Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Biophys Physicobiol ; 21(Supplemental): e211015, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39175869

RESUMEN

During embryogenesis, human hematopoietic stem cells (HSCs) first emerge in the aorta-gonad-mesonephros (AGM) region via transformation of specialized hemogenic endothelial (HE) cells into premature HSC precursors. This process is termed endothelial-to-hematopoietic transition (EHT), in which the HE cells undergo drastic functional and morphological changes from flat, anchorage-dependent endothelial cells to free-floating round hematopoietic cells. Despite its essential role in human HSC development, molecular mechanisms underlying the EHT are largely unknown. This is due to lack of methods to visualize the emergence of human HSC precursors in real time in contrast to mouse and other model organisms. In this study, by inducing HE from human pluripotent stem cells in feeder-free monolayer cultures, we achieved real-time observation of the human EHT in vitro. By continuous observation and single-cell tracking in the culture, it was possible to visualize a process that a single endothelial cell gives rise to a hematopoietic cell and subsequently form a hematopoietic-cell cluster. The EHT was also confirmed by a drastic HE-to-HSC switching in molecular marker expressions. Notably, HSC precursor emergence was not linked to asymmetric cell division, whereas the hematopoietic cell cluster was formed through proliferation and assembling of the floating cells after the EHT. These results reveal unappreciated dynamics in the human EHT, and we anticipate that our human EHT model in vitro will provide an opportunity to improve our understanding of the human HSC development.

2.
Differentiation ; 138: 100791, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38941819

RESUMEN

A Wt1 conditional deletion, nuclear red fluorescent protein (RFP) reporter allele was generated in the mouse by gene targeting in embryonic stem cells. Upon Cre-mediated recombination, a deletion allele is generated that expresses RFP in a Wt1-specific pattern. RFP expression was detected in embryonic and adult tissues known to express Wt1, including the kidney, mesonephros, and testis. In addition, RFP expression and WT1 co-localization was detected in the adult uterine stroma and myometrium, suggesting a role in uterine function. Crosses with Wnt7a-Cre transgenic mice that express Cre in the Müllerian duct epithelium activate Wt1-directed RFP expression in the epithelium of the oviduct but not the stroma and myometrium of the uterus. This new mouse strain should be a useful resource for studies of Wt1 function and marking Wt1-expressing cells.


Asunto(s)
Alelos , Proteínas Luminiscentes , Ratones Transgénicos , Proteína Fluorescente Roja , Proteínas WT1 , Animales , Ratones , Proteínas WT1/genética , Proteínas WT1/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Femenino , Genes Reporteros , Masculino , Eliminación de Gen
3.
Development ; 151(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38451068

RESUMEN

The first hematopoietic stem and progenitor cells (HSPCs) emerge in the Aorta-Gonad-Mesonephros (AGM) region of the mid-gestation mouse embryo. However, the precise nature of their supportive mesenchymal microenvironment remains largely unexplored. Here, we profiled transcriptomes of laser micro-dissected aortic tissues at three developmental stages and individual AGM cells. Computational analyses allowed the identification of several cell subpopulations within the E11.5 AGM mesenchyme, with the presence of a yet unidentified subpopulation characterized by the dual expression of genes implicated in adhesive or neuronal functions. We confirmed the identity of this cell subset as a neuro-mesenchymal population, through morphological and lineage tracing assays. Loss of function in the zebrafish confirmed that Decorin, a characteristic extracellular matrix component of the neuro-mesenchyme, is essential for HSPC development. We further demonstrated that this cell population is not merely derived from the neural crest, and hence, is a bona fide novel subpopulation of the AGM mesenchyme.


Asunto(s)
Células Madre Mesenquimatosas , Pez Cebra , Ratones , Animales , Pez Cebra/genética , Células Madre Hematopoyéticas/metabolismo , Hematopoyesis , Embrión de Mamíferos , Mesonefro , Gónadas
4.
Dev Cell ; 59(4): 529-544.e5, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38295793

RESUMEN

During human fetal development, sex differentiation occurs not only in the gonads but also in the adjacent developing reproductive tract. However, while the cellular composition of male and female human fetal gonads is well described, that of the adjacent developing reproductive tract remains poorly characterized. Here, we performed single-cell transcriptomics on male and female human fetal gonads together with the adjacent developing reproductive tract from first and second trimesters, highlighting the morphological and molecular changes during sex differentiation. We validated different cell populations of the developing reproductive tract and gonads and compared the molecular signatures between the first and second trimesters, as well as between sexes, to identify conserved and sex-specific features. Together, our study provides insights into human fetal sex-specific gonadogenesis and development of the reproductive tract beyond the gonads.


Asunto(s)
Gónadas , Testículo , Humanos , Masculino , Femenino , Ovario , Diferenciación Sexual , Perfilación de la Expresión Génica
5.
Cell Mol Life Sci ; 80(11): 329, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37851174

RESUMEN

Circulating endothelial cell progenitors originating from the bone marrow are considered to be a powerful tool in the repair of endothelium damage. Due to their unique properties, endothelial progenitors are now broadly investigated to assess their clinical significance in diseases e.g., associated with brain endothelial dysfunction. However, their distinction in terms of the expression of specific markers remains ambiguous. Additionally, endothelial progenitor cells may change their repertoire of markers depending on the microenvironment of the tissue in which they are currently located. Here, we applied the label-free Raman and FTIR imaging to discriminate mice brain endothelium and endothelial progenitors. Cells cultured separately showed distinctly different spectral signatures extracted from the whole cellular interior as well as the detected intracellular compartments (nucleus, cytoplasm, perinuclear area, and lipid droplets). Then, we used these spectroscopic signals to examine the cells co-cultured for 24 h. Principal cluster analysis showed their grouping with the progenitor cells and segregation from brain endothelium at a level of the entire cell machinery (in FTIR images) which resulted from biochemical alternations in the cytoplasm and lipid droplets (in Raman images). The models included in partial least square regression indicated that lipid droplets are the key element for the classification of endothelial progenitor-brain endothelial cells interactions.


Asunto(s)
Células Endoteliales , Espectrometría Raman , Animales , Ratones , Células Endoteliales/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman/métodos , Células Cultivadas , Gotas Lipídicas/metabolismo
6.
Cell Stem Cell ; 30(9): 1235-1245.e6, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37683604

RESUMEN

Heterologous organ transplantation is an effective way of replacing organ function but is limited by severe organ shortage. Although generating human organs in other large mammals through embryo complementation would be a groundbreaking solution, it faces many challenges, especially the poor integration of human cells into the recipient tissues. To produce human cells with superior intra-niche competitiveness, we combined optimized pluripotent stem cell culture conditions with the inducible overexpression of two pro-survival genes (MYCN and BCL2). The resulting cells had substantially enhanced viability in the xeno-environment of interspecies chimeric blastocyst and successfully formed organized human-pig chimeric middle-stage kidney (mesonephros) structures up to embryonic day 28 inside nephric-defective pig embryos lacking SIX1 and SALL1. Our findings demonstrate proof of principle of the possibility of generating a humanized primordial organ in organogenesis-disabled pigs, opening an exciting avenue for regenerative medicine and an artificial window for studying human kidney development.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Porcinos , Animales , Mesonefro , Embrión de Mamíferos , Blastocisto , Mamíferos , Proteínas de Homeodominio
7.
Biology (Basel) ; 12(5)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37237562

RESUMEN

This article presents data on the mesonephros histology and ultrastructure in the Atlantic salmon from the Baltic Sea and Barents Sea populations, with an emphasis on comparisons between the following ontogenetic stages: parr, smolting, adult life at sea, the adults' return to their natal river to spawn, and spawning. The ultrastructural changes in the renal corpuscle and cells of the proximal tubules of the nephron occurred as early as the smolting stage. Such changes reflect fundamental alterations during the pre-adaptation to life in saltwater. In the Barents Sea population, the adult salmon sampled in the sea had the smallest diameters of the renal corpuscle and proximal and distal tubules, the most narrow urinary space, and the thickest basement membrane. In the group of salmon that entered the mouth of the river and spent less than 24 h in freshwater, the structural rearrangements occurred only in the distal tubules. Better development of the smooth endoplasmic reticulum and a greater abundance of mitochondria in the tubule cells were observed in the adult salmon from the Barents Sea compared to those from the Baltic Sea. Cell-immunity activation was initiated during the parr-smolt transformation. Another pronounced innate-immunity response was registered in the adults returning to the river to spawn.

8.
Immunol Rev ; 315(1): 71-78, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36705244

RESUMEN

The Innate Lymphoid Cell (ILC) family is a relatively recently described immune cell family involved in innate immune responses and tissue homeostasis. Lymphoid Tissue Inducer (LTi) cells are part of the type 3 (ILC3) family. The ILC3 family is the main ILC population within the embryo, in which the LTi cells are critically associated with embryonic lymph node formation. Recent studies have shown more insights in ILC origin and residency from local embryonic and tissue resident precursors. Embryonic LTi cells originating from a different hemogenic endothelial source were shown to be replaced by HSC derived progenitors in adult. This review will discuss the layered origin of the ILC3 family with an emphasis on the LTi cell lineage.


Asunto(s)
Inmunidad Innata , Linfocitos , Humanos , Linfocitos T Colaboradores-Inductores , Tejido Linfoide , Linaje de la Célula
9.
Differentiation ; 129: 109-119, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35000816

RESUMEN

The role of the mesonephros in testicular development was re-evaluated by growing embryonic day 11.5 (E11.5) mouse testes devoid of mesonephros for 8-21 days in vivo under the renal capsule of castrated male athymic nude mice. This method provides improved growth conditions relative to previous studies based upon short-term (4-7 days) organ culture. Meticulous controls involved wholemount examination of dissected E11.5 mouse testes as well as serial sections of dissected E11.5 mouse testes which were indeed shown to be devoid of mesonephros. As expected, grafts of E11.5 mouse testes with mesonephros attached formed seminiferous tubules and also contained mesonephric derivatives. Grafts of E11.5 mouse testes without associated mesonephros also formed seminiferous tubules and never contained mesonephric derivatives. The consistent absence of mesonephric derivatives in grafts of E11.5 mouse testes grafted alone is further proof of the complete removal of the mesonephros from the E11.5 mouse testes. The testicular tissues that developed in grafts of E11.5 mouse testes alone contained canalized seminiferous tubules composed of Sox9-positive Sertoli cells as well as GENA-positive germ cells. The seminiferous tubules were surrounded by α-actin-positive myoid cells, and the interstitial space contained 3ßHSD-1-positive Leydig cells. Grafts of E11.5 GFP mouse testes into wild-type hosts developed GFP-positive vasculature indicating that E11.5 mouse testes contain vascular precursors. These results indicate that the E11.5 mouse testis contains precursor cells for Sertoli cells, Leydig cells, myoid cells and vasculature whose development and differentiation are independent of cells migrating from the E11.5 mesonephros.


Asunto(s)
Mesonefro , Testículo , Ratones , Masculino , Animales , Ratones Desnudos , Túbulos Seminíferos , Células de Sertoli
10.
Fetal Pediatr Pathol ; 42(1): 1-17, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35289709

RESUMEN

Background. The immunophenotypes and potential excretory function of human mesonephros are not well studied. Methods. Five mesonephros specimens of human embryos from the 6th to 10th weeks of gestation were stained with immunohistochemical markers. Results. PAX8 was universally expressed in all renal tubules, while α-methyacyl-CoA racemase (AMACAR) was positive in proximal tubules and GATA3 was positive in distal tubular mesonephric structures. At the 8th weeks of gestation, the mesonephric glomeruli were characterized by opened glomerular capillary loops with Periodic Acid Schiff (PAS)-positive glomerular basement membranes and GATA3-positive mesangial-like cells. By the 8th week, proximal tubules showed PAS-positive brush borders, indicating reabsorption capacity, and the proximal tubules also demonstrated positivity with kidney injury molecule-1 (KIM-1), representing tubular response to injury. Conclusion. Our overall findings show detailed phenotypes of the glomerular and tubular structures of the mesonephros and indicate that at the 8th week of gestation, the mesonephros may carry out temporary excretory function before metanephros becomes fully functional.


Asunto(s)
Glomérulos Renales , Mesonefro , Humanos , Mesonefro/irrigación sanguínea , Mesonefro/química , Túbulos Renales Proximales , Riñón
11.
Differentiation ; 129: 4-16, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35961887

RESUMEN

Human gonadal development culminating in testicular differentiation is described through analysis of histologic sections derived from 33-day to 20-week human embryos/fetuses, focusing on early development (4-8 weeks of gestation). Our study updates the comprehensive studies of Felix (1912), van Wagenen and Simpson (1965), and Juric-Lekic et al. (2013), which were published in books and thus are unsearchable via PubMed. Human gonads develop from the germinal ridge, a thickening of coelomic epithelium on the medial side of the urogenital ridge. The bilateral urogenital ridges contain elements of the mesonephric kidney, namely the mesonephric duct, mesonephric tubules, and mesonephric glomeruli. The germinal ridge, into which primordial germ cells migrate, is initially recognized as a thickening of coelomic epithelium on the urogenital ridge late in the 4th week of gestation. Subsequently, in the 5th week of gestation, a dense mesenchyme develops sub-adjacent to the epithelium of the germinal ridge, and together these elements bulge into the coelomic cavity forming bilateral longitudinal ridges attached to the urogenital ridges. During development, primordial cells migrate into the germinal ridge and subsequently into testicular cords that form within the featureless dense mesenchyme of the germinal ridge at 6-8 weeks of gestation. The initial low density of testicular cords seen at 8 weeks remodels into a dense array of testicular cords surrounded by α-actin-positive myoid cells during the second trimester. Human testicular development shares many features with that of mice being derived from 4 elements: coelomic epithelium, sub-adjacent mesenchyme, primordial germ cells, and the mesonephros.


Asunto(s)
Gónadas , Testículo , Masculino , Humanos , Animales , Ratones , Mesonefro , Conductos Mesonéfricos , Embrión de Mamíferos
12.
Tissue Eng Regen Med ; 19(6): 1185-1206, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36350469

RESUMEN

BACKGROUND: Our learning about human reproductive development is greatly hampered due to the absence of an adequate model. Animal studies cannot truthfully recapitulate human developmental processes, and studies of human fetal tissues are limited by their availability and ethical restrictions. Innovative three-dimensional (3D) organoid technology utilizing human pluripotent stem cells (hPSCs) offered a new approach to study tissue and organ development in vitro. However, a system for modeling human gonad development has not been established, thus, limiting our ability to study causes of infertility. METHODS: In our study we utilized the 3D hPSC organoid culture in mini-spin bioreactors. Relying on intrinsic self-organizing and differentiation capabilities of stem cells, we explored whether organoids could mimic the development of human embryonic and fetal gonad. RESULTS: We have developed a simple, bioreactor-based organoid system for modeling early human gonad development. Male hPSC-derived organoids follow the embryonic gonad developmental trajectory and differentiate into multipotent progenitors, which further specialize into testicular supporting and interstitial cells. We demonstrated functional activity of the generated cell types by analyzing the expression of cell type-specific markers. Furthermore, the specification of gonadal progenitors in organoid culture was accompanied by the characteristic architectural tissue organization. CONCLUSION: This organoid system opens the opportunity for detailed studies of human gonad and germ cell development that can advance our understanding of sex development disorders. Implementation of human gonad organoid technology could be extended to modeling causes of infertility and regenerative medicine applications.


Asunto(s)
Infertilidad , Células Madre Pluripotentes , Animales , Humanos , Masculino , Organoides/metabolismo , Medicina Regenerativa , Gónadas , Infertilidad/metabolismo
13.
Stem Cell Reports ; 17(8): 1788-1798, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35905741

RESUMEN

To generate sufficient numbers of transplantable hematopoietic stem cells (HSCs) in vitro, a detailed understanding of how this process takes place in vivo is essential. The endothelial-to-hematopoietic transition (EHT), which culminates in the production of the first HSCs, is a highly complex process during which key regulators are switched on and off at precise moments, and that is embedded into a myriad of microenvironmental signals from surrounding cells and tissues. We have previously demonstrated an HSC-supportive function for GATA3 within the sympathetic nervous system and the sub-aortic mesenchyme, but show here that it also plays a cell-intrinsic role during the EHT. It is expressed in hemogenic endothelial cells and early HSC precursors, where its expression correlates with a more quiescent state. Importantly, endothelial-specific deletion of Gata3 shows that it is functionally required for these cells to mature into HSCs, placing GATA3 at the core of the EHT regulatory network.


Asunto(s)
Hemangioblastos , Células Madre Hematopoyéticas , Diferenciación Celular/genética , Endotelio , Gónadas , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Mesodermo , Mesonefro
14.
J Fish Biol ; 100(6): 1407-1418, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35362107

RESUMEN

This study presents novel data on the microanatomy and ultrastructure of the omul Coregonus migratorius trunk kidney. Adult individuals of C. migratorius were sampled in the Barguzin Bay of Lake Baikal. Active leuko- and erythropoiesis were found in the interstitium of the mesonephros. For the first time, cells with radially arranged vesicles have been described in the renal interstitium of C. migratorius. The quantitative characteristics of blood cells and ultrastructural parameters of leukocytes reflected the functioning of the non-specific defence system in the organism. The share of the renal interstitium, morphological diversity of the epithelial cells of the nephron tubules, the ultrastructural features of the renal corpuscles and nephron tubules and the number of mitochondria in leukocytes and ion-transporting cells were typical for representatives of the whitefish Coregonus lavaretus complex and thus considered ancestral features of the present-day C. migratorius population reflecting its adaptive potential to living in an ultra-deep Lake Baikal.


Asunto(s)
Salmonidae , Animales , Riñón , Lagos
15.
Histochem Cell Biol ; 157(3): 321-332, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34988611

RESUMEN

The male genital tract is diverse among vertebrates, but its development remains unclear, especially in the rete region. In this study, we investigated the testis-mesonephros complex of rabbit, chicken, and frog (Xenopus tropicalis) by immunohistochemistry for markers such as Ad4BP/Sf-1 (gonadal somatic and rete cells in mammals) and Pax2 (mesonephric tubules), and performed a three-dimensional reconstruction. In all investigated animals, testis cords were bundled at the mesonephros side. Rete cells positive for Ad4BP/Sf-1 (rabbit) or Pax2 (chicken and frog) were clustered at the border region between the testis and mesonephros. The cluster possessed two types of cords; one connected to the testis cords and the other to the mesonephric tubules. The latter rete cords were contiguous to Bowman's capsules in rabbit and chicken but to nephrostomes in frog. In conclusion, this study showed that mammals, avian species, and frogs commonly develop the bundle between the testis cords (testis canal) and the cluster of rete cells (lateral kidney canal), indicating that these animals share basic morphogenesis in the male genital tract. The connection site between the rete cells and mesonephric tubules is suggested to have changed from the nephrostome to the Bowman's capsule during vertebrate evolution from anamniote to amniote.


Asunto(s)
Mesonefro , Testículo , Anatomía Comparada , Animales , Masculino , Mamíferos , Morfogénesis , Conejos , Espermatozoides
16.
Dev Dyn ; 251(9): 1524-1534, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-33728725

RESUMEN

BACKGROUND: Genetic tools to study gene function and the fate of cells in the anterior limb bud are very limited. RESULTS: We describe a transgenic mouse line expressing CreERT2 from the Aristaless-like 4 (Alx4) promoter that induces recombination in the anterior limb. Cre induction at embryonic day 8.5 revealed that Alx4-CreERT2 labeled cells using the mTmG Cre reporter contributed to anterior digits I to III as well as the radius of the forelimb. Cre activity is expanded further along the AP axis in the hindlimb than in the forelimb resulting in some Cre reporter cells contributing to digit IV. Induction at later time points labeled cells that become progressively restricted to more anterior digits and proximal structures. Comparison of Cre expression from the Alx4 promoter transgene with endogenous Alx4 expression reveals Cre expression is slightly expanded posteriorly relative to the endogenous Alx4 expression. Using Alx4-CreERT2 to induce loss of intraflagellar transport 88 (Ift88), a gene required for ciliogenesis, hedgehog signaling, and limb patterning, did not cause overt skeletal malformations. However, the efficiency of deletion, time needed for Ift88 protein turnover, and for cilia to regress may hinder using this approach to analyze cilia in the limb. Alx4-CreERT2 is also active in the mesonephros and nephric duct that contribute to the collecting tubules and ducts of the adult nephron. Embryonic activation of the Alx4-CreERT2 in the Ift88 conditional line results in cyst formation in the collecting tubules/ducts. CONCLUSION: Overall, the Alx4-CreERT2 line will be a new tool to assess cell fates and analyze gene function in the anterior limb, mesonephros, and nephric duct.


Asunto(s)
Proteínas Hedgehog , Factores de Transcripción , Animales , Extremidades , Proteínas Hedgehog/genética , Proteínas de Homeodominio , Integrasas/genética , Integrasas/metabolismo , Ratones , Ratones Transgénicos , Factores de Transcripción/genética , Transgenes
17.
Front Immunol ; 12: 790379, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899758

RESUMEN

The journey of a hematopoietic stem cell (HSC) involves the passage through successive anatomical sites where HSCs are in direct contact with their surrounding microenvironment, also known as niche. These spatial and temporal cellular interactions throughout development are required for the acquisition of stem cell properties, and for maintaining the HSC pool through balancing self-renewal, quiescence and lineage commitment. Understanding the context and consequences of these interactions will be imperative for our understanding of HSC biology and will lead to the improvement of in vitro production of HSCs for clinical purposes. The aorta-gonad-mesonephros (AGM) region is in this light of particular interest since this is the cradle of HSC emergence during the embryonic development of all vertebrate species. In this review, we will focus on the developmental origin of HSCs and will discuss the novel technological approaches and recent progress made to identify the cellular composition of the HSC supportive niche and the underlying molecular events occurring in the AGM region.


Asunto(s)
Genómica/tendencias , Hematopoyesis/genética , Células Madre Hematopoyéticas/fisiología , Análisis de la Célula Individual/tendencias , Nicho de Células Madre , Animales , Aorta/embriología , Técnicas de Cultivo de Célula/tendencias , Linaje de la Célula , Células Cultivadas , Difusión de Innovaciones , Perfilación de la Expresión Génica/tendencias , Regulación del Desarrollo de la Expresión Génica , Gónadas/embriología , Humanos , Mesonefro/embriología , Fenotipo , Proteómica/tendencias , Transducción de Señal , Transcriptoma
18.
Front Cell Dev Biol ; 9: 728057, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34589491

RESUMEN

In the aorta-gonad-mesonephros (AGM) region of mouse embryos, pre-hematopoietic stem cells (pre-HSCs) are generated from rare and specialized hemogenic endothelial cells (HECs) via endothelial-to-hematopoietic transition, followed by maturation into bona fide hematopoietic stem cells (HSCs). As HECs also generate a lot of hematopoietic progenitors not fated to HSCs, powerful tools that are pre-HSC/HSC-specific become urgently critical. Here, using the gene knockin strategy, we firstly developed an Hlf-tdTomato reporter mouse model and detected Hlf-tdTomato expression exclusively in the hematopoietic cells including part of the immunophenotypic CD45- and CD45+ pre-HSCs in the embryonic day (E) 10.5 AGM region. By in vitro co-culture together with long-term transplantation assay stringent for HSC precursor identification, we further revealed that unlike the CD45- counterpart in which both Hlf-tdTomato-positive and negative sub-populations harbored HSC competence, the CD45+ E10.5 pre-HSCs existed exclusively in Hlf-tdTomato-positive cells. The result indicates that the cells should gain the expression of Hlf prior to or together with CD45 to give rise to functional HSCs. Furthermore, we constructed a novel Hlf-CreER mouse model and performed time-restricted genetic lineage tracing by a single dose induction at E9.5. We observed the labeling in E11.5 AGM precursors and their contribution to the immunophenotypic HSCs in fetal liver (FL). Importantly, these Hlf-labeled early cells contributed to and retained the size of the HSC pool in the bone marrow (BM), which continuously differentiated to maintain a balanced and long-term multi-lineage hematopoiesis in the adult. Therefore, we provided another valuable mouse model to specifically trace the fate of emerging HSCs during development.

19.
Cell Rep ; 36(11): 109675, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34525376

RESUMEN

During embryogenesis, waves of hematopoietic progenitors develop from hemogenic endothelium (HE) prior to the emergence of self-renewing hematopoietic stem cells (HSCs). Although previous studies have shown that yolk-sac-derived erythromyeloid progenitors and HSCs emerge from distinct populations of HE, it remains unknown whether the earliest lymphoid-competent progenitors, multipotent progenitors, and HSCs originate from common HE. In this study, we demonstrate by clonal assays and single-cell transcriptomics that rare HE with functional HSC potential in the early murine embryo are distinct from more abundant HE with multilineage hematopoietic potential that fail to generate HSCs. Specifically, HSC-competent HE are characterized by expression of CXCR4 surface marker and by higher expression of genes tied to arterial programs regulating HSC dormancy and self-renewal. Taken together, these findings suggest a revised model of developmental hematopoiesis in which the initial populations of multipotent progenitors and HSCs arise independently from HE with distinct phenotypic and transcriptional properties.


Asunto(s)
Hemangioblastos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células Madre Multipotentes/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula , Autorrenovación de las Células/genética , Técnicas de Cocultivo , Embrión de Mamíferos/citología , Femenino , Hemangioblastos/citología , Hematopoyesis , Células Madre Hematopoyéticas/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Células Madre Multipotentes/citología , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transcripción Genética
20.
Front Cell Dev Biol ; 9: 634151, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33996794

RESUMEN

Acute lymphoblastic leukemia (ALL) is the most common malignancy in pediatric patients. About 10-15% of pediatric ALL belong to T-cell ALL (T-ALL), which is characterized by aggressive expansion of immature T-lymphoblasts and is categorized as high-risk leukemia. Leukemia initiating cells represent a reservoir that is responsible for the initiation and propagation of leukemia. Its perinatal origin has been suggested in some childhood acute B-lymphoblastic and myeloblastic leukemias. Therefore, we hypothesized that child T-ALL initiating cells also exist during the perinatal period. In this study, T-ALL potential of the hematopoietic precursors was found in the para-aortic splanchnopleura (P-Sp) region, but not in the extraembryonic yolk sac (YS) of the mouse embryo at embryonic day 9.5. We overexpressed the Notch intracellular domain (NICD) in the P-Sp and YS cells and transplanted them into lethally irradiated mice. NICD-overexpressing P-Sp cells rapidly developed T-ALL while YS cells failed to display leukemia propagation despite successful NICD induction. These results suggest a possible role of fetal-derived T-cell precursors as leukemia-initiating cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA