin. The poly(δ-valerolactone-co-lactide)-b-poly(ethylene-glycol)-b-poly(δ-valerolactone-co-lactide) triblock co-polymer gels at physiological temperature and has an optimal degradation time in vivo. Liposomes were functionalized with PR_b, a biomimetic peptide targeting the α5ß1 integrin receptor, which is overexpressed in E-cadherin-positive triple negative breast cancer (TNBC). In various TNBC models, the hydrogel-liposome system delivered via local injection reduced tumor progression and improved animal survival without toxic side effects. Our work presents the first demonstration of local, sustained delivery of MEK inhibitors to E-cadherin-positive tumors alongside traditional chemotherapeutics, offering a safe and promising therapeutic strategy.

13.
Front Immunol ; 15: 1360698, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38979428

RESUMEN

Regulatory T cells (Tregs) play a crucial and complex role in balancing the immune response to viral infection. Primarily, they serve to regulate the immune response by limiting the expression of proinflammatory cytokines, reducing inflammation in infected tissue, and limiting virus-specific T cell responses. But excessive activity of Tregs can also be detrimental and hinder the ability to effectively clear viral infection, leading to prolonged disease and potential worsening of disease severity. Not much is known about the impact of Tregs during severe influenza. In the present study, we show that CD4+/CD25+FoxP3+ Tregs are strongly involved in disease progression during influenza A virus (IAV) infection in mice. By comparing sublethal with lethal dose infection in vivo, we found that not the viral load but an increased number of CD4+/CD25+FoxP3+ Tregs may impair the immune response by suppressing virus specific CD8+ T cells and favors disease progression. Moreover, the transfer of induced Tregs into mice with mild disease symptoms had a negative and prolonged effect on disease outcome, emphasizing their importance for pathogenesis. Furthermore, treatment with MEK-inhibitors resulted in a significant reduction of induced Tregs in vitro and in vivo and positively influenced the progression of the disease. Our results demonstrate that CD4+/CD25+FoxP3+ Tregs are involved in the pathogenesis of severe influenza and indicate the potential of the MEK-inhibitor zapnometinib to modulate CD4+/CD25+FoxP3+ Tregs. Thus, making MEK-inhibitors even more promising for the treatment of severe influenza virus infections.


Asunto(s)
Virus de la Influenza A , Infecciones por Orthomyxoviridae , Linfocitos T Reguladores , Animales , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Ratones , Virus de la Influenza A/inmunología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Femenino , Ratones Endogámicos C57BL , Factores de Transcripción Forkhead/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Carga Viral/efectos de los fármacos , Modelos Animales de Enfermedad
14.
Front Cardiovasc Med ; 11: 1404253, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011492

RESUMEN

Cardiovascular disease (CVD) represents the leading cause of mortality and disability all over the world. Identifying new targeted therapeutic approaches has become a priority of biomedical research to improve patient outcomes and quality of life. The RAS-RAF-MEK (mitogen-activated protein kinase kinase)-ERK (extracellular signal-regulated kinase) pathway is gaining growing interest as a potential signaling cascade implicated in the pathogenesis of CVD. This pathway is pivotal in regulating cellular processes like proliferation, growth, migration, differentiation, and survival, which are vital in maintaining cardiovascular homeostasis. In addition, ERK signaling is involved in controlling angiogenesis, vascular tone, myocardial contractility, and oxidative stress. Dysregulation of this signaling cascade has been linked to cell dysfunction and vascular and cardiac pathological remodeling, which contribute to the onset and progression of CVD. Recent and ongoing research has provided insights into potential therapeutic interventions targeting the RAS-RAF-MEK-ERK pathway to improve cardiovascular pathologies. Preclinical studies have demonstrated the efficacy of targeted therapy with MEK inhibitors (MEKI) in attenuating ERK activation and mitigating CVD progression in animal models. In this article, we first describe how ERK signaling contributes to preserving cardiovascular health. We then summarize current knowledge of the roles played by ERK in the development and progression of cardiac and vascular disorders, including atherosclerosis, myocardial infarction, cardiac hypertrophy, heart failure, and aortic aneurysm. We finally report novel therapeutic strategies for these CVDs encompassing MEKI and discuss advantages, challenges, and future developments for MEKI therapeutics.

15.
Mol Ther ; 32(10): 3650-3668, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39033323

RESUMEN

Patients with cancer of unknown primary (CUP) carry the double burden of an aggressive disease and reduced access to therapies. Experimental models are pivotal for CUP biology investigation and drug testing. We derived two CUP cell lines (CUP#55 and #96) and corresponding patient-derived xenografts (PDXs), from ascites tumor cells. CUP cell lines and PDXs underwent histological, immune-phenotypical, molecular, and genomic characterization confirming the features of the original tumor. The tissue-of-origin prediction was obtained from the tumor microRNA expression profile and confirmed by single-cell transcriptomics. Genomic testing and fluorescence in situ hybridization analysis identified FGFR2 gene amplification in both models, in the form of homogeneously staining region (HSR) in CUP#55 and double minutes in CUP#96. FGFR2 was recognized as the main oncogenic driver and therapeutic target. FGFR2-targeting drug BGJ398 (infigratinib) in combination with the MEK inhibitor trametinib proved to be synergic and exceptionally active, both in vitro and in vivo. The effects of the combined treatment by single-cell gene expression analysis revealed a remarkable plasticity of tumor cells and the greater sensitivity of cells with epithelial phenotype. This study brings personalized therapy closer to CUP patients and provides the rationale for FGFR2 and MEK targeting in metastatic tumors with FGFR2 pathway activation.


Asunto(s)
Amplificación de Genes , Neoplasias Primarias Desconocidas , Inhibidores de Proteínas Quinasas , Piridonas , Pirimidinonas , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Animales , Ratones , Línea Celular Tumoral , Neoplasias Primarias Desconocidas/tratamiento farmacológico , Neoplasias Primarias Desconocidas/genética , Neoplasias Primarias Desconocidas/patología , Pirimidinonas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridonas/farmacología , Sinergismo Farmacológico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Compuestos de Fenilurea/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica
16.
Front Oncol ; 14: 1433073, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39070150

RESUMEN

We present the clinical course of a 4-year-old girl with neurofibromatosis type 1-associated, unresectable, symptomatic urinary bladder ganglioneuroma. She was initially trialed on sirolimus without response and subsequently responded to MEK inhibitor trametinib, with improvement clinically and radiographically over 10 months. This report broadens the repertoire of therapeutic strategies for MEK inhibition in diseases related to the MAPK pathway.

17.
Curr Oncol ; 31(7): 4022-4029, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39057171

RESUMEN

Background: The treatment of BRAF V600E gliomas with BRAF inhibitors (BRAFis) and MEK inhibitors (MEKis) has been increasingly integrated into clinical practice for pediatric low-grade gliomas (PLGGs) and pediatric high-grade gliomas (HGGs). However, some questions remain unanswered, such as the best time to start targeted therapy, duration of treatment, and discontinuation of therapy. Given that no clinical trial has been able to address these critical questions, we developed a Canadian Consensus statement for the treatment of BRAF V600E mutated pediatric as well as adolescent and young adult (AYA) gliomas. Methods: Canadian neuro-oncologists were invited to participate in the development of this consensus. The consensus was discussed during monthly web-based national meetings, and the algorithms were revised until a consensus was achieved. Results: A total of 26 participants were involved in the development of the algorithms. Two treatment algorithms are proposed, one for the initiation of treatment and one for the discontinuation of treatment. We suggest that most patients with BRAF V600E gliomas should be treated with BRAFis ± MEKis upfront. Discontinuation of treatment can be considered in certain circumstances, and we suggest a slow wean. Conclusions: Based on expert consensus in Canada, we developed algorithms for treatment initiation of children and AYA with BRAF V600E gliomas as well as a discontinuation algorithm.


Asunto(s)
Consenso , Glioma , Mutación , Proteínas Proto-Oncogénicas B-raf , Adolescente , Niño , Femenino , Humanos , Masculino , Adulto Joven , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamiento farmacológico , Canadá , Glioma/genética , Glioma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/genética
18.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892436

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest of human malignancies and carries an exceptionally poor prognosis. It is mostly driven by multiple oncogenic alterations, with the highest mutation frequency being observed in the KRAS gene, which is a key oncogenic driver of tumorogenesis and malignant progression in PDAC. However, KRAS remained undruggable for decades until the emergence of G12C mutation specific KRAS inhibitors. Despite this development, this therapeutic approach to target KRAS directly is not routinely used for PDAC patients, with the reasons being the rare presence of G12C mutation in PDAC with only 1-2% of occurring cases, modest therapeutic efficacy, activation of compensatory pathways leading to cell resistance, and absence of effective KRASG12D or pan-KRAS inhibitors. Additionally, indirect approaches to targeting KRAS through upstream and downstream regulators or effectors were also found to be either ineffective or known to cause major toxicities. For this reason, new and more effective treatment strategies that combine different therapeutic modalities aiming at achieving synergism and minimizing intrinsic or adaptive resistance mechanisms are required. In the current work presented here, pancreatic cancer cell lines with oncogenic KRAS G12C, G12D, or wild-type KRAS were treated with specific KRAS or SOS1/2 inhibitors, and therapeutic synergisms with concomitant MEK inhibition and irradiation were systematically evaluated by means of cell viability, 2D-clonogenic, 3D-anchorage independent soft agar, and bioluminescent ATP assays. Underlying pathophysiological mechanisms were examined by using Western blot analyses, apoptosis assay, and RAS activation assay.


Asunto(s)
Neoplasias Pancreáticas , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/radioterapia , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/radioterapia , Carcinoma Ductal Pancreático/terapia , Transducción de Señal/efectos de los fármacos , Apoptosis , Mutación , Proliferación Celular/efectos de los fármacos , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo
19.
Artículo en Inglés | MEDLINE | ID: mdl-38935244

RESUMEN

PURPOSE OF REVIEW: The purpose of this narrative review is to summarize pain symptomatology and mechanisms in neurofibromatosis type 1 (NF1), discuss the pain related quality of life impacts of NF1, and discuss the literature exploring interventions to improve quality of life. RECENT FINDINGS: Chronic pain in NF1 is described as headache and non-headache pain. The literature describes mechanisms contributing to neuronal hyperexcitability in the setting of reduced neurofibromin as key contributors to pain in NF1. Pain in NF1 negatively impacts quality of life with pain interference, depression, anxiety, and cognitive functioning acting as important mediators. Mitogen-activated protein kinase (MEK) inhibitors are pharmacologic agents that interfere with pain mechanisms. Mind-body interventions improve coping skills to improve quality of life. Chronic pain in NF1 is heterogeneous with negative impacts on quality of life. New developments in pharmacological and non-pharmacological interventions offer promising approaches to pain management and quality of life improvement. Additional research is necessary to validate the use of MEK inhibitors and mind-body interventions in the treatment of NF1.

20.
Life (Basel) ; 14(6)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38929714

RESUMEN

The RASopathies are a group of syndromes caused by genetic variants that affect the RAS-MAPK signaling pathway, which is essential for cell response to diverse stimuli. These variants functionally converge towards the overactivation of the pathway, leading to various constitutional and mosaic conditions. These syndromes show overlapping though distinct clinical presentations and share congenital heart defects, hypertrophic cardiomyopathy (HCM), and lymphatic dysplasia as major clinical features, with highly variable prevalence and severity. Available treatments have mainly been directed to target the symptoms. However, repurposing MEK inhibitors (MEKis), which were originally developed for cancer treatment, to target evolutive aspects occurring in these disorders is a promising option. Animal models have shown encouraging results in treating various RASopathy manifestations, including HCM and lymphatic abnormalities. Clinical reports have also provided first evidence supporting the effectiveness of MEKi, especially trametinib, in treating life-threatening conditions associated with these disorders. Nevertheless, despite notable improvements, there are adverse events that occur, necessitating careful monitoring. Moreover, there is evidence indicating that multiple pathways can contribute to these disorders, indicating a current need to more accurate understand of the underlying mechanism of the disease to apply an effective targeted therapy. In conclusion, while MEKi holds promise in managing life-threatening complications of RASopathies, dedicated clinical trials are required to establish standardized treatment protocols tailored to take into account the individual needs of each patient and favor a personalized treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA