Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros











Intervalo de año de publicación
1.
Braz J Microbiol ; 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39412603

RESUMEN

In the search for more sustainable remediation strategies for PAH-contaminated soils, an integrated application of thermal remediation and bioremediation (TEB) may allow the use of less impacting temperatures by associating heating to biological degradation. However, the influence of heating on soil microbiota remains poorly understood, especially in soils from tropical regions. This work investigated the effects of low-temperature heating on creosote-contaminated soil bacteria. We used culture-dependent and 16 S rRNA sequencing methods to compare the microbial community of soil samples heated to 60 and 100 oC for 1 h in microcosms. Heating to 60 °C reduced the density of cultivable heterotrophic bacteria compared to control soil (p < 0.05), and exposure to 100 °C inactivated the viable heterotrophic community. Burkholderia-Caballeronia-Paraburkholderia (BCP) group and Sphingobium were the predominant genera. Temperature and incubation time affected the Bray-Curtis dissimilarity index (p < 0.05). At 60 °C and 30 days incubation, the relative abundance of Sphingobium decreased and BCP increased dominance. The network of heated soil after 30 days of incubation showed fewer nodes and edges but maintained its density and complexity. Both main genera are associated with PAH degradation, suggesting functional redundancy and a likely potential of soil microbiota to maintain biodegradation ability after exposure to higher temperatures. We concluded that TEB can be considered as a potential strategy to bioremediate creosote-contaminated soils, allowing biodegradation in temperature ranges where thermal remediation does not completely remove contaminants. However, we recommend further research to determine degradation rates with this technology.

2.
BMC Microbiol ; 24(1): 376, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39342129

RESUMEN

BACKGROUND: The Calakmul Biosphere Reserve (CBR) is known for its rich animal and plant biodiversity, yet its microbial communities remain largely unknown. The reserve does not possess permanent bodies of water; nevertheless, seasonal depressions associated with fractures create wetlands, known locally as aguadas. Given the recent construction of the Maya train that crosses the CRB, it is essential to assess the biodiversity of its microorganisms and recognize their potential as a valuable source of goods. This evaluation is pivotal in mitigating potential mismanagement of the forest ecosystem. To enhance comprehension of microbial communities, we characterized the microbiota in three different wetlands. Ag-UD1 and Ag-UD2 wetlands are located in a zone without human disturbances, while the third, Ag-SU3, is in a semi-urbanized zone. Sampling was carried out over three years (2017, 2018, and 2019), enabling the monitoring of spatiotemporal variations in bacterial community diversity. The characterization of microbiome composition was conducted using 16S rRNA metabarcoding. Concurrently, the genomic potential of select samples was examined through shotgun metagenomics. RESULTS: Statistical analysis of alpha and beta diversity indices showed significant differences among the bacterial communities found in undisturbed sites Ag-UD1 and Ag-UD2 compared to Ag-SU3. However, no significant differences were observed among sites belonging to the undisturbed area. Furthermore, a comparative analysis at the zone level reveals substantial divergence among the communities, indicating that the geographic location of the samples significantly influences these patterns. The bacterial communities in the CBR wetlands predominantly consist of genera from phyla Actinobacteria, Acidobacteria, and Proteobacteria. CONCLUSION: This characterization has identified the composition of microbial communities and provided the initial overview of the metabolic capacities of the microbiomes inhabiting the aguadas across diverse conservation zones. The three sites exhibit distinct microbial compositions, suggesting that variables such as chemical composition, natural and anthropogenic disturbances, vegetation, and fauna may play a pivotal role in determining the microbial structure of the aguadas. This study establishes a foundational baseline for evaluating the impact of climatic factors and human interventions on critical environments such as wetlands.


Asunto(s)
Bacterias , Biodiversidad , Microbiota , ARN Ribosómico 16S , Humedales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , ARN Ribosómico 16S/genética , Microbiota/genética , Metagenómica , Filogenia , ADN Bacteriano/genética , Microbiología del Suelo
3.
Glob Chang Biol ; 30(8): e17465, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39162612

RESUMEN

Soil microbial traits and functions play a central role in soil organic carbon (SOC) dynamics. However, at the macroscale (regional to global) it is still unresolved whether (i) specific environmental attributes (e.g., climate, geology, soil types) or (ii) microbial community composition drive key microbial traits and functions directly. To address this knowledge gap, we used 33 grassland topsoils (0-10 cm) from a geoclimatic gradient in Chile. First, we incubated the soils for 1 week in favorable standardized conditions and quantified a wide range of soil microbial traits and functions such as microbial biomass carbon (MBC), enzyme kinetics, microbial respiration, growth rates as well as carbon use efficiency (CUE). Second, we characterized climatic and physicochemical properties as well as bacterial and fungal community composition of the soils. We then applied regression analysis to investigate how strongly the measured microbial traits and functions were linked with the environmental setting versus microbial community composition. We show that environmental attributes (predominantly the amount of soil organic matter) determined patterns of MBC along the gradient, which in turn explained microbial respiration and growth rates. However, respiration and growth normalized for MBC (i.e., specific respiration and growth) were more linked to microbial community composition than environmental attributes. Notably, both specific respiration and growth followed distinct trends and were related to different parts of the microbial community, which in turn resulted in strong effects on microbial CUE. We conclude that even at the macroscale, CUE is the result of physiologically decoupled aspects of microbial metabolism, which in turn is partially determined by microbial community composition. The environmental setting and microbial community composition affect different microbial traits and functions, and therefore both factors need to be considered in the context of macroscale SOC dynamics.


Asunto(s)
Ciclo del Carbono , Carbono , Microbiota , Microbiología del Suelo , Suelo , Chile , Carbono/metabolismo , Carbono/análisis , Suelo/química , Hongos/fisiología , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Biomasa , Pradera
4.
Anim Reprod ; 21(3): e20240063, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39175996

RESUMEN

The female reproductive function is coordinated by the endocrine system driven by the hypothalamic-pituitary-gonadal (HPG) axis. While not directly part of the female reproductive system, the gut microbiome plays a crucial role in overall health, including reproductive health. The gut microbiome communicates bidirectionally with the brain via the gut-brain axis, influencing stress levels, mood, and hormonal balance, which can impact reproductive health and fertility. In addition to that, the vaginal and uterine microbiome are directly involved with the reproductive success of farm animals, including female fertility and offspring development. In this paper, we summarize some of the effects of bacterial contamination in the female reproductive tract and their association with reproductive performance in farm animals.

5.
Int Microbiol ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039379

RESUMEN

Turkey litter waste is lignocellulosic waste that can be sustainably used as an energy source through anaerobic digestion (AD). The 16S ribosomal RNA technique helps to unravel microbial diversity and predominant metabolic pathways. The assays were performed in 600-mL-glass bottles with 400 mL volume, for 60 days at 37 °C. The study evaluated the physicochemical parameters, the composition of the microbiota, and the functional inference in AD of different concentrations of turkey litter (T) using two inocula: granular inoculum (S) and commercial inoculum (B). The highest accumulated methane production (633 mL CH4·L-1) was observed in the test containing 25.5 g VS·L-1 of turkey litter with the addition of the two inocula (T3BS). In tests without inoculum (T3) and with commercial inoculum (T3B), there was an accumulation of acids and consequent inhibition of methane production 239 mL CH4·L-1 and 389 mL CH4·L-1, respectively. Bacteroidota, Firmicutes, and Actinobacteria were the main phyla identified. The presence of archaea Methanobacterium, Methanocorpusculum, and Methanolinea highlighted the hydrogenotrophic metabolic pathway in T3BS. Functional prediction showed enzymes involved in three metabolic pathways in turkey litter biodigestion: acetotrophic, hydrogenotrophic, and methylotrophic methanogenesis. The predominant hydrogenotrophic pathway can be observed by analyzing the microbiota, archaea involved in this specific pathway, genes involved, and relative acid consumption for T3S and T3BS samples with higher methane production. Molecular tools help to understand the main groups of microorganisms and metabolic pathways involved in turkey litter AD, such as the use of different inocula, allowing the development of strategies for the sustainable disposal of turkey litter.

6.
Environ Technol ; : 1-14, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830114

RESUMEN

ABSTRACTThe removal of organic matter and nitrogen from domestic sewage was evaluated using a system composed of two sequential reactors: an anaerobic reactor (ANR) with suspended sludge and an aerobic (AER) reactor with suspended and adhered sludge to polyurethane foams. Nitrogen removal consisted of AER operating at low dissolved oxygen (DO) concentrations; this favoured the simultaneous nitrification and denitrification (SND) process. The concentration of COD and N were 440 mgO2.L-1 and 37 mgTN.L-1, respectively. The operation was divided into three phases (P), lasting 51, 53, and 46 days, respectively. The initial DO concentrations applied in the AER were: 3.0 (PI) and 1.5 mg.L-1 (PII and PIII). In PIII, the AER effluent was recirculated to the ANR at a ratio of 0.25. Kinetic assays were performed to determine the nitrification and denitrification rates of the biomasses (ANR and AER in PIII). Changes in the microbial community were evaluated throughout phases PI to PIII by massive sequencing. In PIII, the best results obtained for chemical oxygen demand (COD) and total nitrogen (TN-N) removal efficiencies, were close to 94% and 65%, respectively. Under these conditions, system effluent concentrations below 30 mg COD.L-1 and 15 mg TN-N.L-1 were verified. The nitritation and nitration rates were 10.5 and 6.5 mg N.g VSS-1.h-1, while the denitrification via nitrite and nitrate were 6.8 and 5.8 mg N.g VSS-1.h-1, respectively. A mixotrophic community was prevalent, with Rhodococcus, Nitrosomonas, Pseudomnas, and Porphyromonas being dominant or co-dominant in most of the samples, confirming the SND process in the AER sludge.

7.
Braz J Microbiol ; 55(3): 2437-2452, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38758507

RESUMEN

The active layer is the portion of soil overlaying the permafrost that freezes and thaws seasonally. It is a harsh habitat in which a varied and vigorous microbial population thrives. The high-altitude active layer soil in northern India is a unique and important cryo-ecosystem. However, its microbiology remains largely unexplored. It represents a unique reservoir for microbial communities with adaptability to harsh environmental conditions. In the Changthang region of Ladakh, the Tsokar area is a high-altitude permafrost-affected area situated in the southern part of Ladakh, at a height of 4530 m above sea level. Results of the comparison study with the QTP, Himalayan, Alaskan, Russian, Canadian and Polar active layers showed that the alpha diversity was significantly higher in the Ladakh and QTP active layers as the environmental condition of both the sites were similar. Moreover, the sampling site in the Ladakh region was in a thawing condition at the time of sampling which possibly provided nutrients and access to alternative nitrogen and carbon sources to the microorganisms thriving in it. Analysis of the samples suggested that the geochemical parameters and environmental conditions shape the microbial alpha diversity and community composition. Further analysis revealed that the cold-adapted methanogens were present in the Ladakh, Himalayan, Polar and Alaskan samples and absent in QTP, Russian and Canadian active layer samples. These methanogens could produce methane at slow rates in the active layer soils that could increase the atmospheric temperature owing to climate change.


Asunto(s)
Altitud , Bacterias , Microbiota , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , India , Hielos Perennes/microbiología , Suelo/química , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , Archaea/metabolismo , Simulación por Computador , Filogenia , Ecosistema , Biodiversidad
8.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38734895

RESUMEN

It is widely assumed that a taxonomic core community emerges among microbial communities from similar habitats because similar environments select for the same taxa bearing the same traits. Yet, a core community itself is no indicator of selection because it may also arise from dispersal and neutral drift, i.e. by chance. Here, we hypothesize that a core community produced by either selection or chance processes should be distinguishable. While dispersal and drift should produce core communities with similar relative taxon abundances, especially when the proportional core community, i.e. the sum of the relative abundances of the core taxa, is large, selection may produce variable relative abundances. We analyzed the core community of 16S rRNA gene sequences of 193 microbial communities occurring in tiny water droplets enclosed in heavy oil from the Pitch Lake, Trinidad and Tobago. These communities revealed highly variable relative abundances along with a large proportional core community (68.0 ± 19.9%). A dispersal-drift null model predicted a negative relationship of proportional core community and compositional variability along a range of dispersal probabilities and was largely inconsistent with the observed data, suggesting a major role of selection for shaping the water droplet communities in the Pitch Lake.


Asunto(s)
Bacterias , Lagos , Microbiota , ARN Ribosómico 16S , ARN Ribosómico 16S/genética , Trinidad y Tobago , Lagos/microbiología , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Ecosistema , Petróleo , Filogenia , ADN Bacteriano/genética , Microbiología del Agua
9.
Sci Total Environ ; 928: 172217, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38583633

RESUMEN

Martinique's mangroves, which cover 1.85 ha of the island (<0.1 % of the total area), are considerably vulnerable to local urban, agricultural, and industrial pollutants. Unlike for temperate ecosystems, there are limited indicators that can be used to assess the anthropogenic pressures on mangroves. This study investigated four stations on Martinique Island, with each being subject to varying anthropogenic pressures. An analysis of mangrove sediment cores approximately 18 cm in depth revealed two primary types of pressures on Martinique mangroves: (i) an enrichment in organic matter in the two stations within the highly urbanized bay of Fort-de-France and (ii) agricultural pressure observed in the four studied mangrove stations. This pressure was characterized by contamination, exceeding the regulatory thresholds, with dieldrin, total DDT, and metals (As, Cu and Ni) found in phytosanitary products. The mangroves of Martinique are subjected to varying degrees of anthropogenic pressure, but all are subjected to contamination by organochlorine pesticides. Mangroves within the bay of Fort-de-France experience notably higher pressures compared to those in the island's northern and southern regions. In these contexts, the microbial communities exhibited distinct responses. The microbial biomass and the abundance of bacteria and archaea were higher in the two less-impacted stations, while in the mangrove of Fort-de-France, various phyla typically associated with polluted environments were more prevalent. These differences in the microbiota composition led to the identification of 65 taxa, including Acanthopleuribacteraceae, Spirochaetaceae, and Pirellulaceae, that could potentially serve as indicators of an anthropogenic influence on the mangrove sediments of Martinique Island.


Asunto(s)
Monitoreo del Ambiente , Humedales , Monitoreo del Ambiente/métodos , Martinica , Agricultura , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Microbiota
10.
Chemosphere ; 352: 141348, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340998

RESUMEN

The Amazon region abounds in precious mineral resources including gold, copper, iron, and coltan. Artisanal and small-scale gold mining (ASGM) poses a severe risk in this area due to considerable mercury release into the surrounding ecosystems. Nonetheless, the impact of mercury on both the overall microbiota and the microbial populations involved in mercury transformation is not well understood. In this study we evaluated microbial diversity in samples of soil, sediment and water potentially associated with mercury contamination in two localities (Taraira and Tarapacá) in the Colombian Amazon Forest. To this end, we characterized the bacterial community structure and mercury-related functions in samples from sites with a chronic history of mercury contamination which today have different levels of total mercury content. We also determined mercury bioavailability and mobility in the samples with the highest THg and MeHg levels (up to 43.34 and 0.049 mg kg-1, respectively, in Taraira). Our analysis of mercury speciation showed that the immobile form of mercury predominated in soils and sediments, probably rendering it unavailable to microorganisms. Despite its long-term presence, mercury did not appear to alter the microbial community structure or composition, which was primarily shaped by environmental and physicochemical factors. However, an increase in the relative abundance of merA genes was detected in polluted sediments from Taraira. Several Hg-responsive taxa in soil and sediments were detected in sites with high levels of THg, including members of the Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes and Chloroflexi phyla. The results suggest that mercury contamination at the two locations sampled may select mercury-adapted bacteria carrying the merA gene that could be used in bioremediation processes for the region.


Asunto(s)
Ecosistema , Mercurio , Agua/análisis , Oro/análisis , Suelo/química , Colombia , Mercurio/análisis , Bacterias/genética , Minería , Monitoreo del Ambiente/métodos
11.
Antonie Van Leeuwenhoek ; 117(1): 21, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38189875

RESUMEN

Bioturbation plays an important role in structuring microbial communities in coastal sediments. This study investigates the bacterial community composition in sediment associated with the ghost shrimp Lepidophthalmus louisianensis at two locations in the Northern Gulf of Mexico (Bay St. Louis, MS, and Choctawhatchee Bay, FL). Bacteria were analysed for shrimp burrows and for three different depths of bioturbated intertidal sediment, using second-generation sequencing of the 16S rRNA gene. Burrow walls held a unique bacterial community, which was significantly different from those in the surrounding sediment communities. Communities in burrow walls and surrounding sediment communities also differed between the two geographic locations. The burrow wall communities from both locations were more similar to each other than to sediment communities from same location. Alpha- and Gammaproteobacteria were more abundant in burrows and surface sediment than in the subsurface, whereas Deltaproteobacteria were more abundant in burrows and subsurface sediment, suggesting sediment mixing by the bioturbator. However, abundance of individual ASVs was geographic location-specific for all samples. Therefore, it is suggested that the geographic location plays an important role in regional microbial communities distinctiveness. Bioturbation appears to be an important environmental driver in structuring the community around burrows. Sampling was conducted during times of the year and water salinity, tidal regime and temperature were variable, nevertheless the structure microbial communities appeared to remain realatively stable suggesting that these environmental variable played only a minor role.


Asunto(s)
Gammaproteobacteria , Microbiota , Golfo de México , ARN Ribosómico 16S/genética , Bacterias/genética
12.
Braz J Microbiol ; 55(1): 777-788, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38147271

RESUMEN

Organic agriculture is a farming method that provides healthy food and is friendly to the environment, and it is developing rapidly worldwide. This study compared microbial communities in organic farming (Or) paddy fields to those in nonorganic farming (Nr) paddy fields based on 16S rDNA sequencing and analysis. The predominant microorganisms in both soils were Proteobacteria, Chloroflexi, Acidobacteria, Actinobacteria, and Nitrospirota. The alpha diversity of the paddy soil microbial communities was not different between the nonorganic and organic farming systems. The beta diversity of nonmetric multidimensional scaling (NMDS) revealed that the two groups were significantly separated. Distance-based redundancy analysis (db-RDA) suggested that soil pH and electrical conductivity (EC) had a positive relationship with the microbes in organic paddy soils. There were 23 amplicon sequence variants (ASVs) that showed differential abundance. Among them, g_B1-7BS (Proteobacteria), s_Sulfuricaulis limicola (Proteobacteria), g_GAL15 (p_GAL15), c_Thermodesulfovibrionia (Nitrospirota), two of f_Anaerolineaceae (Chloroflexi), and two of g_S085 (Chloroflexi) showed that they were more abundant in organic soils, whereas g_11-24 (Acidobacteriota), g__Subgroup_7 (Acidobacteriota), and g_Bacillus (Firmicutes) showed differential abundance in nonorganic paddy soils. Functional prediction of microbial communities in paddy soils showed that functions related to carbohydrate metabolism could be the major metabolic activities. Our work indicates that organic farming differs from nonorganic farming in terms of microbial composition in paddy soils and provides specific microbes that might be helpful for understanding soil fertility.


Asunto(s)
Actinobacteria , Microbiota , Oryza , Suelo/química , Microbiología del Suelo , ARN Ribosómico 16S/genética , Agricultura/métodos , Bacterias/genética , Actinobacteria/genética , Oryza/genética
13.
Sci Total Environ ; 912: 169637, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38157893

RESUMEN

This research investigated the removal of contaminants of emerging concern (CECs) and characterized the microbial community across an advanced water treatment (AWT) train consisting of Coagulation/Flocculation/Clarification/Granular Media Filtration (CFCGMF), Ozone-Biological Activated Carbon Filtration (O3/BAC), Granular Activated Carbon filtration, Ultraviolet Disinfection, and Cartridge Filtration (GAC/UV/CF). The AWT train successfully met the goals of CECs and bulk organics removal. The microbial community at each treatment step of the AWT train was characterized using 16S rRNA sequencing on the Illumina MiSeq platform generated from DNA extracted from liquid and solid (treatment media) samples taken along the treatment train. Differences in the microbial community structure were observed. The dominant operational taxonomic units (OTU) decreased along the treatment train, but the treatment steps did impact the microbial community composition downstream of each unit process. These results provide insights into microbial ecology in advanced water treatment systems, which are influenced and shaped by each treatment step, the microbial community interactions, and their potential metabolic contribution to CECs degradation.


Asunto(s)
Agua Potable , Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Carbón Orgánico/química , ARN Ribosómico 16S , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Filtración/métodos , Ozono/química
14.
J Environ Manage ; 344: 118435, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37379625

RESUMEN

Due to the high concentration of pollutants, swine wastewater needs to be treated prior to disposal. The combination of anaerobic and aerobic technologies in one hybrid system allows to obtain higher removal efficiencies compared to those achieved via conventional biological treatment, and the performance of a hybrid system depends on the microbial community in the bioreactor. Here, we evaluated the community assembly of an anaerobic-aerobic hybrid reactor for swine wastewater treatment. Sequencing of partial 16S rRNA coding genes was performed using Illumina from DNA and retrotranscribed RNA templates (cDNA) extracted from samples from both sections of the hybrid system and from a UASB bioreactor fed with the same swine wastewater influent. Proteobacteria and Firmicutes were the dominant phyla and play a key role in anaerobic fermentation, followed by Methanosaeta and Methanobacterium. Several differences were found in the relative abundances of some genera between the DNA and cDNA samples, indicating an increase in the diversity of the metabolically active community, highlighting Chlorobaculum, Cladimonas, Turicibacter and Clostridium senso stricto. Nitrifying bacteria were more abundant in the hybrid bioreactor. Beta diversity analysis revealed that the microbial community structure significantly differed among the samples (p < 0.05) and between both anaerobic treatments. The main predicted metabolic pathways were the biosynthesis of amino acids and the formation of antibiotics. Also, the metabolism of C5-branched dibasic acid, Vit B5 and CoA, exhibited an important relationship with the main nitrogen-removing microorganisms. The anaerobic-aerobic hybrid bioreactor showed a higher ammonia removal rate compared to the conventional UASB system. However, further research and adjustments are needed to completely remove nitrogen from wastewater.


Asunto(s)
Chlorobi , Microbiota , Purificación del Agua , Animales , Porcinos , Aguas Residuales , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos , Anaerobiosis , Chlorobi/genética , ARN Ribosómico 16S/genética , ADN Complementario , Reactores Biológicos/microbiología
15.
Biol Res ; 56(1): 35, 2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37355658

RESUMEN

BACKGROUND: High mountainous environments are of particular interest as they play an essential role for life and human societies, while being environments which are highly vulnerable to climate change and land use intensification. Despite this, our knowledge of high mountain soils in South America and their microbial community structure is strikingly scarce, which is of more concern considering the large population that depends on the ecosystem services provided by these areas. Conversely, the Central Andes, located in the Mediterranean region of Chile, has long been studied for its singular flora, whose diversity and endemism has been attributed to the particular geological history and pronounced environmental gradients in short distances. Here, we explore soil properties and microbial community structure depending on drainage class in a well-preserved Andean valley on the lower alpine vegetation belt (~2500 m a.s.l.) at 33.5˚S. This presents an opportunity to determine changes in the overall bacterial community structure across different types of soils and their distinct layers in a soil depth profile of a highly heterogeneous environment. METHODS: Five sites closely located (<1.5 km) and distributed in a well preserved Andean valley on the lower alpine vegetation belt (~2500 m a.s.l.) at 33.5˚S were selected based on a pedological approach taking into account soil types, drainage classes and horizons. We analyzed 113 soil samples using high-throughput sequencing of the 16S rRNA gene to describe bacterial abundance, taxonomic composition, and co-occurrence networks. RESULTS: Almost 18,427 Amplicon Sequence Variant (ASVs) affiliated to 55 phyla were detected. The bacterial community structure within the same horizons were very similar validating the pedological sampling approach. Bray-Curtis dissimilarity analysis revealed that the structure of bacterial communities in superficial horizons (topsoil) differed from those found in deep horizons (subsoil) in a site-specific manner. However, an overall closer relationship was observed between topsoil as opposed to between subsoil microbial communities. Alpha diversity of soil bacterial communities was higher in topsoil, which also showed more bacterial members interacting and with higher average connectivity compared to subsoils. Finally, abundances of specific taxa could be considered as biological markers in the transition from topsoil to subsoil horizons, like Fibrobacterota, Proteobacteria, Bacteroidota for shallower soils and Chloroflexi, Latescibacterota and Nitrospirota for deeper soils. CONCLUSIONS: The results indicate the importance of the soil drainage conditions for the bacterial community composition, suggesting that information of both structure and their possible ecological relationships, might be useful in clarifying the location of the edge of the topsoil-subsoil transition in mountainous environments.


Asunto(s)
Bacterias , Microbiota , Humanos , ARN Ribosómico 16S/genética , Bacterias/genética , Suelo/química , Proteobacteria/genética , Microbiología del Suelo
17.
Sci Total Environ ; 881: 163367, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37044345

RESUMEN

Plastic accumulation in the world amounts to approximately 8300 million tons. Polyurethanes (PU) account for 7.7 % of total plastics production worldwide, and their diverse chemical composition makes them highly recalcitrant to biodegradation. Several works have reported polyurethane-degrading microbial communities. However, it is still necessary to learn more about the chemical, biochemical, and genetic bases linked to the polyurethanolytic phenotype and the microbial taxonomic determinants responsible for metabolizing the PU polymer and its associated chemical additives. To shed light on this problem, we applied physical, chemical, biochemical, metagenomic, and bioinformatic analyses to explore the biodegradation capability and related biochemical and genetic determinants of the BP6 microbial community that can grow in PolyLack, a commercial coating containing a polyether polyurethane acrylate (PE-PU-A) copolymer and several additives, as sole carbon source. We observed complete additives (isopropanol, N-methyl-2-pyrrolidone, 2-butoxyethanol, alkyl glycol ethers) biodegradation and the appearance of released polymer components (toluene diisocyanate (TDI) and methylene diphenyl diisocyanate (MDI) derivatives), and multiple degradation products since early cultivation times. The Hi-C metagenomic analysis identified a complex microbiome with 35 deconvolved Metagenome-Assembled Genomes (MAGs) - several new species - and biodegradation markers that suggest the coexistence of hydrolytic, oxidative, and reductive metabolic strategies for degrading the additives and the PU copolymer. This work also provides evidence of the metabolic capability the BP6 community has for biodegrading polyether polyurethane foams. Based on these analyses, we propose a novel metabolic pathway for 4,4'-methylenedianiline (MDA), an initial biodegradation intermediate of MDI-based PU, encoded in the complex BP6 community metagenome and suggest that this community is a potential biotechnological tool for PU bio-recycling.


Asunto(s)
Microbiota , Poliuretanos , Poliuretanos/química , Metagenoma , Plásticos , Biodegradación Ambiental , Instalaciones de Eliminación de Residuos
18.
J Anim Physiol Anim Nutr (Berl) ; 107 Suppl 1: 18-29, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36807651

RESUMEN

The objective was to evaluate through three experiments the effects of a fine cassava fibre (CA: 106 µm) on kibble characteristics, coefficients of total tract apparent digestibility (CTTAD) of macronutrients, diet palatability and faecal metabolites and microbiota of dogs. Dietary treatments consisted of a control diet (CO), without an added fibre source and with 4.3% total dietary fibre (TDF), and a diet with 9.6% CA (106 µm), with 8.4% TDF. Experiment I evaluated the physical characteristics of the kibbles. The palatability test was evaluated in experiment II, which compared the diets CO versus CA. In experiment III, 12 adult dogs were randomly assigned to one of the two dietary treatments for 15 days, totalling six replicates/treatment, to assess the CTTAD of macronutrients; faecal characteristics, faecal metabolites and microbiota. The expansion index, kibble size and friability of diets with CA were higher than the CO (p < 0.05). Additionally, the CA diet presented higher palatability than the CO (p < 0.05) but did not affect CTTAD except for those of fibre (p > 0.05). Moreover, a greater faecal concentration of acetate, butyrate and total short-chain fatty acids (SCFA) and a lower faecal concentration of phenol, indole and isobutyrate were observed in dogs fed the CA diet (p < 0.05). Dogs fed with the CA diet presented a greater bacterial diversity and richness and a greater abundance of genera considered to be beneficial for gut health, such as Blautia, Faecalibacterium and Fusobacterium when compared to the CO group (p < 0.05). The inclusion of 9.6% of a fine CA improves the expansion of kibbles and diet palatability without affecting most of the CTTAD of nutrients. Besides, it improves the production of some SCFA and modulates the faecal microbiota of dogs.


Asunto(s)
Manihot , Microbiota , Perros , Animales , Digestión , Dieta/veterinaria , Heces/química , Fibras de la Dieta/análisis , Verduras , Alimentación Animal/análisis
19.
Microb Ecol ; 85(3): 1045-1055, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36708392

RESUMEN

Rupestrian grasslands are vegetation complexes of the Cerrado biome (Brazilian savanna), exhibiting simultaneously great biodiversity and important open-pit mining areas. There is a strong demand for the conservation of remaining areas and restoration of degraded. This study evaluated, using next-generation sequencing, the diversity and ecological aspects of soil fungal communities in ferruginous rupestrian grassland areas preserved and degraded by bauxite mining in Brazil. In the preserved and degraded area, respectively, 565 and 478 amplicon sequence variants (ASVs) were detected. Basidiomycota and Ascomycota comprised nearly 72% of the DNA, but Ascomycota showed greater abundance than Basidiomycota in the degraded area (64% and 10%, respectively). In the preserved area, taxa of different hierarchical levels (Agaromycetes, Agaricales, Mortierelaceae, and Mortierella) associated with symbiosis and decomposition were predominant. However, taxa that colonize environments under extreme conditions and pathogens (Dothideomycetes, Pleoporales, Pleosporaceae, and Curvularia) prevailed in the degraded area. The degradation reduced the diversity, and modified the composition of taxa and predominant ecological functions in the community. The lack of fungi that facilitate plant establishment and development in the degraded area suggests the importance of seeking the restoration of this community to ensure the success of the ecological restoration of the environment. The topsoil of preserved area can be a source of inocula of several groups of fungi important for the restoration process but which occur in low abundance or are absent in the degraded area.


Asunto(s)
Micobioma , Pradera , Suelo , Ecosistema , Biodiversidad , Hongos/genética , Microbiología del Suelo
20.
Bioprocess Biosyst Eng ; 46(1): 69-87, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36401655

RESUMEN

Upflow Anaerobic Sludge Blanket (UASB) reactors are alternatives in the anaerobic treatment of sanitary sewage in different parts of the world; however, in temperate environments, they are subject to strong seasonal influence. Understanding the dynamics of the microbial community in these systems is essential to propose operational alternatives, improve projects and increase the quality of treated effluents. In this study, for one year, high-performance sequencing, associated with bioinformatics tools for taxonomic annotation and functional prediction was used to characterize the microbial community present in the sludge of biodigesters on full-scale, treating domestic sewage at ambient temperature. Among the most representative phyla stood out Desulfobacterota (20.21-28.64%), Proteobacteria (7.48-24.90%), Bacteroidota (10.05-18.37%), Caldisericota (9.49-17.20%), and Halobacterota (3.23-6.55%). By performing a Canonical Correspondence Analysis (CCA), Methanolinea was correlated to the efficiency in removing Chemical Oxygen Demand (COD), Bacteroidetes_VadinHA17 to the production of volatile fatty acids (VFAs), and CI75cm.2.12 at temperature. On the other hand, Desulfovibrio, Spirochaetaceae_uncultured, Methanosaeta, Lentimicrobiaceae_unclassified, and ADurb.Bin063-1 were relevant in shaping the microbial community in a co-occurrence network. Diversity analyses showed greater richness and evenness for the colder seasons, possibly, due to the lesser influence of dominant taxa. Among the principal metabolic functions associated with the community, the metabolism of proteins and amino acids stood out (7.74-8.00%), and the genes related to the synthesis of VFAs presented higher relative abundance for the autumn and winter. Despite the differences in diversity and taxonomic composition, no significant changes were observed in the efficiency of the biodigesters.


Asunto(s)
Microbiota , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Anaerobiosis , Estaciones del Año , Brasil , Reactores Biológicos/microbiología , Metano/metabolismo , Eliminación de Residuos Líquidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA