Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Entropy (Basel) ; 26(9)2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39330140

RESUMEN

A non-zero correlation between service times can be encountered in many real queueing systems. An attractive model for correlated service times is the Markovian service process, because it offers powerful fitting capabilities combined with analytical tractability. In this paper, a transient study of the queue length in a model with MSP services and a general distribution of interarrival times is performed. In particular, two theorems are proven: one on the queue length distribution at a particular time t, where t can be arbitrarily small or large, and another on the mean queue length at t. In addition to the theorems, multiple numerical examples are provided. They illustrate the development over time of the mean queue length and the standard deviation, along with the complete distribution, depending on the service correlation strength, initial system conditions, and the interarrival time variance.

2.
Parasite Epidemiol Control ; 26: e00366, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39101106

RESUMEN

Background: Nigeria is a major contributor to the global malaria burden. The genetic diversity of malaria parasite populations as well as antibody responses of individuals in affected areas against antigens of the parasite can reveal the transmission intensity, a key information required to control the disease. This work was carried out to determine the allelic frequency of highly polymorphic Plasmodium falciparum genes and antibody responses against schizont crude antigens in an area of Ibadan, Nigeria. Materials and methods: Blood was collected from 147 individuals with symptoms suspected to be malaria. Malaria infection was determined using a rapid diagnostic test (RDT), and msp1 and msp2 were genotyped by a nested PCR method. In addition, levels of IgG directed against P. falciparum FCR3S1.2 schizont extract was measured in ELISA. Results: Approximately 25% (36/147) were positive for a P. falciparum infection in RDT, but only 32 of the positive samples were successfully genotyped. MAD20 was the most prevalent and K1 the least prevalent of the msp1 alleles. For msp2, FC27 was more prevalent than 3D7. The mean multiplicities of infection (MOI) were 1.9 and 1.7 for msp1 and msp2, respectively. IgG levels correlated positively with age, however there was no difference in median antibody levels between RDT-positive and RDT-negative individuals. Conclusion: Low MOI has before been correlated with low/intermediate transmission intensity, however, in this study, similar levels of P. falciparum-specific antibodies between infected and non-infected individuals point more towards a high level of exposure and a need for further measures to control the spread of malaria in this area.

3.
PeerJ ; 12: e17632, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948214

RESUMEN

Background: The integration of diagnostic methods holds promise for advancing the surveillance of malaria transmission in both endemic and non-endemic regions. Serological assays emerge as valuable tools to identify and delimit malaria transmission, serving as a complementary method to rapid diagnostic tests (RDT) and thick smear microscopy. Here, we evaluate the potential of antibodies directed against peptides encompassing the entire amino acid sequence of the PvMSP-1 Sal-I strain as viable serological biomarkers for P. vivax exposure. Methods: We screened peptides encompassing the complete amino acid sequence of the Plasmodium vivax Merozoite Surface Protein 1 (PvMSP-1) Sal-I strain as potential biomarkers for P. vivax exposure. Here, immunodominant peptides specifically recognized by antibodies from individuals infected with P. vivax were identified using the SPOT-synthesis technique followed by immunoblotting. Two 15-mer peptides were selected based on their higher and specific reactivity in immunoblotting assays. Subsequently, peptides p70 and p314 were synthesized in soluble form using SPPS (Solid Phase Peptide Synthesis) and tested by ELISA (IgG, and subclasses). Results: This study unveils the presence of IgG antibodies against the peptide p314 in most P. vivax-infected individuals from the Brazilian Amazon region. In silico B-cell epitope prediction further supports the utilization of p314 as a potential biomarker for evaluating malaria transmission, strengthened by its amino acid sequence being part of a conserved block of PvMSP-1. Indeed, compared to patients infected with P. falciparum and uninfected individuals never exposed to malaria, P. vivax-infected patients have a notably higher recognition of p314 by IgG1 and IgG3.


Asunto(s)
Anticuerpos Antiprotozoarios , Biomarcadores , Malaria Vivax , Proteína 1 de Superficie de Merozoito , Plasmodium vivax , Humanos , Malaria Vivax/inmunología , Malaria Vivax/sangre , Malaria Vivax/parasitología , Malaria Vivax/transmisión , Malaria Vivax/diagnóstico , Proteína 1 de Superficie de Merozoito/inmunología , Plasmodium vivax/inmunología , Biomarcadores/sangre , Anticuerpos Antiprotozoarios/inmunología , Anticuerpos Antiprotozoarios/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Adulto , Femenino , Masculino , Persona de Mediana Edad , Péptidos/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Adulto Joven , Adolescente , Secuencia de Aminoácidos
4.
J Biol Chem ; 300(8): 107496, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925325

RESUMEN

Emerging Artemisinin (ART) resistance in Plasmodium falciparum (Pf) poses challenges for the discovery of novel drugs to tackle ART-resistant parasites. Concentrated efforts toward the ART resistance mechanism indicated a strong molecular link of ART resistance with upregulated expression of unfolded protein response pathways involving Prefoldins (PFDs). However, a complete characterization of PFDs as molecular players taking part in ART resistance mechanism, and discovery of small molecule inhibitors to block this process have not been identified to date. Here, we functionally characterized all Pf Prefoldin subunits (PFD1-6) and established a causative role played by PFDs in ART resistance by demonstrating their expression in intra-erythrocytic parasites along with their interactions with Kelch13 protein through immunoprecipitation coupled MS/MS analysis. Systematic biophysical interaction analysis between all subunits of PFDs revealed their potential to form a complex. The role of PFDs in ART resistance was confirmed in orthologous yeast PFD6 mutants, where PfPFD6 expression in yeast mutants reverted phenotype to ART resistance. We identified an FDA-approved drug "Biperiden" that restricts the formation of Prefoldin complex and inhibits its interaction with its key parasite protein substrates, MSP-1 and α-tubulin-I. Moreover, Biperiden treatment inhibits the parasite growth in ART-sensitive Pf3D7 and resistant Pf3D7k13R539T strains. Ring survival assays that are clinically relevant to analyze ART resistance in Pf3D7k13R539T parasites demonstrate the potency of BPD to inhibit the growth of survivor parasites. Overall, our study provides the first evidence of the role of PfPFDs in ART resistance mechanisms and opens new avenues for the management of resistant parasites.


Asunto(s)
Antimaláricos , Artemisininas , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Proteínas Protozoarias , Respuesta de Proteína Desplegada , Plasmodium falciparum/genética , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Artemisininas/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Humanos , Antimaláricos/farmacología , Malaria Falciparum/parasitología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/genética , Malaria Falciparum/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética
5.
Int J Infect Dis ; 143: 107013, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38499057

RESUMEN

OBJECTIVES: We investigated the diversity and dynamics of Plasmodium infection in serially collected samples from asymptomatic participants of a clinical trial assessing the efficacy and safety of ivermectin in Gabon. We checked whether the baseline sample reflected the P. falciparum genotype and Plasmodium species diversity seen over 7 days of follow-up. METHODS: Blood samples were collected at inclusion, every 8 hours until hour 72, daily until day 7, and on day 14. Plasmodium species was determined by qPCR and pfmsp1 length polymorphism was assessed for P. falciparum genotyping. RESULTS: In 17/48 (35%) individuals, all pfmsp1 genotypes identified during the assessed period were detected at baseline; in 31/48 (65%), new genotypes were found during follow-up. Additional sampling at hour 24 allowed the identification of all genotypes seen over 7 days in 50% of the individuals. Ivermectin did not impact the genotype dynamics. Mixed Plasmodium spp. infections were detected in 28/49 (57%) individuals at baseline, and detection of non-falciparum infections during follow-up varied. CONCLUSIONS: Our results reveal complex intra-host dynamics of P. falciparum genotypes and Plasmodium species and underscore the importance of serial sampling in clinical trials for antimalarial drugs with asymptomatically P. falciparum-infected individuals. This might allow a more accurate identification of genotypes in multiple infections, impacting the assessment of drug efficacy.


Asunto(s)
Infecciones Asintomáticas , Genotipo , Ivermectina , Malaria Falciparum , Humanos , Gabón/epidemiología , Infecciones Asintomáticas/epidemiología , Adulto , Malaria Falciparum/parasitología , Malaria Falciparum/epidemiología , Malaria Falciparum/tratamiento farmacológico , Masculino , Ivermectina/uso terapéutico , Femenino , Variación Genética , Plasmodium falciparum/genética , Plasmodium falciparum/efectos de los fármacos , Plasmodium/genética , Plasmodium/clasificación , Plasmodium/aislamiento & purificación , Plasmodium/efectos de los fármacos , Adulto Joven
6.
Muscle Nerve ; 69(6): 699-707, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38551101

RESUMEN

INTRODUCTION/AIMS: VCP multisystem proteinopathy 1 (MSP1), encompassing inclusion body myopathy (IBM), Paget's disease of bone (PDB) and frontotemporal dementia (FTD) (IBMPFD), features progressive muscle weakness, fatty infiltration, and disorganized bone structure in Pagetic bones. The aim of this study is to utilize dual-energy x-ray absorptiometry (DXA) parameters to examine it as a biomarker of muscle and bone disease in MSP1. METHODS: DXA scans were obtained in 28 patients to assess body composition parameters (bone mineral density [BMD], T-score, total fat, and lean mass) across different groups: total VCP disease (n = 19), including myopathy without Paget's ("myopathy"; n = 12) and myopathy with Paget's ("Paget"; n = 7), and unaffected first-degree relatives serving as controls (n = 6). RESULTS: In the VCP disease group, significant declines in left hip BMD and Z-scores were noted versus the control group (p ≤ .03). The VCP disease group showed decreased whole body lean mass % (p = .04), and increased total body fat % (p = .04) compared to controls. Subgroup comparisons indicated osteopenia in 33.3% and osteoporosis in 8.3% of the myopathy group, with 14.3% exhibiting osteopenia in the Paget group. Moreover, the Paget group displayed higher lumbar L1-L4 T-score values than the myopathy group. DISCUSSION: In MSP1, DXA revealed reduced bone and lean mass, and increased fat mass. These DXA insights could aid in monitoring disease progression of muscle loss and secondary osteopenia/osteoporosis in MSP1, providing value both clinically and in clinical research.


Asunto(s)
Absorciometría de Fotón , Densidad Ósea , Distrofia Muscular de Cinturas , Miositis por Cuerpos de Inclusión , Osteítis Deformante , Humanos , Masculino , Femenino , Persona de Mediana Edad , Estudios Transversales , Anciano , Miositis por Cuerpos de Inclusión/diagnóstico por imagen , Miositis por Cuerpos de Inclusión/patología , Miositis por Cuerpos de Inclusión/genética , Osteítis Deformante/diagnóstico por imagen , Osteítis Deformante/genética , Osteítis Deformante/complicaciones , Adulto , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Composición Corporal , Proteína que Contiene Valosina/genética , Adenosina Trifosfatasas/genética
7.
Vaccines (Basel) ; 12(2)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38400191

RESUMEN

Vaccines are highly effective tools against infectious diseases and are also considered necessary in the fight against malaria. Vaccine-induced immunity is frequently mediated by antibodies. We have recently conducted a first-in-human clinical trial featuring SumayaVac-1, a malaria vaccine based on the recombinant, full-length merozoite surface protein 1 (MSP1FL) formulated with GLA-SE as an adjuvant. Vaccination with MSP1FL was safe and elicited sustainable IgG antibody titers that exceeded those observed in semi-immune populations from Africa. Moreover, IgG antibodies stimulated various Fc-mediated effector mechanisms associated with protection against malaria. However, these functionalities gradually waned. Here, we show that the initial two doses of SumayaVac-1 primarily induced the cytophilic subclasses IgG1 and IgG3. Unexpectedly, a shift in the IgG subclass composition occurred following the third and fourth vaccinations. Specifically, there was a progressive transition to IgG4 antibodies, which displayed a reduced capacity to engage in Fc-mediated effector functions and also exhibited increased avidity. In summary, our analysis of antibody responses to MSP1FL vaccination unveils a temporal shift towards noninflammatory IgG4 antibodies. These findings underscore the importance of considering the impact of IgG subclass composition on vaccine-induced immunity, particularly concerning Fc-mediated effector functions. This knowledge is pivotal in guiding the design of optimal vaccination strategies against malaria, informing decision making for future endeavors in this critical field.

8.
Pathogens ; 13(2)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38392910

RESUMEN

BACKGROUND: Understanding the genetic structure of P. falciparum population in different regions is pivotal to malaria elimination. Genetic diversity and the multiplicity of infection are indicators used for measuring malaria endemicity across different transmission settings. Therefore, this study characterized P. falciparum infections from selected areas constituting pre-elimination and high transmission settings in South Africa and Nigeria, respectively. METHODS: Parasite genomic DNA was extracted from 129 participants with uncomplicated P. falciparum infections. Isolates were collected from 78 participants in South Africa (southern Africa) and 51 in Nigeria (western Africa). Allelic typing of the msp1 and msp2 genes was carried out using nested PCR. RESULTS: In msp1, the K1 allele (39.7%) was the most common allele among the South African isolates, while the RO33 allele (90.2%) was the most common allele among the Nigerian isolates. In the msp2 gene, FC27 and IC3D7 showed almost the same percentage distribution (44.9% and 43.6%) in the South African isolates, whereas FC27 had the highest percentage distribution (60.8%) in the Nigerian isolates. The msp2 gene showed highly distinctive genotypes, indicating high genetic diversity in the South African isolates, whereas msp1 showed high genetic diversity in the Nigerian isolates. The RO33 allelic family displayed an inverse relationship with participants' age in the Nigerian isolates. The overall multiplicity of infection (MOI) was significantly higher in Nigeria (2.87) than in South Africa (2.44) (p < 0.000 *). In addition, heterozygosity was moderately higher in South Africa (1.46) than in Nigeria (1.13). CONCLUSIONS: The high genetic diversity and MOI in P. falciparum that were observed in this study could provide surveillance data, on the basis of which appropriate control strategies should be adopted.

9.
Malar J ; 23(1): 35, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38281044

RESUMEN

BACKGROUND: Sri Lanka after eliminating malaria in 2012, is in the prevention of re-establishment (POR) phase. Being a tropical country with high malariogenic potential, maintaining vigilance is important. All malaria cases are investigated epidemiologically and followed up by integrated drug efficacy surveillance (iDES). Occasionally, that alone is not adequate to differentiate Plasmodium falciparum reinfections from recrudescences. This study evaluated the World Health Organization and Medicines for Malaria Venture (MMV) recommended genotyping protocol for the merozoite surface proteins (msp1, msp2) and the glutamate-rich protein (glurp) to discriminate P. falciparum recrudescence from reinfection in POR phase. METHODS: All P. falciparum patients detected from April 2014 to December 2019 were included in this study. Patients were treated and followed up by iDES up to 28 days and were advised to get tested if they develop fever at any time over the following year. Basic socio-demographic information including history of travel was obtained. Details of the malariogenic potential and reactive entomological and parasitological surveillance carried out by the Anti Malaria Campaign to exclude the possibility of local transmission were also collected. The msp1, msp2, and glurp genotyping was performed for initial and any recurrent infections. Classification of recurrent infections as recrudescence or reinfection was done based on epidemiological findings and was compared with the genotyping outcome. RESULTS: Among 106 P. falciparum patients, six had recurrent infections. All the initial infections were imported, with a history of travel to malaria endemic countries. In all instances, the reactive entomological and parasitological surveillance had no evidence for local transmission. Five recurrences occurred within 28 days of follow-up and were classified as recrudescence. They have not travelled to malaria endemic countries between the initial and recurrent infections. The other had a recurrent infection after 105 days. It was assumed a reinfection, as he had travelled to the same malaria endemic country in between the two malaria attacks. Genotyping confirmed the recrudescence and the reinfection. CONCLUSIONS: The msp1, msp2 and glurp genotyping method accurately differentiated reinfections from recrudescence. Since reinfection without a history of travel to a malaria endemic country would mean local transmission, combining genotyping outcome with epidemiological findings will assist classifying malaria cases without any ambiguity.


Asunto(s)
Demencia Frontotemporal , Malaria Falciparum , Proteína 1 de Superficie de Merozoito , Distrofia Muscular de Cinturas , Miositis por Cuerpos de Inclusión , Osteítis Deformante , Masculino , Humanos , Proteína 1 de Superficie de Merozoito/genética , Plasmodium falciparum/genética , Reinfección , Proteínas Protozoarias/genética , Proteínas Protozoarias/uso terapéutico , Antígenos de Protozoos/genética , Antígenos de Protozoos/uso terapéutico , Genotipo , Ácido Glutámico , Sri Lanka/epidemiología , Variación Genética , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Malaria Falciparum/tratamiento farmacológico , Recurrencia
10.
Chemosphere ; 349: 140835, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38043617

RESUMEN

Chlorella bears excellent potential in removing nutrients from industrial wastewater and lipid production enriched with polyunsaturated fatty acids. However, due to the changing nutrient dynamics of wastewater, growth and metabolic activity of Chlorella are affected. In order to sustain microalgal growth in wastewater with concomitant production of PUFA rich lipids, RSM (Response Surface Methodology) followed by heuristic hybrid computation model ANN-MOGA (Artificial Neural Network- Multi-Objective Genetic Algorithm) were implemented. Preliminary experiments conducted taking one factor at a time and design matrix of RSM with process variables viz. Sodium chloride (1 mM-40 mM), Magnesium sulphate (100 mg-800 mg) and incubation time (4th day to 20th day) were validated by ANN-MOGA. The study reported improved biomass and lipid yield by 54.25% and 12.76%, along with total nitrogen and phosphorus removal by 21.92% and 18.72% respectively using ANN-MOGA. It was evident from FAME results that there was a significantly improved concentration of linoleic acid (19.1%) and γ-linolenic acid (21.1%). Improved PUFA content makes it a potential feedstock with application in cosmeceutical, pharmaceutical and nutraceutical industry. The study further proves that C. sorokiniana MSP1 mediated industrial wastewater treatment with PUFA production is an effective way in providing environmental benefits along with value addition. Moreover, ANN-MOGA is a relevant tool that could control microalgal growth in wastewater.


Asunto(s)
Chlorella , Microalgas , Aguas Residuales , Proteína 1 de Superficie de Merozoito , Nitrógeno , Nutrientes , Biomasa , Ácidos Grasos Insaturados
11.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-1030987

RESUMEN

@#Abstract: Objective: To investigate the role of CRX-527, a Toll-like receptor 4 agonist, as the possible adjuvant for recombinant Mycobacterium bovis Bacillus Calmette-Guerin expressing merozoite surface protein 1C (BCG-MSP-1C). Methods: The mice were immunized with BCG and BCG-MSP- 1C in the presence and absence of CRX-527. The untreated mice (injected with PBS-T80 only) were the negative control. The ability of CRX-527 to enhance IgG and its subclasses, as well as IL-4 and IFN-γ production in the serum and spleen supernatant was evaluated using ELISA. Results: Mice immunized with BCG-MSP-1C exhibited the highest production of IgGs, IL-4 and IFN-γ after third immunization. In addition, CRX-527 further promoted the production of total IgG and IgG subclasses as well as IFN-γ and IL-4 in the serum and splenocytes of immunized mice. Conclusions: CRX-527 has the potential as an adjuvant candidate for the candidate vaccines. Further study is needed to verify appropriate dosage for immunization and its efficacy.

12.
Infect Drug Resist ; 16: 6673-6680, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37849789

RESUMEN

Purpose: Intermittent preventive treatment with sulfadoxine-pyrimethamine is widely used for the prevention of malaria in pregnant women in Africa. Known resistance cases of sulfadoxine-pyrimethamine during pregnancy need to be follow up to support IPTp implementation in Burkina Faso. However, data on the development and spread of resistance to this molecule are lacking. This study aimed to investigating the genetic diversity of P. falciparum and the mutation prevalence in the dhfr and dhps genes infected from postpartum infected placentas. Patients and Methods: This was a prospective and cross-sectional study conducted between April 2019 and March 2020 in four health districts of Ouagadougou capital city. From the placentas collected after delivery, P. falciparum detection and mps1 and msp2 polymorphism analysis were performed by nested PCR. The resistance profile was checked after analyzing the mutation point on dhfr and dhps genes. Results: PCR-positive samples were estimated at 96% for msp1 and 98% for msp2. The polymorphism analysis showed that the RO33 and 3D7 allelic families were the most widespread with 62.5% and 91.83%, respectively. Multiple infections by msp1 and msp2 were frequent with 12.50% and 92.92%, respectively. The prevalence of individual dhfr mutation point, 51I, 108A, and 59R, was 1.96, 15.68, and 7.84, respectively, and the dhps mutation point, 437G, was 3.92. There is no detected mutation at the point 164L and 540E. The triple (51I+108A+59R) in dhfr and quadruple (51I+108A+59R+ 437G) mutation were not found. Conclusion: The results showed that Plasmodium falciparum has a high genetic diversity of msp1 and msp2. This suggests that dhfr and dhps mutant genotypes are potential early warning factors in the increase in the sulfadoxine-pyrimethamine resistance.

13.
Malar J ; 22(1): 263, 2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37689681

RESUMEN

BACKGROUND: Multiplicity of infection (MOI) is an important measure of Plasmodium falciparum diversity, usually derived from the highly polymorphic genes, such as msp1, msp2 and glurp as well as microsatellites. Conventional methods of deriving MOI lack fine resolution needed to discriminate minor clones. This study used amplicon sequencing (AmpliSeq) of P. falciparum msp1 ï»¿(Pfmsp1) to measure spatial and temporal genetic diversity of P. falciparum. METHODS: 264 P. falciparum positive blood samples collected from areas of differing malaria endemicities between 2010 and 2019 were used. Pfmsp1 gene was amplified and amplicon libraries sequenced on Illumina MiSeq. Sequences were aligned against a reference sequence (NC_004330.2) and clustered to detect fragment length polymorphism and amino acid variations. RESULTS: Children < 5 years had higher parasitaemia (median = 23.5 ± 5 SD, p = 0.03) than the > 5-14 (= 25.3 ± 5 SD), and those > 15 (= 25.1 ± 6 SD). Of the alleles detected, 553 (54.5%) were K1, 250 (24.7%) MAD20 and 211 (20.8%) RO33 that grouped into 19 K1 allelic families (108-270 bp), 14 MAD20 (108-216 bp) and one RO33 (153 bp). AmpliSeq revealed nucleotide polymorphisms in alleles that had similar sizes, thus increasing the K1 to 104, 58 for MAD20 and 14 for RO33. By AmpliSeq, the mean MOI was 4.8 (± 0.78, 95% CI) for the malaria endemic Lake Victoria region, 4.4 (± 1.03, 95% CI) for the epidemic prone Kisii Highland and 3.4 (± 0.62, 95% CI) for the seasonal malaria Semi-Arid region. MOI decreased with age: 4.5 (± 0.76, 95% CI) for children < 5 years, compared to 3.9 (± 0.70, 95% CI) for ages 5 to 14 and 2.7 (± 0.90, 95% CI) for those > 15. Females' MOI (4.2 ± 0.66, 95% CI) was not different from males 4.0 (± 0.61, 95% CI). In all regions, the number of alleles were high in the 2014-2015 period, more so in the Lake Victoria and the seasonal transmission arid regions. CONCLUSION: These findings highlight the added advantages of AmpliSeq in haplotype discrimination and the associated improvement in unravelling complexity of P. falciparum population structure.


Asunto(s)
Malaria Falciparum , Parásitos , Niño , Femenino , Masculino , Animales , Humanos , Preescolar , Plasmodium falciparum/genética , Kenia/epidemiología , Malaria Falciparum/epidemiología , Alelos , Fiebre , Proteína 1 de Superficie de Merozoito/genética
14.
BMC Infect Dis ; 23(1): 607, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723449

RESUMEN

BACKGROUND: Malaria cases in non-endemic zero-indigenous case areas are most likely to have been imported whatever of the route of importation. In countries recently declared malaria-free and now without local transmission, imported cases remain a threat to re-introduction of the disease and a burden on the health system. CASE PRESENTATION: Three days after returning from a long trip to malaria- endemic countries; Abyei-Sudan, Chad and Uganda, a 41-year-old male resident from Jericho, Palestine, suffered paroxysms of fever, general fatigue, myalgia, arthralgia, headache, and a strong desire to vomit. Thin and thick Giemsa-stained blood smears were prepared and examined microscopically using oil immersion. Immature trophozoites (ring forms) were seen to parasitize approximately 10% of the erythrocytes revealing hyperparasitemia equivalent to > 100,000 parasites/ µl indicating severe malaria [1, 2]. The double chromatin configuration (headphones) and accolé (applique) position are both indicative of Plasmodium falciparum infection. The 18S rRNA- PCR targeting the rPLU6-rPLU5 region was used to confirm the diagnosis. The next-generation sequencing (NGS) method was carried out according to the manufacturer's instructions (Illumina® DNA Prep, (M) Tagmentation kit (20060060), Illumina) to identify Plasmodium spp. Furthermore, NGS produced a whole-genome sequence of 22.8Mbp of the 14 chromosomes and 25Kbp of the apicoplast. A BLAST search of the apicoplast DNA and selected chromosomal DNA revealed that P. falciparum was the causative agent. The merozoite surface protein-1 (msp-1) was used to construct a phylogenetic tree of 26 P. falciparum, including the one isolated from the patient from Jericho, which clustered with the Sudanese isolate indicating genetic relatedness between the two. CONCLUSION: The travel history together with signs and symptoms of malaria, followed by prompt diagnosis using conventional microscopic inspection of Giemsa-stained films together with molecular DNA tracking tools like msp-1 were key means in tracking the place of origin of infection in the case of travel to multiple destination.


Asunto(s)
Malaria Falciparum , Malaria , Humanos , Adulto , Plasmodium falciparum/genética , Proteína 1 de Superficie de Merozoito , Filogenia , Malaria Falciparum/diagnóstico , Colorantes Azulados , ADN Ribosómico
15.
Pathogens ; 12(8)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37623970

RESUMEN

Anaplasma marginale is an obligate intraerythrocytic bacterium of bovines, responsible for large economic losses worldwide. It is mainly transmitted by Rhipicephalus (Boophilus) microplus ticks and, despite mounting evidence suggesting transovarial transmission, the occurrence of this phenomenon remains controversial. We evaluated the vector competence of R. microplus larvae vertically infected with A. marginale to transmit the bacterium to a naïve bovine. A subgroup of engorged female ticks collected from an A. marginale-positive animal was dissected and the presence of the pathogen in its tissues was confirmed. A second subgroup of ticks was placed under controlled conditions for oviposition. After confirming the presence of A. marginale in the hatched larvae, an experimental infestation assay was conducted. Larvae were placed on an A. marginale-free splenectomized calf. The bacterium was detected in the experimentally infested bovine 22 days post-infestation. We analyzed the A. marginale diversity throughout the transmission cycle using the molecular marker MSP1a. Different genotypes were detected in the mammalian and arthropod hosts showing a reduction of strain diversity along the transmission process. Our results demonstrate the vertical transmission of A. marginale from R. microplus females to its larvae, their vector competence to transmit the pathogen, and a bottleneck in A. marginale strain diversity.

16.
Parasitol Res ; 122(10): 2433-2443, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37624380

RESUMEN

With limited up to date data from the Republic of Congo, the aim of this study was to investigate allelic polymorphism of merozoite surface protein-1 (msp-1) and merozoite surface protein-2 (msp-2). This will help assess the genetic diversity and multiplicity of Plasmodium falciparum infection (MOI), from uncomplicated malaria individuals living in Brazzaville. Between March and October 2021, a cross-sectional study was carried out at a health center in Madibou District located in the south of Brazzaville. Plasmodium infection was diagnosed in human blood by microscopy and the block 2 of P. falciparum msp-1 and block 3 of msp-2 genes were genotyped by nested PCR. Overall, 57 genotypes with fragment sizes ranging from 110 to 410 bp were recorded for msp-1, among which 25, 21, and 11 genotypes identified for K1, MAD20, and RO33 allelic families respectively. RO33 (34.3%) and MAD20 (34.3%) allelic families were more frequent compared to K1 (31.4%) although the difference was not statistically significant. Also, 47 msp-2 genotypes were identified, including 26 FC27 genotypes type, and 21 genotypes belonging to the 3D7 allelic family. FC27 was more frequent (52.3%) compared to 3D7 (47.7%). The prevalence of the polyclonal infection was 90.0% while the MOI was 2.90 ± 1.0. The MOI and polyclonal infection were not significantly associated with the parasitaemia and anaemia. This study reveals a high genetic diversity and the trend of increasing MOI of P. falciparum isolates from the south of Brazzaville, compared to the reports from the same setting before the COVID-19 pandemic.


Asunto(s)
COVID-19 , Malaria Falciparum , Humanos , Animales , Plasmodium falciparum/genética , Congo/epidemiología , Proteína 1 de Superficie de Merozoito/genética , Merozoítos , Estudios Transversales , Pandemias , Malaria Falciparum/epidemiología , Proteínas de la Membrana , Polimorfismo Genético
17.
J Proteomics ; 287: 104970, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37467888

RESUMEN

Magnaporthe oryzae snodprot1 homologous protein (MSP1) is known to function as a pathogen-associated molecular pattern (PAMP) and trigger PAMP-triggered immunity (PTI) in rice including induction of programmed cell death and expression of defense-related genes. The involvement of several post-translational modifications (PTMs) in the regulation of plant immune response, especially PTI, is well established, however, the information on the regulatory roles of these PTMs in response to MSP1-induced signaling is currently elusive. Here, we report the phosphoproteome, ubiquitinome, and acetylproteome to investigate the MSP1-induced PTMs alterations in MSP1 overexpressed and wild-type rice. Our analysis identified a total of 4666 PTMs-modified sites in rice leaves including 4292 phosphosites, 189 ubiquitin sites, and 185 acetylation sites. Among these, the PTM status of 437 phosphorylated, 53 ubiquitinated, and 68 acetylated peptides was significantly changed by MSP1. Functional annotation of MSP1 modulated peptides by MapMan analysis revealed that these were majorly associated with cellular immune responses including signaling, transcription factors, DNA and RNA regulation, and protein metabolism, among others. Taken together, our study provides novel insights into post-translational mediated regulation of rice proteins in response to M. oryzae secreted PAMP which help in understanding the molecular mechanism of MSP1-induced signaling in rice in greater detail. SIGNIFICANCE: The research investigates the effect of overexpression of MSP1 protein in rice leaves on the phosphoproteome, acetylome, and ubiquitinome. The study found that MSP1 is involved in rice protein phosphorylation, particularly in signaling pathways, and identified a key component, PTAC16, in MSP1-induced signaling. The analysis also revealed MSP1's role in protein degradation and modification by inducing ubiquitination of the target rice proteins. The research identified potential kinases involved in the phosphorylation of rice proteins, including casein kinase II, 14-3-3 domain binding motif, ß-adrenergic receptor kinase, ERK1,2 kinase substrate motif, and casein kinase I motifs. Overall, the findings provide insights into the molecular mechanisms underlying of MSP1 induced signaling in rice which may have implications for improving crop yield and quality.


Asunto(s)
Magnaporthe , Oryza , Oryza/metabolismo , Proteína 1 de Superficie de Merozoito/genética , Proteína 1 de Superficie de Merozoito/metabolismo , Procesamiento Proteico-Postraduccional , Proteolisis , Péptidos/metabolismo , Proteoma/metabolismo , Enfermedades de las Plantas , Proteínas de Plantas/metabolismo , Magnaporthe/metabolismo
18.
Cytokine ; 169: 156278, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37356261

RESUMEN

BACKGROUND: The innate immune response plays an important role during malaria. Toll-like receptors (TLR) are capable of recognizing pathogen molecules. We aimed to evaluate five polymorphisms in TLR-4, TLR-6, and TLR-9 genes and their association with cytokine levels and clinical parameters in malaria from the Brazil-French Guiana border. METHODS: A case-control study was conducted in Amapá, Brazil. P. vivax patients and individuals not infected were evaluated. Genotyping of five SNPs was carried out by qPCR. Circulating cytokines were measured by CBA. The MSP-119 IgG antibodies were performed by ELISA. RESULTS: An association between TLR4 A299G with parasitemia was observed. There was an increase for IFN-ɤ, TNF-ɑ, IL-6, and IL-10 in the TLR-4 A299G and T3911, TLR-6 S249P, and TLR-9 1486C/T, SNPs for the studied malarial groups. There were significant findings for the TLR-4 variants A299G and T3911, TLR-9 1237C/T, and 1486C/T. For the reactivity of MSP-119 antibodies levels, no significant results were found in malaria, and control groups. CONCLUSIONS: The profile of the immune response observed by polymorphisms in TLRs genes does not seem to be standard for all types of malaria infection around the world. This can depend on the human population and the species of Plasmodium.


Asunto(s)
Malaria Vivax , Malaria , Humanos , Malaria Vivax/genética , Receptor Toll-Like 9 , Receptor Toll-Like 4/genética , Receptor Toll-Like 6/genética , Estudios de Casos y Controles , Brasil , Guyana Francesa , Proteína 1 de Superficie de Merozoito/genética , Genotipo , Predisposición Genética a la Enfermedad , Receptores Toll-Like/genética , Polimorfismo de Nucleótido Simple/genética , Plasmodium vivax/genética
19.
Life (Basel) ; 13(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37240746

RESUMEN

Anaplasma ovis is a tick-borne obligated intraerythrocytic bacterium that infects domestic sheep, goats, and wild ruminants. Recently, several studies have been carried out using 16S rRNA and msp4 genes to identify the genetic diversity of A. ovis. Instead of these genes, which are known to be highly stable among heterologous strains, Msp1a, which is accepted as a stable molecular marker to classify A. marginale strains, was used in A. ovis genetic diversity studies. The genetic diversity of A. ovis strains according to the Msp1a gene has not been extensively reported. Therefore, the purpose of this study was to examine the genetic diversity of A. ovis in goats specifically using analysis of the Msp1a gene. Blood samples were taken from the vena jugularis to the EDTA tubes from 293 randomly selected goats (apparently healthy) in the Antalya and Mersin provinces of Mediterranean region of Türkiye. The Msp1a gene of A. ovis was amplified in all DNA samples through the use of PCR, using a specific set of primers named AoMsp1aF and AoMsp1aR. Among the amplified products, well-defined bands with different band sizes were subjected to sequence analysis. The obtained sequence data were converted into amino acid sequences using an online bioinformatics program and the tandem regions were examined. The Msp1a gene of A. ovis was amplified in 46.1% (135 out of 293) of the goats. Through tandem analysis, five distinct tandems (Ao8, Ao18, Tr15-16-17) were identified, and it was found that three of these tandems (Tr15-16-17) were previously unknown and were therefore defined as new tandems. The study also involved examination of ticks from goats. It was observed that the goats in the area were infested with several tick species, including Rhipicephalus bursa (888/1091, 81.4%), R. turanicus (96/1091, 8.8%), Dermacentor raskemensis (92/1091, 8.4%), Hyalomma marginatum (9/1091, 0.8%), and R. sanguineus s.l. (6/1091, 0.5%). This study provides important data for understanding the genetic diversity and evolution of A. ovis based on tandem repeats in the Msp1a protein.

20.
J Biochem ; 174(1): 13-20, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36990064

RESUMEN

Protein targeting to organelles has been thought to be a very precise process, and proteins that fail to localize correctly are rapidly degraded. Tail-anchored proteins are posttranslationally targeted to the endoplasmic reticulum membrane via guided entry of tail-anchored (TA) proteins pathway. However, these proteins can be mislocalized to the mitochondrial outer membrane. We found that the AAA-ATPase Msp1 on the mitochondrial outer membrane extracts mislocalized TA proteins to the cytosol, passing them to the guided entry of the TA proteins pathway to facilitate their transfer to the endoplasmic reticulum membrane. After the transfer to the endoplasmic reticulum, such TA proteins are directed to degradation if they are recognized by the quality control system on the endoplasmic reticulum. If not recognized, they are retargeted to their original destination along the secretory pathway. Thus, we have identified an intracellular proofreading system that corrects the localization of TA proteins.


Asunto(s)
Proteínas de la Membrana , Proteínas de Saccharomyces cerevisiae , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/metabolismo , Membranas Mitocondriales/metabolismo , Retículo Endoplásmico/metabolismo , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA