Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 143: 265-80, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25733254

RESUMEN

Spectroscopic and structural investigations of 3,4-difluoroaniline molecule are presented by using experimental (FT-IR, FT-Raman, (1)H and (13)C NMR, and UV-Vis) techniques and theoretical (DFT approach) calculations. FT-IR and FT-Raman spectra of 3,4-difluoroaniline molecule are recorded in the region 4000-400cm(-1) and 3500-10cm(-1) in the liquid phase, respectively. The NMR chemical shifts ((1)H and (13)C) are recorded in chloroform-d solution. The UV absorption spectra of 3,4-difluoroaniline dissolved in ethanol and water are recorded in the range of 200-400nm. Experimental results are supported with the following theoretical calculations; the optimized geometry and vibrational (FT-IR and FT-Raman) spectra are carried out by DFT (B3LYP)/6-311++G(d,p) basis set calculations. The nuclear magnetic resonance spectra ((1)H and (13)C NMR) are obtained by using the gauge-invariant atomic orbital method. Moreover, electronic characteristics, such as HOMO and LUMO energies, density of state diagrams, and molecular electrostatic potential surface are investigated. Nonlinear optical properties and thermodynamic features are also outlined theoretically. An excellent correlation of theoretical and experimental results provides a detailed description of the structural and physicochemical properties of the molecule. Thus, this work leads to a deep understanding of the characteristics of di-substituted aniline derivatives.


Asunto(s)
Compuestos de Anilina/química , Modelos Moleculares , Estructura Molecular , Teoría Cuántica , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Termodinámica
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 135: 270-82, 2015 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-25072741

RESUMEN

In this study, the structural and vibrational analysis of 3,4-pyridinedicarboxylic acid (3,4-PDCA) are presented using experimental techniques as FT-IR, FT-Raman, NMR, UV and quantum chemical calculations. FT-IR and FT-Raman spectra of 3,4-pyridinedicarboxylic acid in the solid phase are recorded in the region 4000-400 cm(-1) and 4000-50 cm(-1), respectively. The geometrical parameters and energies of all different and possible monomer, dimer, anion(-1) and anion(-2) conformers of 3,4-PDCA are obtained from Density Functional Theory (DFT) with B3LYP/6-311++G(d,p) basis set. There are sixteen conformers (C1C16) for this molecule (neutral form). The most stable conformer of 3,4-PDCA is the C1 conformer. The complete assignments are performed on the basis of the total energy distribution (TED) of the vibrational modes calculated with scaled quantum mechanics (SQM) method. (1)H and (13)C NMR spectra are recorded and the chemical shifts are calculated by using DFT/B3LYP methods with 6-311++G(d,p) basis set. The UV absorption spectrum of the studied compound is recorded in the range of 200-400 nm by dissolved in ethanol. The optimized geometric parameters were compared with experimental data via the X-ray results derived from complexes of this molecule. In addition these, molecular electrostatic potential (MEP), thermodynamic and electronic properties, HOMO-LUMO energies and Mulliken atomic charges, are performed.


Asunto(s)
Ácidos Carboxílicos/química , Dimerización , Modelos Moleculares , Piridinas/química , Aniones , Espectroscopía de Resonancia Magnética con Carbono-13 , Entropía , Conformación Molecular , Dinámicas no Lineales , Fenómenos Ópticos , Espectroscopía de Protones por Resonancia Magnética , Teoría Cuántica , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Electricidad Estática , Vibración
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 135: 283-95, 2015 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-25078461

RESUMEN

Comprehensive investigation of geometrical and electronic structure in ground as well as the first excited state of 3,5-Difluoroaniline (C6H5NF2) was carried out. The experimentally observed spectral data (FT-TR and FT-Raman) of the title compound was compared with the spectral data obtained by DFT/B3LYP method using 6-311++G(d,p) basis set. The molecular properties like dipole moment, polarizability, first static hyperpolarizability, molecular electrostatic potential surface (MEPs), and contour map were calculated to get a better insight of the properties of the title molecule. Natural bond orbital (NBO) analysis was applied to study stability of the molecule arising from charge delocalization. UV-Vis spectrum of the title compound was also recorded and the electronic properties, such as Frontier orbitals and band gap energies were measured by TD-DFT approach. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (OPDOS) diagrams analysis were presented. Global and local reactivity descriptors were computed to predict reactivity and reactive sites on the molecule. (1)H and (13)C NMR spectra by using gauge including atomic orbital (GIAO) method of studied compound were compared with experimental data obtained. Moreover, the thermodynamic properties were evaluated.


Asunto(s)
Compuestos de Anilina/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Teoría Cuántica , Espectrometría Raman , Espectroscopía de Resonancia Magnética con Carbono-13 , Electrones , Conformación Molecular , Espectroscopía de Protones por Resonancia Magnética , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Electricidad Estática , Termodinámica , Vibración
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 136 Pt B: 306-20, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25448934

RESUMEN

The spectroscopic (FT-IR, FT-Raman, (1)H and (13)C NMR, UV-Vis), structural, electronic and thermodynamical properties of 3-fluorophenylboronic acid (C6H4FB(OH)2), 3FPBA) were submitted by using both experimental techniques and theoretical methods (quantum chemical calculations) in this work. The experimental infrared and Raman spectra were obtained in the region 4000-400 cm(-1) and 3500-10 cm(-1), respectively. The equilibrium geometry and vibrational spectra were calculated by using DFT (B3LYP) with 6-311++G(d,p) basis set. The vibrational wavenumbers were also corrected with scale factor to take better results for the calculated data. The total energy distributions (TED) of the vibrational modes were performed for the assignments of the title molecule by using scaled quantum mechanics (SQM) method. The NMR chemical shifts ((1)H and (13)C) were recorded in DMSO solution. The (1)H and (13)C NMR spectra were computed by using the gauge-invariant atomic orbital (GIAO) method, showing a good agreement with the experimental ones. The last one UV-Vis absorption spectra were analyzed in two solvents (ethanol and water), saved in the range of 200-400 nm. In addition these, HOMO and LUMO energies, the excitation energies, density of states (DOS) diagrams, thermodynamical properties and molecular electrostatic potential surface (MEPs) were presented. Nonlinear optical (NLO) properties and thermodynamic features were performed. The experimental results are combined with the theoretical calculations using DFT calculations to fortification of the paper. At the end of this work, the results were proved our paper had been indispensable for the literature backing.


Asunto(s)
Ácidos Borónicos/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Teoría Cuántica , Espectrometría Raman , Espectroscopía de Resonancia Magnética con Carbono-13 , Dimerización , Electrones , Conformación Molecular , Dinámicas no Lineales , Fenómenos Ópticos , Espectroscopía de Protones por Resonancia Magnética , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Electricidad Estática , Termodinámica , Vibración
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 136 Pt C: 1205-15, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25448982

RESUMEN

Quantum chemical calculations of ground state energy, geometrical structure and vibrational wavenumbers, nuclear magnetic behaviors, electronic absorption spectra along with the nonlinear optical properties of 2-(2-benzothiazolylthio)-ethanol (BTZTE) were carried out using density functional (DFT/B3LYP) method with 6-311++G(d,p) as basis set. The FT-IR and FT-Raman spectra were measured in the condensed state. The fundamental vibrational wavenumbers as well as their intensities were calculated, and a good correlation between experimental and scaled calculated wavenumbers was accomplished. The electric dipole moment, polarizability and the first hyperpolarizability values of the BTZTE were calculated at the same level of theory and basis set. The results show that the BTZTE molecule possesses nonlinear optical (NLO) behavior with non-zero values. Stability of the molecule arising from hyper-conjugative interactions and charge delocalization was analyzed using natural bond orbital (NBO) analysis. UV spectrum of the studied molecule was recorded in the region 200-500nm and the electronic properties were predicted by time-dependent DFT approach. The calculated transition energies are in good concurrency with the experimental data. (1)H nuclear magnetic resonance (NMR) chemical shifts of the title molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. The thermodynamic properties of the studied compound at different temperatures were calculated. Global and local reactivity descriptors were computed to predict reactivity and reactive sites on the molecule.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 137: 1315-33, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25305625

RESUMEN

In this study, the Fourier Transform Infrared (FT-IR) and Fourier Transform Raman (FT-Raman) spectra of 5-bromo-2-ethoxyphenylboronic acid (5Br2EPBA) are recorded in the solid phase in the region 4000-400 cm(-1) and 3500-10 cm(-1), respectively. The (1)H, (13)C and DEPT nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The UV-Vis absorption spectrum of 5Br2EPBA is saved in the range of 200-400 nm in ethanol and water. The following theoretical calculations for monomeric and dimeric structures are supported by experimental results. The molecular geometry and vibrational frequencies in the ground state are calculated by using DFT methods with 6-31G(d,p) and 6-311G(d,p) basis sets. There are four conformers for the present molecule. The computational results diagnose the most stable conformer of 5Br2EPBA as Trans-Cis (TC) form. The complete assignments are performed on the basis of the total energy distribution (TED) of vibrational modes, calculated with scaled quantum mechanics (SQM) method in parallel quantum solutions (PQS) program. The (1)H and (13)C NMR chemical shifts of 5Br2EPBA molecule are calculated by using the Gauge Invariant Atomic Orbital (GIAO) method in DMSO and gas phase for monomer and dimer structures of the most stable conformer. Moreover, electronic properties, such as the HOMO and LUMO energies (by TD-DFT and CIS methods) and molecular electrostatic potential surface (MEPs) are investigated. Stability of the molecule arising from hyper-conjugative interactions, charge delocalization is analyzed using natural bond orbital (NBO) analysis. Nonlinear optical (NLO) properties and thermodynamic features are presented. All calculated results are compared with the experimental data of the title molecule. The correlation of theoretical and experimental results provides a detailed description of the structural and physicochemical properties of the title molecule.


Asunto(s)
Ácidos Borónicos/química , Reactivos de Enlaces Cruzados/química , Dimerización , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 124: 108-23, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24468983

RESUMEN

A comprehensive investigation on the molecular structure, electronic properties and vibrational spectra of the 3-(adamantan-1-yl)-4-ethyl-1H-1,2,4-triazole-5(4H)thione, a novel potential anti-inflammatory agent has been done with the hope that the results of present study may be helpful in the prediction of its mechanism of biological activity. The experimentally observed spectral data (FT-IR and FT-Raman) of the title compound was compared with the spectral data obtained by DFT/B3LYP method. The (1)H nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the Gauge Including Atomic Orbital method and compared with experimental results. The molecular properties like dipole moment, polarizability, first static hyperpolarizability, the molecular electrostatic potential surface, contour map have been calculated to get a better insight of the properties of the title molecule. Natural bond orbital (NBO) analysis has been applied to study stability of the molecule arising from charge delocalization. UV-Vis spectrum of the title compound was also recorded and the electronic properties, such as Frontier orbitals and band gap energies were calculated by TD-DFT approach. Global and local reactivity descriptors have been computed to predict reactivity and reactive sites on the molecule.


Asunto(s)
Adamantano/análogos & derivados , Antiinflamatorios/química , Modelos Moleculares , Teoría Cuántica , Triazoles/química , Adamantano/química , Dimerización , Electricidad , Electrones , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Conformación Molecular , Espectroscopía de Protones por Resonancia Magnética , Espectrofotometría Ultravioleta , Espectrometría Raman , Electricidad Estática , Termodinámica , Vibración
8.
Artículo en Inglés | MEDLINE | ID: mdl-23886506

RESUMEN

In this work, FT-IR, FT-Raman, UV and NMR spectra of 3-ethynylthiophene (3-ETP, C6H4S) were carried out by using density functional theory DFT/B3LYP method with the 6-311++G(d,p), 6-311+G(d,p), 6-311G(d,p), 6-31++G(d,p), 6-31+G(d,p), 6-31G(d,p) basis sets. FT-IR and FT-Raman spectra were recorded in the regions of 3500-400cm(-1) and 3500-50cm(-1), respectively. The geometrical parameters, energies and wavenumbers were obtained and the complete assignments of fundamental vibrations were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. The (1)H, (13)C and HMQC ((1)H-(13)C correlation) NMR spectra in chloroform (CDCl3) were recorded and calculated. The UV spectrum of investigated compound were recorded in the region of 200-400nm in ethanol solution. The electronic properties, such as excitation energies, absorption wavelengths, HOMO and LUMO energies were performed by DFT/B3LYP approach and the results were compared with experimental observations. The thermodynamic properties such zero-point vibrational energy, thermal energy, specific heat capacity, rotational constants, entropy, and dipole moment of the studied compound were calculated. As a result, the calculated results were compared with the observed data and found to be in good agreement.


Asunto(s)
Espectroscopía de Resonancia Magnética , Modelos Moleculares , Teoría Cuántica , Espectrometría Raman , Tiofenos/química , Entropía , Conformación Molecular , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA