Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 398
Filtrar
1.
Environ Int ; 192: 109018, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39341037

RESUMEN

The Baltic Sea is one of the world's most contaminated seas with long-standing adverse health status of its wildlife such as the Baltic Sea salmon, resulting in reduced fecundity and increased mortality. While adverse health effects have been reported among wild fish from the Baltic Sea, the toxicity mechanisms underlying these adversities, and the chemical effect drivers mediating them are poorly understood. To address this knowledge gap, we utilized the zebrafish (Danio rerio) embryo model to determine molecular and functional effects brought on by exposure to a technical mixture including 9 organohalogen compounds detected in serum from wild-caught Baltic Sea salmon. To align with the salmon exposure scenario, an internal dose regimen was opted to establish same relative proportions of the compounds in the zebrafish (whole body) as observed in the salmon serum. Through transcriptomic profiling, we identified dose-dependent effects on immune system and metabolism as two critical functions overlapping with adverse effects observed in wild fish from the Baltic Sea. We then determined likely effect drivers by comparing gene responses of the mixture with those of individual mixture components. Aligned with our transcriptome results, the number of total macrophages was reduced and the zebrafish's ability to respond to a tissue damage suppressed in a dose-dependent manner. This study brings forth a key advancement in delineating the impact of chemical pollutants on the health of wild fish in the Baltic Sea.

2.
Environ Pollut ; 362: 124953, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39277128

RESUMEN

Organic ultraviolet filters (UVFs) are known to contaminate many aquatic ecosystems, with much environmental contamination attributed to the use of UVF-containing skin care products such as sunscreens during aquatic recreation. Most studies addressing the impact of sunscreen contamination have focused on the effects of UVFs under the assumption that they are the primary contaminants of concern from sunscreen pollution; however, the extent to which the toxicity of UVFs is representative of the environmental impacts of the whole sunscreen mixture is unknown. To address this knowledge gap, this study compared the mixture toxicity of five off-the-shelf sunscreen spray products containing the UVFs avobenzone, homosalate, octisalate, octocrylene and oxybenzone to the toxicity of each UVF in isolation to the freshwater invertebrate Daphnia magna. It was found that sunscreen toxicity was not proportional to their total UVF content, as the sunscreen containing the fewest UVFs was approximately equivalent to the sunscreen with the most UVFs, causing ≥90 % mortality and inhibiting all daphnid reproduction over 21 d exposures. Sunscreen toxicity was typically lower than expected when compared to the toxicity of each individual UVF within the mixture, as some sunscreens causing ≤20 % mortality contained octocrylene and/or oxybenzone at concentrations exceeding those which caused 90 % mortality during exposure to the UVF alone. Despite sunscreens causing large impairments in reproduction, growth and metabolism, poor correlations existed between the severity of most sublethal endpoints with respect to the measured UVF content of each sunscreen. Overall, these results indicate that potential antagonistic relationships between sunscreen ingredients can greatly reduce the toxicity of UVFs, creating more uncertainty regarding the level of threat that UVFs pose to the environment as a result of sunscreen contamination.

3.
Heliyon ; 10(17): e37251, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39290279

RESUMEN

Background: Africa is experiencing a significant surge in the use of pesticides on farms. Though the use of pesticide products on farms is increasing rapidly, the ability to monitor and regulate the practice has not kept pace. Despite their potential significance, the health and environmental impacts of the growing pesticide usage in developing nations remain inadequately comprehended and recorded. Objective: This paper presents a research protocol for a study that seeks to provide criteria for future monitoring of pesticide residues in aquatic environments and food sources. This study aims to evaluate pesticide utilisation methods and the potential hazards of pesticide residues in aquatic ecosystems. Additionally, the study seeks to assess the human health risks linked to pesticide applications. Methods: This study will employ a quantitative approach and cross-sectional design. It will utilise a combination of survey and the collection of biological and environmental samples. Our methodology consists of four distinct steps. These outline the processes for studying pesticide residue in environmental and fish samples. Additionally, we plan to employ mathematical algorithms to evaluate the ecological and health risks associated with these pesticide residues. Conclusion: This study is an effort to monitor and assess the hazards to the environment and human well-being associated with the increasing utilisation of pesticides. It also aims to gather relevant data on pesticide utilisation practices that contribute to the contamination of aquatic ecosystems. It will specifically focus on determining the concentration of pesticide residues in both biological and environmental samples. Additionally, the study will assess the ecological and health risks associated with these pesticide residues. This will enable the incorporation of organised research efforts and coordinated pesticide surveillance operations for toxicovigilance.

4.
Environ Int ; 191: 108968, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39213918

RESUMEN

Global sensitivity analysis combined with quantitative high-throughput screening (GSA-qHTS) uses random starting points of the trajectories in mixture design, which may lead to potential contingency and a lack of representativeness. Moreover, a scenario in which all factor levels were at stimulatory effects was not considered, thereby hindering a comprehensive understanding of GSA-qHTS. Accordingly, this study innovatively introduced an optimised experimental design, uniform design (UD), to generate non-random and representative sample points with smaller uniformity deviation as starting points of multiple trajectories. By combining UD with the previously optimised one-factor-at-a-time (OAT) method, a novel mixture design method was developed (UD-OAT). The single toxicity tests showed that three pyridinium and five imidazolium ionic liquids (ILs) exerted stimulatory effects on Vibrio qinghaiensis sp.-Q67; thus, four stimulatory effective concentrations of each IL were selected as factor levels. The UD-OAT generated 108 mixture samples with equal frequency and without repetition. High-throughput microplate toxicity analysis revealed that all 108 mixtures exhibited inhibitory effects. Among these, type B mixtures exhibited increasing toxicities that subsequently decreased, unlike type C mixtures, which consistently increased over time. GSA successfully identified three of the eight ILs as important factors influencing the toxicities of the mixtures. When individual ILs produced stimulatory effects, mixtures containing two to three ILs exhibited either stimulatory effects or none. In contrast, mixtures containing five to eight ILs exhibited inhibitory effects, while those containing four ILs showed a transition from stimulatory to inhibitory effects. This study provides a novel mixture design method for studying mixture toxicity and fills the application gap of GSA-qHTS. The phenomenon of individuals being beneficial while mixtures can be harmful challenges traditional mixture risk assessments.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Líquidos Iónicos , Pruebas de Toxicidad , Vibrio , Líquidos Iónicos/toxicidad , Líquidos Iónicos/química , Pruebas de Toxicidad/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Vibrio/efectos de los fármacos , Proyectos de Investigación , Imidazoles/toxicidad
5.
Toxicon ; 249: 108059, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39117156

RESUMEN

The aim of our study was to investigate the effects of cyanobacterial metabolites: microcystin-LR (MC-LR) anabaenopeptin-A (ANA-A), cylindrospermopsin (CYL), their binary and ternary mixtures on rainbow trout (Oncorhynchus mykiss) gill (RTgill-W1) cell line. We determined the following cell parameters: Hoechst and propidium iodide (PI) double staining, intracellular ATP level with luminometric assay, glutathione level with ThiolTracker Violet®- glutathione detection reagent and cytoskeletal F-actin fluorescence. The results showed that although reduction of Hoechst fluorescence was observed in both binary and ternary combinations of cyanobacterial metabolites, the mixture of MC-LR + ANA-A + CYL was the most potent inhibitor (EC50 = 148 nM). PI fluorescence and ATP levels were more increased in the cells exposed to the mixtures than those exposed to the individual metabolites with synergistic toxic changes suggesting apoptosis as the mechanism of cell death. Reduced glutathione level was also decreased in cells exposed both to single metabolites and their mixtures with the highest decrease and synergistic effects at 334 nM MC-LR+334 nM ANA-A+ 334 nM CYL suggesting induction oxidative stress by the tested compounds. Reduction of F-actin fluorescence was found in the cells from all of the groups exposed to individual metabolites and their mixtures, however the highest level of inhibition showed the binary MC-LR + CYL and the ternary MC-LR + ANA-A + CYL with synergistic interactions. The study suggests that in natural conditions fish gill cells may be very sensitive to individual cyanobacterial metabolites and more prone to their binary and ternary mixtures.


Asunto(s)
Alcaloides , Toxinas de Cianobacterias , Cianobacterias , Toxinas Marinas , Microcistinas , Oncorhynchus mykiss , Uracilo , Microcistinas/metabolismo , Animales , Alcaloides/farmacología , Uracilo/análogos & derivados , Línea Celular , Cianobacterias/metabolismo , Oncorhynchus mykiss/metabolismo , Branquias/metabolismo , Branquias/efectos de los fármacos , Glutatión/metabolismo , Toxinas Bacterianas , Adenosina Trifosfato/metabolismo , Apoptosis/efectos de los fármacos , Péptidos Cíclicos/farmacología
6.
Sci Total Environ ; 949: 175187, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094656

RESUMEN

Pesticides are crucial for crop protection and have seen a 50 % increase in use in the last decade. Besides preventing significant crop losses their use has raised health concerns due to consumer exposure through residues in food and water. The toxicity data from individual components is often used to assess overall mixture toxicity, but uncertainty persists in understanding the behaviors of individual chemicals within these mixtures. Assessing the risk of pesticide mixture exposure remains challenging, potentially leading to overestimation or underestimation of toxicity. This study aims to establish a possible link between exposure to a herbicide mixture and genotoxic effects, focusing on cancer development. Our analysis was focused on four herbicides glyphosate, nicosulfuron, S-metolachlor and terbuthylazine. To determine the link between genes associated with cancer development due to exposure to herbicide mixture, a CTD database tools were used. Through the ToppFun tool molecular function and biological process associated with genes common to the disease of interest and selected herbicides were evaluated. And finally, GeneMANIA was used in order to analyze the function and interaction between common genes of herbicide mixture. Among the 7 common genes for herbicide mixture and cancer development coexpression characteristics were dominant at 65.41 %, 22.14 % of annotated genes shared the same pathway and 7.88 % showed co-localization. Among six target genes involved in genetic disease development co-expression was dominant at 87.34 %, colocalization at 8.03 % and shared protein domains at 4.52 %. Comprehensive molecular analyses, encompassing genomics, proteomics, and pathway analysis, are essential to unravel the specific mechanisms involved in the context of the studied mixture and its potential carcinogenic effects.


Asunto(s)
Acetamidas , Glicina , Glifosato , Herbicidas , Compuestos de Sulfonilurea , Triazinas , Zea mays , Herbicidas/toxicidad , Acetamidas/toxicidad , Glicina/análogos & derivados , Glicina/toxicidad , Triazinas/toxicidad , Compuestos de Sulfonilurea/toxicidad , Zea mays/genética , Neoplasias/inducido químicamente , Neoplasias/genética , Piridinas/toxicidad , Simulación por Computador , Humanos
7.
Ecotoxicol Environ Saf ; 282: 116761, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39047370

RESUMEN

The widespread use of nanomaterials in agriculture may introduce multiple engineered nanoparticles (ENPs) into the environment, posing a combined risk to crops. However, the precise molecular mechanisms explaining how plant tissues respond to mixtures of individual ENPs remain unclear, despite indications that their combined toxicity differs from the summed toxicity of the individual ENPs. Here, we used a variety of methods including physicochemical, biochemical, and transcriptional analyses to examine the combined effects of graphene nanoplatelets (GNPs) and titanium dioxide nanoparticles (TiO2 NPs) on hydroponically exposed lettuce (Lactuca sativa) seedlings. Results indicated that the presence of GNPs facilitated the accumulation of Ti as TiO2 NPs in the seedling roots. Combined exposure to GNPs and TiO2 NPs caused less severe oxidative damage in the roots compared to individual exposures. Yet, GNPs and TiO2 NPs alone and in combination did not cause oxidative damage in the shoots. RNA sequencing data showed that the mixture of GNPs and TiO2 NPs led to a higher number of differentially expressed genes (DEGs) in the seedlings compared to exposure to the individual ENPs. Moreover, the majority of the DEGs encoding superoxide dismutase displayed heightened expression levels in the seedlings exposed to the combination of GNPs and TiO2 NPs. The level of gene ontology (GO) enrichment in the seedlings exposed to the mixture of GNPs and TiO2 NPs was found to be greater than the level of GO enrichment observed after exposure to isolated GNPs or TiO2 NPs. Furthermore, the signaling pathways, specifically the "MAPK signaling pathway-plant" and "phenylpropanoid biosynthesis," exhibited a close association with oxidative stress. This study has provided valuable insights into the molecular mechanisms underlying plant resistance against multiple ENPs.


Asunto(s)
Grafito , Lactuca , Plantones , Titanio , Titanio/toxicidad , Lactuca/efectos de los fármacos , Lactuca/genética , Lactuca/crecimiento & desarrollo , Grafito/toxicidad , Plantones/efectos de los fármacos , Plantones/genética , Nanopartículas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Superóxido Dismutasa/metabolismo
8.
Plant Physiol Biochem ; 214: 108949, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39053316

RESUMEN

Even though microplastics (MPs) and graphene nanomaterials (GNMs) have demonstrated individual toxicity towards aquatic organisms, the knowledge gap lies in the lack of understanding regarding their combined toxicity. The difference between the combined toxicity of MPs and GNMs, in contrast to their individual toxicities, and furthermore, the elucidation of the mechanism of this combined toxicity are scientific questions that remain to be addressed. In this study, we examined the individual and combined toxicity of three polystyrene microplastics (MPs) with different functional groups-unmodified, carboxyl-modified (COOH-), and amino-modified (NH2-) MPs-in combination with reduced graphene oxide (RGO) on the freshwater microalga Scenedesmus obliquus. More importantly, we explored the cellular and molecular mechanisms responsible for the observed toxicity. The results indicated that the growth inhibition toxicity of RGO, either alone or in combination with the three MPs, against S. obliquus increased gradually with higher particle concentrations. The mitigating effect of MPs-NH2 on RGO-induced toxicity was most significant at a higher concentration, surpassing the effect of unmodified MPs. However, the MPs-COOH did not exhibit a substantial impact on the toxicity of RGO. Unmodified MPs and MPs-COOH aggravated the inhibition effects of RGO on the cell membrane integrity and oxidative stress-related biomarkers. Additionally, MPs-COOH exhibited a stronger inhibition effect on RGO-induced biomarkers compared to unmodified MPs. In contrast, the MPs-NH2 alleviated the inhibition effect of RGO on the biomarkers. Furthermore, the presence of differently functionalized MPs did not significantly affect RGO-induced oxidative stress and photosynthesis-related gene expression in S. obliquus, indicating a limited ability to modulate RGO genotoxicity at the molecular level. These findings can offer a more accurate understanding of the combined risks posed by these micro- and nano-materials and assist in designing more effective mitigation strategies.


Asunto(s)
Grafito , Microplásticos , Scenedesmus , Grafito/toxicidad , Scenedesmus/efectos de los fármacos , Scenedesmus/metabolismo , Microplásticos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Microalgas/efectos de los fármacos , Microalgas/metabolismo , Microalgas/crecimiento & desarrollo , Poliestirenos/toxicidad , Poliestirenos/química
9.
Environ Sci Pollut Res Int ; 31(37): 49905-49915, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39085690

RESUMEN

Organisms are usually exposed to mixtures of emerging pollutants in aquatic environments. Due to their widespread use and environmental relevance, the individual and combined effects of the drugs azithromycin (AZT) and ivermectin (IVM) on the freshwater rotifer Lecane papuana and the euryhaline rotifer Proales similis were investigated. Rotifers showed greater sensitivity to IVM compared to AZT. The LC50 values of IVM and AZT for L. papuana and P. similis were 0.163 and 0.172 mg/L, and 13.52 and 20.00 mg/L, respectively. Population growth rates, assessed in chronic toxicity assays, responded negatively to increasing concentrations of both toxicants, either individually or in combination. Our results revealed two distinct combined toxicity responses: a strong synergistic effect in the freshwater rotifer and a marked antagonistic impact of the AZT-IVM mixtures in the euryhaline rotifer.


Asunto(s)
Azitromicina , Agua Dulce , Ivermectina , Rotíferos , Contaminantes Químicos del Agua , Animales , Ivermectina/toxicidad , Ivermectina/análogos & derivados , Rotíferos/efectos de los fármacos , Azitromicina/toxicidad , Contaminantes Químicos del Agua/toxicidad
10.
Environ Sci Technol ; 58(29): 12899-12908, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38984974

RESUMEN

Global change confronts organisms with multiple stressors causing nonadditive effects. Persistent stress, however, leads to adaptation and related trade-offs. The question arises: How can the resulting effects of these contradictory processes be predicted? Here we show that Gammarus pulex from agricultural streams were more tolerant to clothianidin (mean EC50 148 µg/L) than populations from reference streams (mean EC50 67 µg/L). We assume that this increased tolerance results from a combination of physiological acclimation, epigenetic effects, and genetic evolution, termed as adaptation. Further, joint exposure to pesticide mixture and temperature stress led to synergistic interactions of all three stressors. However, these combined effects were significantly stronger in adapted populations as shown by the model deviation ratio (MDR) of 4, compared to reference populations (MDR = 2.7). The pesticide adaptation reduced the General-Stress capacity of adapted individuals, and the related trade-off process increased vulnerability to combined stress. Overall, synergistic interactions were stronger with increasing total stress and could be well predicted by the stress addition model (SAM). In contrast, traditional models such as concentration addition (CA) and effect addition (EA) substantially underestimated the combined effects. We conclude that several, even very disparate stress factors, including population adaptations to stress, can act synergistically. The strong synergistic potential underscores the critical importance of correctly predicting multiple stresses for risk assessment.


Asunto(s)
Anfípodos , Estrés Fisiológico , Animales , Anfípodos/efectos de los fármacos , Anfípodos/fisiología , Adaptación Fisiológica , Plaguicidas/toxicidad
11.
Water Res ; 260: 121914, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38880012

RESUMEN

Wastewater treatment plants (WWTPs) are essential for maintaining a good water quality of surface waters. However, WWTPs are also associated with water quality deterioration and hydro-morphological alteration. Riverine communities respond to these stressors with changes in their community structure, abundance and diversity. In this study, we used a dataset of 94 monitoring sites across North Rhine-Westphalia, Germany to investigate the influence of WWTPs on the water quality and hydro-morphological quality in river sections downstream of WWTP effluents. More specifically, we analyzed the effects of the percentage of WWTP effluents (in relation to median base flow) on four stressor groups (physico-chemistry, micropollutants, hydrological and morphological alteration) using Linear Mixed Models (LMM). Furthermore, we assessed the impact of a selection of twelve ecologically relevant stressor variables reflecting water quality deterioration and hydro-morphological alteration on reference fish communities using Canonical Correspondence Analysis (CCA). The percentage of WWTP effluents was correlated with water quality, especially with toxic units of a wide range of pharmaceuticals including diclofenac, venlafaxine and sulfamethoxazole (R² up to 0.54) as well as specific pesticides (e.g., terbutryn: R² = 0.33). The correlation of percent WWTP effluents with hydro-morphological alteration was weaker and most pronounced for the frequency of high flow (R² = 0.24) and flow variability (R² = 0.19). About 40 % of the variance in the fish community structure were explained by 12 stressor variables in the CCA models. Water quality and hydrological, but not morphological stressors showed strong albeit highly variable effects on individual fish species. The results indicate that water quality degradation and hydrological alteration are important factors determining the ecological status of fish communities. In this context, WWTP effluents can impose relevant point sources of pollution that affect water quality but also cause alterations of the hydrological regime. Further management measures addressing both stressor groups are needed to improve the ecological status.


Asunto(s)
Monitoreo del Ambiente , Peces , Aguas Residuales , Contaminantes Químicos del Agua , Calidad del Agua , Animales , Contaminantes Químicos del Agua/análisis , Ríos/química , Alemania , Hidrología , Eliminación de Residuos Líquidos
12.
J Hazard Mater ; 476: 135038, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38941840

RESUMEN

Nanoplastics (NPs) interact with cooccurring chemicals and natural organic matter (NOM) in the environment, forming complexes that can change their bioavailability and interfacial toxicity in aquatic organisms. This study aims to elucidate the single and combined impacts of 21-day chronic exposure to low levels of polystyrene NPs (size 80 nm) at 1 mg/L and 6:2 chlorinated polyfluorinated ether sulfonate (Cl-PFAES or F53B) at 200 µg/L in the presence and absence of NOM (humic acid-HA and bovine serum albumin-BSA at 10 mg/L) in adult zebrafish (Danio rerio). Our findings through multiple bioassays, revealed that the mixture group (M), comprising of NPs, F53B, HA, and BSA, caused a higher level of toxicity compared to the single NPs (AN), single F53B (AF), and combined NPs+F53B (ANF) groups. The mixture exposure caused the highest level of vacuolization and nuclear condensation in hepatocytes, and most of the intestinal villi were fused and highly reduced in villi length and crypt depth. Further, the T-AOC levels were significantly lower (p < 0.05), while the MDA levels in the liver and intestine were significantly higher (p < 0.05) in the M group with downregulation of nfkbiaa, while upregulation of prkcda, csf1ra, and il1b apoptosis genes in the liver. Pairwise comparison of gut microbiota showed significantly higher (p < 0.05) abundances of various genera in the M group, including Gordonia, Methylobacterium, Tundrisphaera, GKS98, Pedomicrobium, Clostridium, Candidatus and Anaerobacillus, as well as higher abundance of genera including pathogenic strains, while control group showed higher abundance of probiotic genus ZOR0006 than exposed group (p < 0.01). The transcriptomic analysis revealed highest number of DEGs in the M group (2815), followed by the AN group (506) and ANF group (206) with the activation of relaxin signaling pathway-RSP (slc9a1, slc9a2) and AMP-activated protein kinase (AMPK) pathway (plin1), and suppression of the toll-like receptor (TLR) pathway (tlr4a, tlr2, tlr1), cytokine-cytokine receptor interaction (CCRI) pathway (tnfb, il21r1, il21, ifng1), and peroxisome proliferator-activated receptors (PPAR) pathway (pfkfb3). Overall, toxicity in the M group was higher, indicating that the HA and BSA elevated the interfacial impacts of NPs and F53B in adult zebrafish after chronic environmentally relevant exposure, implying the revisitation of the critical interaction of NOM with co-occurring chemicals and associated impacts.


Asunto(s)
Microbioma Gastrointestinal , Pez Cebra , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Nanopartículas/toxicidad , Nanopartículas/química , Microplásticos/toxicidad , Poliestirenos/toxicidad , Poliestirenos/química , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Transcriptoma/efectos de los fármacos , Perfilación de la Expresión Génica , Fluorocarburos/toxicidad
13.
Environ Int ; 189: 108791, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38838488

RESUMEN

Plastics constitute a vast array of substances, with over 16000 known plastic chemicals, including intentionally and non-intentionally added substances. Thousands of chemicals, including toxic ones, are extractable from plastics, however, the extent to which these compounds migrate from everyday products into food or water remains poorly understood. This study aims to characterize the endocrine and metabolism disrupting activity, as well as the chemical composition of migrates from plastic food contact articles (FCAs) from four countries as significant sources of human exposure. Fourteen plastic FCAs covering seven polymer types with high global market shares were migrated into water and a water-ethanol mixture as food simulants according to European regulations. The migrates were analyzed using reporter gene assays for nuclear receptors relevant to human health and non-target chemical analysis to characterize the chemical composition. Chemicals migrating from each FCA interfered with at least two nuclear receptors, predominantly targeting pregnane X receptor (24/28 migrates). Moreover, peroxisome proliferator receptor gamma was activated by 19 out of 28 migrates, though mostly with lower potencies. Estrogenic and antiandrogenic activity was detected in eight and seven migrates, respectively. Fewer chemicals and less toxicity migrated into water compared to the water-ethanol mixture. However, 73 % of the 15 430 extractable chemical features also transferred into food simulants, and the water-ethanol migrates exhibited a similar toxicity prevalence compared to methanol extracts. The chemical complexity differed largely between FCAs, with 8 to 10631 chemical features migrating into food simulants. Using stepwise partial least squares regressions, we successfully narrowed down the list of potential active chemicals, identified known endocrine disrupting chemicals, such as triphenyl phosphate, and prioritized chemical features for further identification. This study demonstrates the migration of endocrine and metabolism disrupting chemicals from plastic FCAs into food simulants, rendering a migration of these compounds into food and beverages probable.


Asunto(s)
Disruptores Endocrinos , Embalaje de Alimentos , Plásticos , Disruptores Endocrinos/análisis , Humanos , Contaminación de Alimentos
14.
Environ Toxicol Chem ; 43(7): 1604-1614, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38771199

RESUMEN

The presence and persistence of microplastics (MPs) in diverse aquatic environments are of global concern. Microplastics can impact marine organisms via direct physical interaction and the release of potentially harmful chemical additives incorporated into the plastic. These chemicals are physically bound to the plastic matrix and can leach out. The hazards associated with chemical additives to exposed organisms is not well characterized. We investigated the hazards of plastic additives leaching from plastic. We used the common plasticizer dibutyl phthalate (DBP) as a chemical additive proxy and the New Zealand green-lipped mussel (Perna canaliculus) as a model. We used early-adult P. canaliculus exposed to combinations of virgin and DBP-spiked polyvinyl chloride (PVC), MPs, and DBP alone for 7 days. Whole transcriptome sequencing (RNA-seq) was conducted to assess whether leaching of DBP from MPs poses a hazard. The differences between groups were evaluated using pairwise permutational multivariate analysis of variance (PERMANOVA), and all treatments were significantly different from controls. In addition, a significant difference was seen between DBP and PVC MP treatment. Transcriptome analysis revealed that mussels exposed to DBP alone had the most differentially expressed genes (914), followed by PVC MP + DBP (448), and PVC MP (250). Gene ontology functional analysis revealed that the most enriched pathway types were in cellular metabolism, immune response, and endocrine disruption. Microplastic treatments enriched numerous pathways related to cellular metabolism and immune response. The combined exposure of PVC MP + DBP appears to cause combined effects, suggesting that DBP is bioavailable to the exposed mussels in the PVC MP + DBP treatment. Our results support the hypothesis that chemical additives are potentially an important driver of MP toxicity. Environ Toxicol Chem 2024;43:1604-1614. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Dibutil Ftalato , Microplásticos , Perna , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Dibutil Ftalato/toxicidad , Perna/efectos de los fármacos , Plastificantes/toxicidad , Transcriptoma/efectos de los fármacos , Plásticos/toxicidad
15.
Chemosphere ; 359: 142233, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705404

RESUMEN

Bees are simultaneously exposed to a variety of pesticides, which are often applied in mixtures and can cause lethal and sublethal effects. The combined effects of pesticides, however, are not measured in the current risk assessment schemes. Additionally, the sublethal effects of pesticides on a variety of physiological processes are poorly recognized in bees, especially in non-Apis solitary bees. In this study, we used a full-factorial design to examine the main and interactive effects of three insecticide formulations with different modes of action (Mospilan 20 SP, Sherpa 100 EC, and Dursban 480 EC) on bee biochemical processes. We measured acetylcholinesterase (AChE), glutathione S-transferase (GST) and esterase (EST) activities, as well as a nonenzymatic biomarker associated with energy metabolism, i.e., ATP level. All studied endpoints were affected by Sherpa 100 EC, and the activities of AChE and EST as well as ATP levels were affected by Dursban 480 EC. Moreover, complex interactions between all three insecticides affected ATP levels, showing outcomes that cannot be predicted when testing each insecticide separately. The results indicate that even if interactive effects are sometimes difficult to interpret, there is a need to study such interactions if laboratory-generated toxicity data are to be extrapolated to field conditions.


Asunto(s)
Acetilcolinesterasa , Glutatión Transferasa , Insecticidas , Animales , Insecticidas/toxicidad , Abejas/efectos de los fármacos , Abejas/fisiología , Acetilcolinesterasa/metabolismo , Glutatión Transferasa/metabolismo , Esterasas/metabolismo , Adenosina Trifosfato/metabolismo
16.
J Hazard Mater ; 472: 134519, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38733790

RESUMEN

Emerging contaminants (ECs) are increasingly recognized as a global threat to biodiversity and ecosystem health. However, the cumulative risks posed by ECs to aquatic organisms and ecosystems, as well as the influence of anthropogenic activities and natural factors on these risks, remain poorly understood. This study assessed the mixed risks of ECs in Dongting Lake, a Ramsar Convention-classified Typically Changing Wetland, to elucidate the major EC classes, key risk drivers, and magnitude of anthropogenic and natural impacts. Results revealed that ECs pose non-negligible acute (30% probability) and chronic (70% probability) mixed risks to aquatic organisms in the freshwater lake ecosystem, with imidacloprid identified as the primary pollutant stressor. Redundancy analysis (RDA) and structural equation modeling (SEM) indicated that cropland and precipitation were major drivers of EC contamination levels and ecological risk. Cropland was positively associated with EC concentrations, while precipitation exhibited a dilution effect. These findings provide critical insights into the ecological risk status and key risk drivers in a typical freshwater lake ecosystem, offering data-driven support for the control and management of ECs in China.


Asunto(s)
Lagos , Contaminantes Químicos del Agua , China , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Ríos/química , Monitoreo del Ambiente , Neonicotinoides/análisis , Neonicotinoides/toxicidad , Ecosistema , Nitrocompuestos/análisis , Organismos Acuáticos
17.
Sci Total Environ ; 933: 173175, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38750736

RESUMEN

Antineoplastic drugs are not effectively removed by wastewater treatment plants, ending up in surface waters. Since these drugs can interfere with the structure and functions of DNA, they pose a potential threat to aquatic biota. Unfortunately, many chemotherapeutic agents have not been studied in an environmental context. Additionally, there is a significant lack of information about the impact of anticancer drugs on marine organisms compared to freshwater species, and most studies only focus on the toxicity of single compounds rather than considering their occurrence as complex mixtures in the environment. Therefore, the aim of this study was to evaluate the ecotoxicity of two commonly used cytostatics, bleomycin and vincristine, toward six biomodels: Pseudokirchneriella subcapitata, Phaeodactylum tricornutum, Brachionus plicatilis, Brachionus calyciflorus, Thamnocephalus platyurus, and Artemia franciscana. These selected aquatic organisms are representatives of both freshwater and marine environments and belong to different trophic levels. The pharmaceuticals were investigated both individually and in combination. Binary mixture toxicity predictions were performed according to the Response Additivity and Independent Action models. Additionally, the toxicity data obtained from these experiments were utilized for risk assessment in the context of the drugs' environmental occurrence. The results indicated that freshwater species were generally more sensitive to both tested compounds than marine organisms, with T. platyurus being the most sensitive. Based on the tests performed on this biomodel, bleomycin was categorized as extremely toxic, while vincristine was considered moderately toxic. Neither of the applied models suitably predicted binary mixture toxicity, as the combination of drugs showed additive, synergistic, and antagonistic effects, suggesting that single compound toxicity data are insufficient for predicting the aquatic toxicities of cytostatics mixtures. The environmental risk of vincristine ranged from low to high, and for bleomycin varied from moderate to high, depending on the matrices examined. Therefore, further research on drug removal is recommended.


Asunto(s)
Organismos Acuáticos , Bleomicina , Agua Dulce , Vincristina , Contaminantes Químicos del Agua , Bleomicina/toxicidad , Vincristina/toxicidad , Animales , Contaminantes Químicos del Agua/toxicidad , Organismos Acuáticos/efectos de los fármacos , Citostáticos/toxicidad
18.
Eur J Pharm Sci ; 199: 106817, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38797439

RESUMEN

Pharmaceutical residues are widely detected in surface waters all around the world, causing a range of adverse effects on environmental species, such as fish. Besides population level effects (mortality, reproduction), pharmaceutical residues can bioaccumulate in fish tissues resulting in organ-specific toxicities. In this study, we developed in vitro 3D culture models for rainbow trout (Oncorhynchus mykiss) liver cell line (RTH-149) and cryopreserved, primary rainbow trout hepatocytes (RTHEP), and compared their spheroid formation and susceptibility to toxic impacts of pharmaceuticals. The rapidly proliferating, immortalized RTH-149 cells were shown to form compact spheroids with uniform morphology in just three days, thus enabling higher throughput toxicity screening compared with the primary cells that required acclimation times of about one week. In addition, we screened the cytotoxicity of a total of fourteen clinically used human pharmaceuticals toward the 3D cultures of both RTH-149 cells (metabolically inactive) and primary RTHEP cells (metabolically active), to evaluate the impacts of the pharmaceuticals' own metabolism on their hepatotoxicity in rainbow trout in vitro. Among the test substances, the azole antifungals (clotrimazole and ketoconazole) were identified as the most cytotoxic, with hepatic metabolism indicatively amplifying their toxicity, followed by fluoxetine, levomepromazine, and sertraline, which were slightly less toxic toward the metabolically active primary cells than RTH-149 spheroids. Besides individual pharmaceuticals, the 3D cultures were challenged with mixtures of the eight most toxic substances, to evaluate if their combined mixture toxicities can be predicted based on individual substances' half-maximal effect (EC50) concentrations. As a result, the classical concentration addition approach was concluded sufficiently accurate for preliminarily informing on the approximate effect concentrations of pharmaceutical mixtures on a cellular level. However, direct read-across from human data was proven challenging and inexplicit for prediction of hepatotoxicity in fish in vitro.


Asunto(s)
Hepatocitos , Oncorhynchus mykiss , Esferoides Celulares , Animales , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Esferoides Celulares/efectos de los fármacos , Preparaciones Farmacéuticas , Línea Celular , Supervivencia Celular/efectos de los fármacos , Técnicas de Cultivo de Célula , Células Cultivadas , Técnicas de Cultivo Tridimensional de Células/métodos
19.
Biol Trace Elem Res ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683268

RESUMEN

The present study investigated the cytotoxic effects of ZnO, CuO, and mixed combinations of them on SH-SY5Y cells. For this purpose, the cells were exposed to various concentrations of these NPs alone for 24-96 h and as a mixture for 24 h. Variations in cell viability were noted. MTT results showed that ZnO and/or CuO NPs decreased cell survival by about 59% at 200 (ZnO, at 24 h) and 800 µg/ml (ZnO and/or CuO, at 72 and 96 h). When the NR assay was used, slight decreases were noted with ZnO NPs at 72 and 96 h. With CuO NPs alone and NPs in a mixture, only the highest concentrations caused 40 and 70% decreases in cell survival, respectively. Especially with NR assays, DTPA, NAC, or taurine provided marked protection. ROS levels were increased with the highest concentration of CuO NPs and with all concentrations of the mixture. The highest concentration of ZnO NPs and the lowest concentration of CuO NPs caused slight decreases in mitochondrial membrane potential levels. Additionally, increases were noted in caspase 3/7 levels with ZnO and CuO NPs alone or with a mixture of them. Intracellular calcium levels were decreased in this system. These findings demonstrated that ZnO and CuO NPs, either separately or in combination, had a modest cytotoxic effect on SH-SY5Y cells. Protection obtained with DTPA, NAC, or taurine against the cytotoxicity of these NPs and the ROS-inducing effect of CuO NPs and the NPs' mixture suggests that oxidative stress might be involved in the cytotoxicity mechanisms of these NPs.

20.
Environ Sci Pollut Res Int ; 31(20): 29174-29184, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38568309

RESUMEN

Pesticide formulations are typically applied as mixtures, and their synergistic effects can increase toxicity to the organisms in the environment. Despite pesticide mixtures being the leading cause of pesticide exposure incidents, little attention has been given to assessing their combined toxicity and interactions. This survey purposed to reveal the cumulative toxic effects of deltamethrin (DEL) and cyazofamid (CYA) on earthworms (Eisenia fetida) by examining multiple endpoints. Our findings revealed that the LC50 values of DEL for E. fetida, following 7- and 14-day exposures, ranged from 887.7 (728-1095) to 1552 (1226-2298) mg kg-1, while those of CYA ranged from 316.8 (246.2-489.4) to 483.2 (326.1-1202) mg kg-1. The combinations of DEL and CYA induced synergistic influences on the organisms. The contents of Cu/Zn-SOD and CarE showed significant variations when exposed to DEL, CYA, and their combinations compared to the untreated group. Furthermore, the mixture administration resulted in more pronounced alterations in the expression of five genes (hsp70, tctp, gst, mt, and crt) associated with cellular stress, carcinogenesis, detoxification, and endoplasmic reticulum compared to single exposures. In conclusion, our comprehensive findings provided detailed insights into the cumulative toxic effects of chemical mixtures across miscellaneous endpoints and concentration ranges. These results underscored the importance of considering mixture administration during ecological risk evaluations of chemicals.


Asunto(s)
Nitrilos , Oligoquetos , Piretrinas , Animales , Oligoquetos/efectos de los fármacos , Piretrinas/toxicidad , Nitrilos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA