Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(18): 27452-27464, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38512576

RESUMEN

Under the present investigation, the submerged plant Potamogeton pusillus has been tested for the removal of lead (Pb) and cadmium (Cd). P. pusillus removal efficiency and accumulation capacity were examined in separated Pb and Cd solutions, at 0.5, 1.0, and 2 mg L-1, and in solutions where both metals were present at the same concentration (0.5, 1.0, and 2 mg L-1), under laboratory conditions for 3, 7, and 10 days. Also, we examined the removal efficiency and accumulation capacity when a set of plants were exposed to 0.5 mg L-1 of Pb (or Cd) and increasing concentrations (0.5, 1, and 2 mg L-1) of Cd (or Pb) for 10 days. The effect of Cd and Pb was assessed by measuring changes in the chlorophylls, carotenoids, and malondialdehyde contents. Results showed that P. pusillus could accumulate Cd and Pb from individual solutions. Roots and leaves accumulated the highest amount of Cd and Pb followed by the stems. Some phytotoxic effects were observed, especially at individual Cd exposures, but these effects were not observed in the two-metal system. The removal and accumulation of Pb by P. pusillus were significantly enhanced in the presence of Cd under certain conditions, presenting a good alternative for the removal of these metals from polluted aquifers. To the extent of our knowledge, this is the first report on both enhanced phytoextraction of Pb in the presence of Cd and bioaccumulation of these heavy metals by P. pusillus.


Asunto(s)
Bioacumulación , Biodegradación Ambiental , Cadmio , Plomo , Potamogetonaceae , Cadmio/metabolismo , Plomo/metabolismo , Potamogetonaceae/metabolismo , Contaminantes Químicos del Agua/metabolismo
2.
Front Plant Sci ; 9: 1261, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233613

RESUMEN

The responses of native plants to competition with invasive plants depend mainly on the density of the invasive plants and on the ability of the native plants to compete for resources. In this study, we tested the influence of the invasive exotic Urochloa arrecta (Poaceae) on the early colonization of two native species (Pontederia cordata and Leersia hexandra) of aquatic macrophytes. Our hypotheses were (i) the competitive effects of U. arrecta on the native species P. cordata and L. hexandra are density-dependent and that (ii) these species respond differently to competitive interactions with the invasive species. We conducted the experiments in a greenhouse and in the field, in a tropical reservoir. The biomass of U. arrecta (ranging from 206.2 to 447.1 g) was manipulated in the greenhouse in trays with different densities. After the establishment of the invasive species, we added P. cordata and L. hexandra propagules to each tray. In the field, a propagule of P. cordata was planted in 36 sites with different densities of U. arrecta. The biomass and length of the natives and the biomass of the invasive species were measured in the greenhouse and in the field experiments. The biomass and length of the native plants decreased with increasing biomass of the exotic species in both experiments, showing that the competition between U. arrecta and native species depends on the density of the exotic species. The root:shoot ratio of L. hexandra decreased with increasing U. arrecta biomass, but the opposite occurred for P. cordata. These results indicate that native species exhibit different strategies of biomass allocation when interacting with U. arrecta. The strong competitive effects of U. arrecta and the different responses of the native species help to explain the reduced diversity of native macrophytes observed in sites colonized by U. arrecta. The results also suggest that in a scenario of dominance of exotic species, recolonization by native macrophytes is unlike to occur naturally and without human interventions that reduce the biomass of the exotic species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA