Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.568
Filtrar
1.
Mol Med ; 30(1): 168, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354344

RESUMEN

BACKGROUND: A spinal cord injury (SCI) can result in severe impairment and fatality as well as significant motor and sensory abnormalities. Exosomes produced from IPSCs have demonstrated therapeutic promise for accelerating spinal cord injury recovery, according to a recent study. OBJECTIVE: This study aims to develop engineered IPSCs-derived exosomes (iPSCs-Exo) capable of targeting and supporting neurons, and to assess their therapeutic potential in accelerating recovery from spinal cord injury (SCI). METHODS: iPSCs-Exo were characterized using Transmission Electron Microscopy (TEM), Nanoparticle Tracking Analysis (NTA), and western blot. To enhance neuronal targeting, iPSCs-Exo were bioengineered, and their uptake by neurons was visualized using PKH26 labeling and fluorescence microscopy. In vitro, the anti-inflammatory effects of miRNA-loaded engineered iPSCs-Exo were evaluated by exposing neurons to LPS and IFN-γ. In vivo, biodistribution of engineered iPSC-Exo was monitored using a vivo imaging system. The therapeutic efficacy of miRNA-loaded engineered iPSC-Exo in a SCI mouse model was assessed by Basso Mouse Scale (BMS) scores, H&E, and Luxol Fast Blue (LFB) staining. RESULTS: The results showed that engineered iPSC-Exo loaded with miRNA promoted the spinal cord injure recovery. Thorough safety assessments using H&E staining on major organs revealed no evidence of systemic toxicity, with normal organ histology and biochemistry profiles following engineered iPSC-Exo administration. CONCLUSION: These results suggest that modified iPSC-derived exosomes loaded with miRNA have great potential as a cutting-edge therapeutic approach to improve spinal cord injury recovery. The observed negligible systemic toxicity further underscores their potential safety and efficacy in clinical applications.


Asunto(s)
Exosomas , Células Madre Pluripotentes Inducidas , MicroARNs , Traumatismos de la Médula Espinal , Exosomas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Animales , MicroARNs/genética , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/genética , Ratones , Modelos Animales de Enfermedad , Neuronas/metabolismo , Bioingeniería/métodos , Femenino , Regeneración de la Medula Espinal , Humanos
2.
Front Cardiovasc Med ; 11: 1424679, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39309603

RESUMEN

Objective: This study strives to the variation and significance of microRNA-21 (miR-21) in children with congenital heart disease (CHD)-related pulmonary artery hypertension (PAH). Methods: Children with CHD (n = 179) were selected as subjects, including 101 children without PAH and 78 children with PAH. All children underwent general data collection, laboratory examination, echocardiography and cardiac catheterization. After detection of serum miR-21 expression, the predictive value and the impacts of serum miR-21 for PAH and postoperative critical illness were analyzed. Results: Serum creatine kinase isoenzyme (CK-MB), B-type natriuretic peptide (BNP) and miR-21 were elevated, but ejection fraction (EF) and cardiac index (CI) were decreased in the CHD-PAH group. Serum miR-21 assisted in predicting PAH in CHD children, with the area under curve (AUC) of 0.801 (95% CI of 0.735∼0.857), a cut-off value of 2.56, sensitivity of 73.08, and specificity of 72.28%. Serum miR-21 in children with CHD-PAH was correlated with clinicopathological indicators such as systolic pulmonary artery pressure, mean pulmonary arterial pressure, BNP and CI. Serum miR-21 helped predict the development of postoperative critical illness in children with CHD-PAH, with an AUC of 0.859 (95% CI: 0.762-0.927, cut-off value: 4.55, sensitivity: 69.57%, specificity: 92.73%). Increased serum miR-21 was an independent risk factor of postoperative critical illness in children with CHD-PAH. Conclusion: Serum miR-21 was upregulated in children with CHD-PAH, which may serve as a predictive biomarker for the onset of PAH and postoperative critical illness in CHD children.

3.
Int Immunopharmacol ; 142(Pt B): 113200, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39332090

RESUMEN

Spontaneous abortion (SA) is a devastating, but common outcome for expectant parents and their families. However, the mechanism of SA occurrence remains mostly unknown. Herein, we examined human SA villi samples and found decreased N6-methyladenosine (m6A) levels and methyltransferase-like protein 14 (METTL14) expression compared with those in healthy women. Knockdown of METTL14 in trophoblast HTR8 cells induced cellular dysfunction. We identified candidate differentially expressed microRNAs and found that METTL14 accelerated miR-21-5p processing by modulating its m6A modification level. Exogenous miR-21-5p expression attenuated METTL14 knockdown-induced cellular dysfunction. Subsequently, we found that SMAD family member 7 (SMAD7) expression is inhibited by miR-21-5p and that knockdown of SMAD7 rescued the trophoblast cell dysfunction induced by miR-21-5p inhibitors. Then, we revealed that METTL14 can regulate the SMAD7 pathway by modulating miR-21-5p. Finally, we found that exposing pregnant mice to an m6A inhibitor caused embryo loss and reduced expression levels of Mettl14 and miR-21-5p while increasing Smad7 levels. Taken together, this study establishes the involvement of m6A in SA and identified a novel SA signaling pathway. These results reveal the underlying molecular mechanisms of trophoblast cell dysfunction induced by m6A modification and provide new strategies to identify and mitigate SA.

4.
Genes (Basel) ; 15(9)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39336734

RESUMEN

The aim of this study was to elucidate the effect of FAM13A on the differentiation of goat intramuscular precursor adipocytes and its mechanism of action. Here, we cloned the CDS region 2094 bp of the goat FAM13A gene, encoding a total of 697 amino acid residues. Functionally, overexpression of FAM13A inhibited the differentiation of goat intramuscular adipocytes with a concomitant reduction in lipid droplets, whereas interference with FAM13A expression promoted the differentiation of goat intramuscular adipocytes. To further investigate the mechanism of FAM13A inhibiting adipocyte differentiation, 104 differentially expressed genes were screened by RNA-seq, including 95 up-regulated genes and 9 down-regulated genes. KEGG analysis found that the RIG-I receptor signaling pathway, NOD receptor signaling pathway and toll-like receptor signaling pathway may affect adipogenesis. We selected the RIG-I receptor signaling pathway enriched with more differential genes as a potential adipocyte differentiation signaling pathway for verification. Convincingly, the RIG-I like receptor signaling pathway inhibitor (HY-P1934A) blocked this pathway to save the phenotype observed in intramuscular adipocyte with FAM13A overexpression. Finally, the upstream miRNA of FAM13A was predicted, and the targeted inhibition of miR-21-5p on the expression of FAM13A gene was confirmed. In this study, it was found that FAM13A inhibited the differentiation of goat intramuscular adipocytes through the RIG-I receptor signaling pathway, and the upstream miRNA of FAM13A (miR-21-5p) promoted the differentiation of goat intramuscular adipocytes. This work extends the genetic regulatory network of IMF deposits and provides theoretical support for improving human health and meat quality from the perspective of IMF deposits.


Asunto(s)
Adipocitos , Diferenciación Celular , Cabras , Transducción de Señal , Animales , Cabras/genética , Cabras/metabolismo , Adipocitos/metabolismo , Adipocitos/citología , Diferenciación Celular/genética , MicroARNs/genética , Adipogénesis/genética , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/metabolismo
5.
Cell Commun Signal ; 22(1): 443, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285292

RESUMEN

BACKGROUND: Epithelial ovarian cancer (EOC) is the deadliest gynaecological cancer with high mortality rates driven by the common development of resistance to chemotherapy. EOC frequently invades the omentum, an adipocyte-rich organ of the peritoneum and omental adipocytes have been implicated in promoting disease progression, metastasis and chemoresistance. The signalling mechanisms underpinning EOC omentum tropism have yet to be elucidated. METHODS: Three-dimensional co-culture models were used to explore adipocyte-EOC interactions. The impact of adipocytes on EOC proliferation, response to therapy and invasive capacity was assessed. Primary adipocytes and omental tissue were isolated from patients with ovarian malignancies and benign ovarian neoplasms. Exosomes were isolated from omentum tissue conditioned media and the effect of omentum-derived exosomes on EOC evaluated. Exosomal microRNA (miRNA) sequencing was used to identify miRNAs abundant in omental exosomes and EOC cells were transfected with highly abundant miRNAs miR-21, let-7b, miR-16 and miR-92a. RESULTS: We demonstrate the capacity of adipocytes to induce an invasive phenotype in EOC populations through driving epithelial-to-mesenchymal transition (EMT). Exosomes secreted by omental tissue of ovarian cancer patients, as well as patients without malignancies, induced proliferation, upregulated EMT markers and reduced response to paclitaxel therapy in EOC cell lines and HGSOC patient samples. Analysis of the omentum-derived exosomes from cancer patients revealed highly abundant miRNAs that included miR-21, let-7b, miR-16 and miR-92a that promoted cancer cell proliferation and protection from chemotherapy when transfected in ovarian cancer cells. CONCLUSIONS: These observations highlight the capacity of omental adipocytes to generate a pro-tumorigenic and chemoprotective microenvironment in ovarian cancer and other adipose-related malignancies.


Asunto(s)
Adipocitos , Exosomas , MicroARNs , Invasividad Neoplásica , Neoplasias Ováricas , Paclitaxel , Femenino , Exosomas/metabolismo , Humanos , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Neoplasias Ováricas/patología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos , Adipocitos/patología , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , Epiplón/patología , Epiplón/metabolismo , Proliferación Celular/efectos de los fármacos , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/patología , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/metabolismo , Transición Epitelial-Mesenquimal/genética , Transición Epitelial-Mesenquimal/efectos de los fármacos
6.
Talanta ; 281: 126867, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39277939

RESUMEN

In situ monitoring microRNA (miRNA) expression in vivo holds immense potential for directly visualizing the occurrence and progression of tumors. However, the significant barrier to developing a probe that can overcome the low abundance of miRNAs while providing an output signal with unlimited tissue penetration depth remains formidable. In this study, we developed a DNA machine-based magnetic resonance imaging nanoprobe (MRINP) for amplified detection of miR-21 in vivo. The MRINP was constructed with superparamagnetic Fe3O4 nanoparticles (NPs), paramagnetic Gd-DOTA complexes, and miR-21-activated DNA machines; the DNA machine was composed of hairpin DNAzyme (HD) strands serving as the DNAzyme walker and hairpin substrate (HS) strands serving as the track. Once uptake into tumor cells, the intracellular miR-21 specifically recognized and hybridized with the HD strand, restoring the activity of DNAzyme. Subsequently, the DNAzyme walker autonomously traveled on the surface of MRINP, and each step movement of the DNAzyme walker resulted in the cleavage of its substrate strands and the ensued release of the Gd-DOTA complex-labeled oligonucleotides, turning on the T1 signal of Gd-DOTA complexes for in situ imaging of miR-21 in tumor-bearing mice. This strategy would offer a promising approach for mapping tumor-specific biomarkers in vivo with unlimited penetration depth.

7.
Int J Mol Sci ; 25(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39273487

RESUMEN

Traumatic brain injury (TBI) is the leading cause of traumatic death worldwide and is a public health problem associated with high mortality and morbidity rates, with a significant socioeconomic burden. The diagnosis of brain injury may be difficult in some cases or may leave diagnostic doubts, especially in mild trauma with insignificant pathological brain changes or in cases where instrumental tests are negative. Therefore, in recent years, an important area of research has been directed towards the study of new biomarkers, such as micro-RNAs (miRNAs), which can assist clinicians in the diagnosis, staging, and prognostic evaluation of TBI, as well as forensic pathologists in the assessment of TBI and in the estimation of additional relevant data, such as survival time. The aim of this study is to investigate the expression profiles (down- and upregulation) of a panel of miRNAs in subjects deceased with TBI in order to assess, verify, and define the role played by non-coding RNA molecules in the different pathophysiological mechanisms of brain damage. This study also aims to correlate the detected expression profiles with survival time, defined as the time elapsed between the traumatic event and death, and with the severity of the trauma. This study was conducted on 40 cases of subjects deceased with TBI (study group) and 10 cases of subjects deceased suddenly from non-traumatic causes (control group). The study group was stratified according to the survival time and the severity of the trauma. The selection of miRNAs to be examined was based on a thorough literature review. Analyses were performed on formalin-fixed, paraffin-embedded (FFPE) brain tissue samples, with a first step of total RNA extraction and a second step of quantification of the selected miRNAs of interest. This study showed higher expression levels in cases compared to controls for miR-16, miR-21, miR-130a, and miR-155. In contrast, lower expression levels were found in cases compared to controls for miR-23a-3p. There were no statistically significant differences in the expression levels between cases and controls for miR-19a. In cases with short survival, the expression levels of miR-16-5p and miR-21-5p were significantly higher. In cases with long survival, miR-21-5p was significantly lower. The expression levels of miR-130a were significantly higher in TBI cases with short and middle survival. In relation to TBI severity, miR-16-5p and miR-21-5p expression levels were significantly higher in the critical-fatal TBI subgroup. Conclusions: This study provides evidence for the potential of the investigated miRNAs as predictive biomarkers to discriminate between TBI cases and controls. These miRNAs could improve the postmortem diagnosis of TBI and also offer the possibility to define the survival time and the severity of the trauma. The analysis of miRNAs could become a key tool in forensic investigations, providing more precise and detailed information on the nature and extent of TBI and helping to define the circumstances of death.


Asunto(s)
Lesiones Traumáticas del Encéfalo , MicroARNs , Humanos , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/mortalidad , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/diagnóstico , MicroARNs/genética , Masculino , Femenino , Persona de Mediana Edad , Adulto , Perfilación de la Expresión Génica , Biomarcadores , Anciano , Pronóstico , Transcriptoma
8.
J Cardiothorac Surg ; 19(1): 539, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304898

RESUMEN

PURPOSE: This study aimed to investigate the clinical significance of combining peripheral blood miR-21 and miR-486 with CT for the early cancer diagnosis in pulmonary nodules. METHODS: A total of 215 patients diagnosed with isolated pulmonary nodules with a history of smoking were selected as researchsubjects. 30 healthy volunteers with a history of smoking were recruitedas the control group.The selection of subjectswas based on the presence of isolated pulmonary nodules detected on chest CT scans. The training set consisted of 65 patients with lung nodules and 30 healthy smokers, while the verification setincluded 150 patients with lung nodules. RESULTS: Compared with the control group, the plasma expression level of miR-210 was significantly higher in the group of patients with benign pulmonary nodules (P < 0.05). The level of miR-486-5p was lower in patients with malignant pulmonary nodules compared to those with benign pulmonary nodules (P < 0.05). Moreover, the plasma level of miR-210was higher in patients with malignant pulmonary nodules compared to those with benign pulmonary nodules and healthy smokers (P < 0.05). The combination of miR-21 and miR-486 yielded an AUC of 0.865, which was significantly higher than any other gene combination (95%CI: 0.653-0.764, P < 0.05). CONCLUSIONS: This study offered preliminary evidence supporting the use of peripheral blood miR-21 and miR-486, combined with CT scans, as potential biomarkers for the early cancer diagnosis in lung nodules.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , Tomografía Computarizada por Rayos X , Humanos , MicroARNs/sangre , Masculino , Femenino , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/diagnóstico por imagen , Persona de Mediana Edad , Biomarcadores de Tumor/sangre , Nódulo Pulmonar Solitario/diagnóstico por imagen , Nódulo Pulmonar Solitario/sangre , Detección Precoz del Cáncer/métodos , Anciano , Adulto
9.
Cytokine ; 184: 156760, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39317084

RESUMEN

Mesenchymal stem cells (ADMSCs) have been applied to the treatment of skin injuries and the co-administration of cytokines can enhance the effects. In the current study, the promoting effects of insulin-like growth factor 1 (IGF-1) on the skin wound healing effects of adipose-derived MSCs (ADMSCs) were assessed and the associated mechanism was explored by focusing on miR-21-5p mediated pathways. ADMSCs were isolated from epididymis rats, and skin wounded rats were employed as the in vivo model for evaluating the effect of ADMCs on skin healing and secretion of cytokines. Then a microarray assay was employed to select potential miR target of IGF-1 on ADMSCs. The level of the selected miR was modulated in ADMSCs, and the effects on skin injuries were also assessed. Administration of ADMSCs promoted skin wound healing and induced the production of bFGF, IL-1ß, PDGF, SDF-1, IGF-1, and TNF-α. The co-administration of IGF-1 and ADMSCs strengthened the effect of ADMSCs on skin wound by suppressing activity of matrix metalloproteinase-1 (MMP-1). At molecular level, the treatment of IGF-1 up-regulated miR-21-5p level in ADMSCs, which then suppressed the expression of KLF6 in injured skin tissues and promoted wound healing. The inhibition of miR-21-5p counteracted the promoting effects of IGF-1 on the skin healing effects of ADMSCs. Findings outlined in the current study indicated that IGF-1 could promote the wound healing effects of ADMSCs by up-regulating miR-21-5p level.

10.
J Mol Med (Berl) ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39227403

RESUMEN

Endometriosis is a multifactorial gynecological disease, with angiogenesis as a key hallmark. The role of exosomal microRNAs (miRNAs) in endometriosis is not well understood. This study investigates differentially expressed exosomal miRNAs linked to angiogenesis in endometriosis, clarifies their molecular mechanisms, and identifies potential targets. Primary endometrial stromal cells (ESCs) were cultured, and exosomes were extracted. In a co-culture system, ESC-derived exosomes were taken up by human umbilical vein endothelial cells (HUVECs). Endometriosis implant-ESC-derived exosomes (EI-EXOs) significantly promoted HUVEC proliferation, migration and tube formation compared to normal endometrium-exosomes (NE-EXOs), a finding consistent in vivo in mice. MiRNA sequencing and bioinformatics identified differentially expressed miR-21-5p from EI-EXOs, confirmed by RT-qPCR. The miR-21-5p inhibitor or GW4869 attenuated EI-EXO-induced HUVEC proliferation, migration, and tube formation. TIMP3 overexpression diminished the pro-angiogenic effect of EI-EXOs, which was reversed by adding EI-EXOs or upregulating miR-21-5p. These findings validate the crosstalk between ESCs and HUVECs mediated by exosomal miR-21-5p, and confirm the miR-21-5p-TIMP3 axis in promoting angiogenesis in endometriosis. KEY MESSAGES: ESC-derived exosomes were found to be taken up by recipient cells, i.e. HUVECs. Functionally, endometriosis implant-ESC-derived exosomes (EI-EXOs) could significantly promote the proliferation, migration and tube formation of HUVECs compared to normal endometrium-exosomes (NE-EXOs). Through miRNA sequencing and bioinformatics analysis, differentially expressed miR-21-5p released by EI-EXOs was chosen, as confirmed by qRT-PCR. miR-21-5p inhibitor or GW4869 was found to attenuate the proliferation, migration, and tube formation of HUVECs induced by EI-EXOs. In turn, TIMP3 overexpression diminished the pro-angiogenic effect of EI-EXOs, and this angiogenic phenotype was reversed once EI-EXOs were added or miR-21-5p was upregulated.

11.
Endocr J ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39261088

RESUMEN

We previously demonstrated hepatic, cardiac, and skin inflammation in a high-fat diet-induced steatotic liver disease (SLD) model. However, the molecular mechanism in the kidneys in this model remains unclear. It has been recently reported that SGLT2 inhibitors improve chronic kidney disease (CKD). Therefore, we used this model to evaluate the effects of tofogliflozin on renal lipid metabolism and inflammation. Male 8-10-week-old C57Bl/6 mice were fed a high-fat/high-cholesterol/high-sucrose/bile acid (HF/HC/HS/BA) diet with 0.015% tofogliflozin (Tofo group) or an HF/HC/HS/BA diet alone (SLD group). After eight weeks, serum lipid profiles, histology, lipid content, and mRNA/microRNA and protein expression levels in the kidney were examined. The Tofo group showed significant reductions in body (26.9 ± 0.9 vs. 24.5 ± 1.0 g; p < 0.001) and kidney weight compared to those of the SLD group. Renal cholesterol (9.1 ± 1.6 vs. 7.5 ± 0.7 mg/g; p < 0.05) and non-esterified fatty acid (NEFA) (12.0 ± 3.0 vs. 8.4 ± 1.5 µEq/g; p < 0.01) were significantly decreased in the Tofo group. Transmission electron microscopy revealed the presence of fewer lipid droplets. mRNA sequencing analysis revealed that fatty acid metabolism-related genes were upregulated and NFκB signaling pathway-related genes were downregulated in the Tofo group. MicroRNA sequencing analysis indicated that miR-21a was downregulated and miR-204 was upregulated in the Tofo group. Notably, the expression of PPARα, which has been known to be negatively regulated by miR-21, was significantly increased, leading to enhancing ß-oxidation genes, Acox1 and Cpt1 in the Tofo group. Tofogliflozin decreased renal cholesterol and NEFA levels and improved inflammation through the regulation of PPARα and miR-21a.

12.
Gut Microbes ; 16(1): 2394249, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224018

RESUMEN

Inflammatory bowel diseases (IBD) etiology is multifactorial. Luminal microRNAs (miRNAs) have been suspected to play a role in the promotion of chronic inflammation, but the extent to which fecal miRNAs are interacting with the intestinal ecosystem in a way that contribute to diseases, including IBD, remains unknown. Here, fecal let-7b and miR-21 were found elevated, associated with inflammation, and correlating with multiple bacteria in IBD patients and IL-10-/- mice, model of spontaneous colitis. Using an in vitro microbiota modeling system, we revealed that these two miRNAs can directly modify the composition and function of complex human microbiota, increasing their proinflammatory potential. In vivo investigations revealed that luminal increase of let-7b drastically alters the intestinal microbiota and enhances macrophages' associated proinflammatory cytokines (TNF, IL-6, and IL-1ß). Such proinflammatory effects are resilient and dependent on the bacterial presence. Moreover, we identified that besides impairing the intestinal barrier function, miR-21 increases myeloperoxidase and antimicrobial peptides secretion, causing intestinal dysbiosis. More importantly, in vivo inhibition of let-7b and miR-21 with anti-miRNAs significantly improved the intestinal mucosal barrier function and promoted a healthier host-microbiota interaction in the intestinal lining, which altogether conferred protection against colitis. In summary, we provide evidence of the functional significance of fecal miRNAs in host-microbiota communication, highlighting their therapeutic potential in intestinal inflammation and dysbiosis-related conditions, such as IBD.


Asunto(s)
Colitis , Heces , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Animales , Humanos , Heces/microbiología , Ratones , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Colitis/microbiología , Colitis/inducido químicamente , Colitis/genética , Inflamación/microbiología , Inflamación/metabolismo , Disbiosis/microbiología , Ratones Endogámicos C57BL , Femenino , Ratones Noqueados , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Masculino , Mucosa Intestinal/microbiología , Mucosa Intestinal/metabolismo , Citocinas/metabolismo , Macrófagos/inmunología , Macrófagos/microbiología , Macrófagos/metabolismo , Modelos Animales de Enfermedad , Interleucina-10/genética , Interleucina-10/metabolismo
13.
Front Cardiovasc Med ; 11: 1330884, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39238499

RESUMEN

Introduction: There exists a knowledge gap concerning the clinical significance of miRNA-21; therefore, in the present study, we aimed to estimate the diagnostic and prognostic accuracy and sensitivity of miRNA-21 in acute myocardial infarction (AMI) by performing an evidence-based meta-analysis of previous AMI-related clinical studies. Methods: Chinese and English literature published before April 2024 were searched, and data were reviewed and extracted. After quality appraisal, the STATA 16.0 software was used for the effect size analysis of the various treatments described in the literature. Results: A total of 14 valid documents were retrieved from 562 studies. The results of the systematic review revealed that for the patients with AMI vs. those without non-AMI, the aggregated odds ratio reached 5.37 (95% confidence interval 3.70-7.04). The general sensitivity and specificity for the circulating miRNA-21 levels in diagnosing AMI were 0.83 and 0.81, respectively. Discussion: Thus, the meta-analysis of 14 AMI-related clinical trials highlighted that miRNA-21 may serve as a promising biomarker for diagnosing AMI.

14.
J Hazard Mater ; 478: 135580, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39186845

RESUMEN

Arsenic is recognized as a hazardous environmental toxicant strongly associated with neurological damage, but the mechanism is ambiguous. Neuronal cell death is one of the mechanisms of arsenic-induced neurological injury. Ferroptosis is involved in the pathophysiological process of many neurological diseases, however, the role and regulatory mechanism of ferroptosis in nerve injury under arsenic exposure remains uncovered. Our findings confirmed the role of ferroptosis in arsenic-induced learning and memory disorder and revealed miR-21 played a regulatory role in neuronal ferroptosis. Further study discovered that miR-21 regulated neuronal ferroptosis by targeting at FTH1, a finding which has not been documented before. We also found an extra increase of ferroptosis in neuronal cells conditionally cultured by medium collected from arsenic-exposed microglial cells when compared with neuronal cells directly exposed to the same dose of arsenic. Moreover, microglia-derived exosomes removal or miR-21 knockdown in microglia inhibited neuronal ferroptosis, suggesting the role of intercellular communication in the promotion of neuronal ferroptosis. In summary, our findings highlighted the regulatory role of miR-21 in ferroptosis and the contribution of microglia-derived miR-21 in exosomes to arsenic-induced neuronal ferroptosis.


Asunto(s)
Arsénico , Exosomas , Ferroptosis , MicroARNs , Microglía , Neuronas , MicroARNs/metabolismo , MicroARNs/genética , Microglía/efectos de los fármacos , Microglía/metabolismo , Ferroptosis/efectos de los fármacos , Arsénico/toxicidad , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Animales , Exosomas/metabolismo , Exosomas/efectos de los fármacos , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Humanos , Línea Celular
15.
Arch Biochem Biophys ; 759: 110112, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39111613

RESUMEN

Inflammation is the body's response to injuries, which depends on numerous regulatory factors. Among them, miRNAs have gained much attention for their role in regulating inflammatory gene expression at multiple levels. In particular, miR-21 is up-regulated during the inflammatory response and reported to be involved in the resolution of inflammation by down-regulating pro-inflammatory mediators, including MyD88. Herein, we evaluated the regulatory effects of miR-21 on the TLR-4/MyD88 pathway in an in vitro model of 6-mer HA oligosaccharides-induced inflammation in human chondrocytes. The exposition of chondrocytes to 6-mer HA induced the activation of the TLR4/MyD88 pathway, which culminates in NF-kB activation. Changes in miR-21, TLR-4, MyD88, NLRP3 inflammasome, IL-29, Caspase1, MMP-9, iNOS, and COX-2 mRNA expression of 6-mer HA-stimulated chondrocytes were examined by qRT-PCR. Protein amounts of TLR-4, MyD88, NLRP3 inflammasome, p-ERK1/2, p-AKT, IL-29, caspase1, MMP-9, p-NK-kB p65 subunit, and IKB-a have been evaluated by ELISA kits. NO and PGE2 levels have been assayed by colorimetric and ELISA kits, respectively. HA oligosaccharides induced a significant increase in the expression of the above parameters, including NF-kB activity. The use of a miR-21 mimic attenuated MyD88 expression levels and the downstream effectors. On the contrary, treatment with a miR-21 inhibitor induced opposite effects. Interestingly, the use of a MyD88 siRNA confirmed MyD88 as the target of miR-21 action. Our results suggest that miR-21 expression could increase in an attempt to reduce the inflammatory response, targeting MyD88.


Asunto(s)
Condrocitos , Ácido Hialurónico , Inflamación , MicroARNs , Factor 88 de Diferenciación Mieloide , Oligosacáridos , Humanos , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , MicroARNs/genética , MicroARNs/metabolismo , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Ácido Hialurónico/farmacología , Ácido Hialurónico/metabolismo , Inflamación/metabolismo , Inflamación/genética , Oligosacáridos/farmacología , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Transducción de Señal/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , FN-kappa B/metabolismo , Células Cultivadas
16.
Biosens Bioelectron ; 264: 116628, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39133994

RESUMEN

Acrylamide (AA) in heat-processed foods has emerged as a global health problem, mainly carcinogenic, neurotoxic, and reproductive toxicity, and an increasing number of researchers have delved into elucidating its toxicological mechanisms. Studies have demonstrated that exposure of HepG2 by AA in a range of concentrations can induce the upregulation of miR-21 and miR-221. Monitoring the response of intracellular miRNAs can play an important role in unraveling the mechanisms of AA toxicity. Here, multicolor aggregation induced emission nano particle (AIENP) probes were constructed from three AIE dyes for simultaneous imaging of intracellular AA and AA-induced miR-21/miR-221 by combining the recognition function of AA aptamers and the signal amplification of a DNAzyme walker. The surface of these nanoparticles contains carboxyl groups, facilitating their linkage to a substrate chain modified with a fluorescent quencher group via an amide reaction. Optimization experiments were conducted to determine the optimal substrate-to-DNAzyme ratio, confirming its efficacy as a walker for signal amplification. Sensitive detection of AA, miR-21 and miR-221 was achieved in extracellular medium, with detection limits of 0.112 nM for AA, 0.007 pM and 0.003 pM for miR-21 and miR-221, respectively, demonstrating excellent selectivity. Intracellularly, ZIF-8 structure collapsed, releasing Zn2+, activating DNAzyme cleavage activity, and the fluorescence of multicolor AIENPs within HepG2 cells gradually recovered with increasing stimulation time (0-12 h) and concentrations of AA (0-500 µM). This dynamic response unveiled the relationship between AA exposure and miR-21/miR-221 expression, further validating the carcinogenicity of AA.


Asunto(s)
Acrilamida , Técnicas Biosensibles , ADN Catalítico , MicroARNs , MicroARNs/genética , Humanos , ADN Catalítico/química , Técnicas Biosensibles/métodos , Células Hep G2 , Acrilamida/química , Acrilamida/toxicidad , Nanopartículas/química , Nanopartículas/toxicidad , Colorantes Fluorescentes/química , Límite de Detección , Aptámeros de Nucleótidos/química
17.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39125832

RESUMEN

It is well established that microRNA-21 (miR-21) targets phosphatase and tensin homolog (PTEN), facilitating epithelial-to-mesenchymal transition (EMT) and drug resistance in cancer. Recent evidence indicates that PTEN activates its pseudogene-derived long non-coding RNA, PTENP1, which in turn inhibits miR-21. However, the dynamics of PTEN, miR-21, and PTENP1 in the DNA damage response (DDR) remain unclear. Thus, we propose a dynamic Boolean network model by integrating the published literature from various cancers. Our model shows good agreement with the experimental findings from breast cancer, hepatocellular carcinoma (HCC), and oral squamous cell carcinoma (OSCC), elucidating how DDR activation transitions from the intra-S phase to the G2 checkpoint, leading to a cascade of cellular responses such as cell cycle arrest, senescence, autophagy, apoptosis, drug resistance, and EMT. Model validation underscores the roles of PTENP1, miR-21, and PTEN in modulating EMT and drug resistance. Furthermore, our analysis reveals nine novel feedback loops, eight positive and one negative, mediated by PTEN and implicated in DDR cell fate determination, including pathways related to drug resistance and EMT. Our work presents a comprehensive framework for investigating cellular responses following DDR, underscoring the therapeutic potential of targeting PTEN, miR-21, and PTENP1 in cancer treatment.


Asunto(s)
Daño del ADN , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , MicroARNs , Fosfohidrolasa PTEN , ARN Largo no Codificante , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Transición Epitelial-Mesenquimal/genética , Resistencia a Antineoplásicos/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Apoptosis/genética , Transducción de Señal
18.
Oncol Rep ; 52(4)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39155871

RESUMEN

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the Transwell cell invasion assay data shown in Fig. 2B on p. 42 and the immunofluorescence data shown in Fig. 4D on p. 44 were strikingly similar to data appearing in other articles written by different authors at different research institutes that were submitted to different journals at around the same time. Moreover, a further investigation of this paper undertaken by the Editorial Office identified a large number of overlapping data panels comparing the Transwell cell migration and invasion assay data and the scratch­wound assay data both within and between Figs. 2 and 3, where data which were intended to have shown the results from differently performed experiments had apparently been derived from the same original source, including an overlapping section of data within the 'MEG3+mimic' panel in Fig. 3G that would be difficult to attribute to pure chance. Owing to the fact that the contentious data in the above article had already been submitted for publication at around the same time as its submission to Oncology Reports, and given an overall lack of confidence in the presented data, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 40: 39­48, 2018; DOI: 10.3892/or.2018.6424].

19.
Biomed J ; : 100784, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39134242

RESUMEN

BACKGROUND: The incidence and mortality of colorectal cancer (CRC) are persistently higher in men than in women. CRC malignancy is strongly influenced by small non-coding RNAs (miRNAs). Moreover, deregulation of the circadian molecular oscillator has been associated with CRC facilitation. To analyse possible cumulative effects of the above-mentioned factors on CRC progression, we focused on functions of sex-biased miRNAs associated with the clock genes per2 and/or cry2, which are involved in the cell cycle control and DNA damage response. MAJOR FINDINGS: We identified miR-24, miR-92a, miR-181a, and miR-21 associated with per2 that are up-regulated in transformed colon tissue of men. miR-93, miR-17, miR-20a, and miR-24 with higher expression in males compared to females were linked to cry2. All these miRNAs possess oncogenic potential and exert their effects mainly via inhibition of the tumour suppressors phosphatase and tensin homolog (PTEN) and/or p53. Down-regulation of PTEN and p53 in men was further strengthened by inhibition of tumour suppressor per2. Oncogenic up-regulated miRNAs associated with per2 or cry2 in the transformed colon tissue of women were not detected. CONCLUSION: We conclude that the cancer-promoting, sex-biased miRNAs miR-24, miR-92a, miR-181a, miR-93, miR-17, miR-20a, and miR-21 associated with clock genes per2 and/or cry2 can contribute to the sex-dependent development of CRC via inhibition of the PTEN and p53 pathways.

20.
J Med Biochem ; 43(4): 460-468, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-39139173

RESUMEN

Background: To investigate the expression of miR-21, heat shock protein-90a (HSP90a) and G protein-coupled receptorrelated sorting protein 1(GASP-1) in the serum of lung cancer patients and their correlation with pathological subtypes. Methods: Eighty patients with lung cancer were included in the lung cancer group from May 2020 to May 2022, and 40 volunteers who underwent physical examination were randomly included in the control group according to the group ratio of 2:1. This ratio balances the need for a sufficiently large experimental group to detect significant effects with the practicality of recruiting a manageable control group. To ensure the validity of our findings, we meticulously calculated the sample size to achieve adequate statistical power, thus enabling us to draw reliable conclusions. Serum miR-21, HSP90a and GASP-1 levels of patients in the two groups were detected. We quantitatively assessed the serum levels of miR-21, HSP90a, and GASP1 in lung cancer patients and healthy volunteers. We employed enzyme-linked immunosorbent assay (ELISA) for HSP90a and GASP-1, and reverse transcription-polymerase chain reaction (RT-PCR) for miR-21, ensuring precise quantification. To explore the correlation between it and pathological subtypes, TNM stage and lymph node metastasis of lung cancer patients. TNM stands for Tumor, Node, and Metastasis. This system is widely used for staging cancer and describes the size and extent of the primary tumor (T), the absence or presence of cancer in nearby lymph nodes (N), and whether the cancer has spread to other parts of the body (M). Results: The serum levels of miR-21, HSP90a and GASP1 in lung cancer group were higher than those in control group (P < 0.05). ROC curve analysis showed that serum miR-21, HSP90a and GASP-1 levels had certain value in the diagnosis of lung cancer, and their AUC values were 0.901, 0.874 and 0.865, respectively (P < 0.05). There was no difference in the relative expression level of serum miR-21 between squamous cell carcinoma group and adenocarcinoma group (P>0.05), but the levels of HSP90a and GASP-1 in adenocarcinoma group were higher than those in squamous cell carcinoma group (P < 0.05). There was no difference in the levels of serum miR-21, HSP90a and GASP-1 between stage I and stage II groups (P>0.05). The levels of serum miR-21, HSP90a and GASP-1 in stage III and stage IV groups were higher than those in stage I and stage II groups, and those in stage IV were higher than those in stage III group (P < 0.05). The serum levels of miR-21, HSP90a and GASP-1 in patients with metastasis were higher than those in patients without metastasis (P < 0.05). Conclusions: Our study concludes that there is a notable association between elevated serum levels of miR-21, HSP90a, and GASP-1 and lung cancer. However, it is crucial to acknowledge that these findings are preliminary and further statistical analysis is needed to strengthen these associations. Future studies with comprehensive statistical evaluation will be vital to validate these potential biomarkers for lung cancer diagnosis and prognosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA