Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Steroid Biochem Mol Biol ; 192: 105385, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31150830

RESUMEN

The Wobbler mouse has been proposed as an experimental model of the sporadic form of amyotrophic lateral sclerosis (ALS). The administration of natural progesterone (PROG) to Wobbler mice attenuates neuropathology, inhibits oxidative stress, enhances the expression of genes involved in motoneuron function, increases survival and restores axonal transport. However, current pharmacological treatments for ALS patients are still partially effective. This encouraged us to investigate if the synthetic progestin norethindrone (NOR), showing higher potency than PROG and used for birth control and hormone therapy might also afford neuroprotection. Two-month-old Wobbler mice (wr/wr) were left untreated or received either a 20 mg pellet of PROG or a 1 mg pellet of NOR for 18 days. Untreated control NFR/NFR mice (background strain for Wobbler) were also employed. Wobblers showed typical clinical and spinal cord abnormalities, while these abnormalities were normalized with PROG treatment. Surprisingly, we found that NOR did not increase immunoreactivity and gene expression for choline-acetyltransferase, drastically decreased GFAP + astrogliosis, favored proinflammatory mediators, promoted the inflammatory phenotype of IBA1+ microglia, increased the receptor for advanced glycation end products (RAGE) mRNA and protein expression and the activity of nitric oxide synthase (NOS)/NADPH diaphorase in the cervical spinal cord. Additionally, NOR treatment produced atrophy of the thymus. The combined negative effects of NOR on clinical assessments (forelimb atrophy and rotarod performance) suggest a detrimental effect on muscle trophism and motor function. These findings reinforce the evidence that the type of progestin used for contraception, endometriosis or replacement therapy, may condition the outcome of preclinical and clinical studies targeting neurodegenerative diseases.


Asunto(s)
Modelos Animales de Enfermedad , Neuronas Motoras/efectos de los fármacos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Neuroprotección/efectos de los fármacos , Noretindrona/farmacología , Progesterona/farmacología , Progestinas/farmacología , Animales , Anticonceptivos Sintéticos Orales/farmacología , Ratones , Neuronas Motoras/patología
2.
J Steroid Biochem Mol Biol ; 174: 201-216, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28951257

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating disorder characterized by progressive death of motoneurons. The Wobbler (WR) mouse is a preclinical model sharing neuropathological similarities with human ALS. We have shown that progesterone (PROG) prevents the progression of motoneuron degeneration. We now studied if allopregnanolone (ALLO), a reduced metabolite of PROG endowed with gabaergic activity, also prevents WR neuropathology. Sixty-day old WRs remained untreated or received two steroid treatment regimens in order to evaluate the response of several parameters during early or prolonged steroid administration. ALLO was administered s.c. daily for 5days (4mg/kg) or every other day for 32days (3, 3mg/kg), while another group of WRs received a 20mg PROG pellet s.c. for 18 or 60days. ALLO administration to WRs increased ALLO serum levels without changing PROG and 5 alpha dihydroprogesterone (5α-DHP), whereas PROG treatment increased PROG, 5α-DHP and ALLO. Untreated WRs showed higher basal levels of serum 5α-DHP than controls. In the cervical spinal cord we studied markers of oxidative stress or associated to trophic responses. These included nitric oxide synthase (NOS) activity, motoneuron vacuolation, MnSOD immunoreactivity (IR), brain derived neurotrophic factor (BDNF) and TrkB mRNAs, p75 neurotrophin receptor (p75NTR) and, cell survival or death signals such as pAKT and the stress activated kinase JNK. Untreated WRs showed a reduction of MnSOD-IR and BDNF/TrkB mRNAs, associated to high p75NTR in motoneurons, neuronal and glial NOS hyperactivity and neuronal vacuolation. Also, low pAKT, mainly in young WRs, and a high pJNK in the old stage characterized WRs spinal cord. Except for MnSOD and BDNF, these alterations were prevented by an acute ALLO treatment, while short-term PROG elevated MnSOD. Moreover, after chronic administration both steroids enhanced MnSOD-IR and BDNF mRNA, while attenuated pJNK and NOS in glial cells. Long-term PROG also increased pAKT and reduced neuronal NOS, parameters not modulated by chronic ALLO. Clinically, both steroids improved muscle performance. Thus, ALLO was able to reduce neuropathology in this model. Since high oxidative stress activates p75NTR and pJNK in neurodegeneration, steroid reduction of these molecules may provide adequate neuroprotection. These data yield the first evidence that ALLO, a gabaergic neuroactive steroid, brings neuroprotection in a model of motoneuron degeneration.


Asunto(s)
Degeneración Nerviosa/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Pregnanolona/uso terapéutico , Esclerosis Amiotrófica Lateral , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Colina O-Acetiltransferasa/metabolismo , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Fármacos Neuroprotectores/sangre , Fármacos Neuroprotectores/farmacología , Óxido Nítrico Sintasa/metabolismo , Pregnanolona/sangre , Pregnanolona/farmacología , Progesterona/sangre , Progesterona/farmacología , Progesterona/uso terapéutico , Receptor trkB/genética , Receptores de Factor de Crecimiento Nervioso/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología , Superóxido Dismutasa/metabolismo
3.
J Neurophysiol ; 109(11): 2803-14, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23486205

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating paralytic disorder caused by dysfunction and degeneration of motoneurons starting in adulthood. Recent studies using cell or animal models document that astrocytes expressing disease-causing mutations of human superoxide dismutase 1 (hSOD1) contribute to the pathogenesis of ALS by releasing a neurotoxic factor(s). Neither the mechanism by which this neurotoxic factor induces motoneuron death nor its cellular site of action has been elucidated. Here we show that acute exposure of primary wild-type spinal cord cultures to conditioned medium derived from astrocytes expressing mutant SOD1 (ACM-hSOD1(G93A)) increases persistent sodium inward currents (PC(Na)), repetitive firing, and intracellular calcium transients, leading to specific motoneuron death days later. In contrast to TTX, which paradoxically increased twofold the amplitude of calcium transients and killed motoneurons, reduction of hyperexcitability by other specific (mexiletine) and nonspecific (spermidine and riluzole) blockers of voltage-sensitive sodium (Na(v)) channels restored basal calcium transients and prevented motoneuron death induced by ACM-hSOD1(G93A). These findings suggest that riluzole, the only FDA-approved drug with known benefits for ALS patients, acts by inhibiting hyperexcitability. Together, our data document that a critical element mediating the non-cell-autonomous toxicity of ACM-hSOD1(G93A) on motoneurons is increased excitability, an observation with direct implications for therapy of ALS.


Asunto(s)
Potenciales de Acción , Astrocitos/metabolismo , Neuronas Motoras/efectos de los fármacos , Mutación , Superóxido Dismutasa/genética , Animales , Calcio/metabolismo , Señalización del Calcio , Muerte Celular , Células Cultivadas , Medios de Cultivo Condicionados/toxicidad , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras/fisiología , Ratas , Ratas Sprague-Dawley , Sodio/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA