Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Neurotherapeutics ; 21(4): e00362, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38664194

RESUMEN

Genomic screened homeobox 1 (Gsx1 or Gsh1) is a neurogenic transcription factor required for the generation of excitatory and inhibitory interneurons during spinal cord development. In the adult, lentivirus (LV) mediated Gsx1 expression promotes neural regeneration and functional locomotor recovery in a mouse model of lateral hemisection spinal cord injury (SCI). The LV delivery method is clinically unsafe due to insertional mutations to the host DNA. In addition, the most common clinical case of SCI is contusion/compression. In this study, we identify that adeno-associated virus serotype 6 (AAV6) preferentially infects neural stem/progenitor cells (NSPCs) in the injured spinal cord. Using a rat model of contusion SCI, we demonstrate that AAV6 mediated Gsx1 expression promotes neurogenesis, increases the number of neuroblasts/immature neurons, restores excitatory/inhibitory neuron balance and serotonergic neuronal activity through the lesion core, and promotes locomotor functional recovery. Our findings support that AAV6 preferentially targets NSPCs for gene delivery and confirmed Gsx1 efficacy in clinically relevant rat model of contusion SCI.

2.
Stem Cells Transl Med ; 13(4): 387-398, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38321361

RESUMEN

The transplantation of spinal cord progenitor cells (SCPCs) derived from human-induced pluripotent stem cells (iPSCs) has beneficial effects in treating spinal cord injury (SCI). However, the presence of residual undifferentiated iPSCs among their differentiated progeny poses a high risk as these cells can develop teratomas or other types of tumors post-transplantation. Despite the need to remove these residual undifferentiated iPSCs, no specific surface markers can identify them for subsequent removal. By profiling the size of SCPCs after a 10-day differentiation process, we found that the large-sized group contains significantly more cells expressing pluripotent markers. In this study, we used a sized-based, label-free separation using an inertial microfluidic-based device to remove tumor-risk cells. The device can reduce the number of undifferentiated cells from an SCPC population with high throughput (ie, >3 million cells/minute) without affecting cell viability and functions. The sorted cells were verified with immunofluorescence staining, flow cytometry analysis, and colony culture assay. We demonstrated the capabilities of our technology to reduce the percentage of OCT4-positive cells. Our technology has great potential for the "downstream processing" of cell manufacturing workflow, ensuring better quality and safety of transplanted cells.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células-Madre Neurales , Traumatismos de la Médula Espinal , Humanos , Médula Espinal/patología , Diferenciación Celular/fisiología , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/patología
3.
Front Neurosci ; 17: 1149603, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456993

RESUMEN

Adult neural stem cells (NSCs) in the mouse subventricular zone (SVZ) serve as a lifelong reservoir for newborn olfactory bulb neurons. Recent studies have identified a slowly dividing subpopulation of embryonic neural stem-progenitor cells (NPCs) as the embryonic origin of adult NSCs. Yet, little is known about how these slowly dividing embryonic NPCs are maintained until adulthood while other NPCs are extinguished by the completion of brain development. The extracellular matrix (ECM) is an essential component of stem cell niches and thus a key determinant of stem cell fate. Here we investigated tissue inhibitors of metalloproteinases (TIMPs)-regulators of ECM remodeling-for their potential roles in the establishment of adult NSCs. We found that Timp2, Timp3, and Timp4 were expressed at high levels in slowly dividing NPCs compared to rapidly dividing NPCs. Deletion of TIMP3 reduced the number of adult NSCs and neuroblasts in the lateral SVZ. In addition, overexpression of TIMP3 in the embryonic NPCs suppressed neuronal differentiation and upregulated the expression levels of Notch signaling relating genes. These results thus suggest that TIMP3 keeps the undifferentiated state of embryonic NPCs, leading to the establishment and maintenance of adult NSCs.

4.
World J Stem Cells ; 15(4): 235-247, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37181007

RESUMEN

Different fates of neural stem/progenitor cells (NSPCs) and their progeny are determined by the gene regulatory network, where a chromatin-remodeling complex affects synergy with other regulators. Here, we review recent research progress indicating that the BRG1/BRM-associated factor (BAF) complex plays an important role in NSPCs during neural development and neural developmental disorders. Several studies based on animal models have shown that mutations in the BAF complex may cause abnormal neural differentiation, which can also lead to various diseases in humans. We discussed BAF complex subunits and their main characteristics in NSPCs. With advances in studies of human pluripotent stem cells and the feasibility of driving their differentiation into NSPCs, we can now investigate the role of the BAF complex in regulating the balance between self-renewal and differentiation of NSPCs. Considering recent progress in these research areas, we suggest that three approaches should be used in investigations in the near future. Sequencing of whole human exome and genome-wide association studies suggest that mutations in the subunits of the BAF complex are related to neurodevelopmental disorders. More insight into the mechanism of BAF complex regulation in NSPCs during neural cell fate decisions and neurodevelopment may help in exploiting new methods for clinical applications.

5.
Stem Cells ; 41(6): 603-616, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37029780

RESUMEN

Despite developing neurosurgical procedures, few treatment options have achieved functional recovery from traumatic brain injury (TBI). Neural stem/progenitor cells (NS/PCs) may produce a long-term effect on neurological recovery. Although induced pluripotent stem cells (iPSCs) can overcome ethical and practical issues of human embryonic or fetal-derived tissues in clinical applications, the tumorigenicity of iPSC-derived populations remains an obstacle to their safe use in regenerative medicine. We herein established a novel treatment strategy for TBI using iPSCs expressing the enzyme-prodrug gene yeast cytosine deaminase-uracil phosphoribosyl transferase (yCD-UPRT). NS/PCs derived from human iPSCs displayed stable and high transgene expression of yCD-UPRT following CRISPR/Cas9-mediated genome editing. In vivo bioluminescent imaging and histopathological analysis demonstrated that NS/PCs concentrated around the damaged cortex of the TBI mouse model. During the subacute phase, performances in both beam walking test and accelerating rotarod test were significantly improved in the treatment group transplanted with genome-edited iPSC-derived NS/PCs compared with the control group. The injury area visualized by extravasation of Evans blue was smaller in the treatment group compared with the control group, suggesting the prevention of secondary brain injury. During the chronic phase, cerebral atrophy and ventricle enlargement were significantly less evident in the treatment group. Furthermore, after 5-fluorocytosine (5-FC) administration, 5-fluorouracil converted from 5-FC selectively eliminated undifferentiated NS/PCs while preserving the adjacent neuronal structures. NS/PCs expressing yCD-UPRT can be applied for safe regenerative medicine without the concern for tumorigenesis.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Células Madre Pluripotentes Inducidas , Células-Madre Neurales , Fármacos Neuroprotectores , Ratones , Animales , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Fármacos Neuroprotectores/metabolismo , Células-Madre Neurales/metabolismo , Neuronas , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/terapia
6.
Front Neurosci ; 17: 1141913, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36960167

RESUMEN

The subcommissural organ (SCO) is a circumventricular organ highly conserved in vertebrates from Cyclostomata such as lamprey to mammals including human. The SCO locates in the boundary between the third ventricle and the entrance of the aqueduct of Sylvius. The SCO functions as a secretory organ producing a variety of proteins such as SCO-spondin, transthyretin, and basic fibroblast growth factor (FGF) into the cerebrospinal fluid (CSF). A significant contribution of the SCO has been thought to maintain the homeostasis of CSF dynamics. However, evidence has shown a possible role of SCO on neurogenesis in the adult brain. This review highlights specific features of the SCO related to adult neurogenesis, suggested by the progress of understanding SCO functions. We begin with a brief history of the SCO discovery and continue to structural features, gene expression, and a possible role in adult neurogenesis suggested by the SCO transplant experiment.

7.
MedComm (2020) ; 4(1): e214, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36776763

RESUMEN

As bilayer lipid membrane vesicles secreted by neural stem/progenitor cells (NSCs), NSC-derived extracellular vesicles (NSC-EVs) have attracted growing attention for their promising potential to serve as novel therapeutic agents in treatment of neurological diseases due to their unique physicochemical characteristics and biological functions. NSC-EVs exhibit advantages such as stable physical and chemical properties, low immunogenicity, and high penetration capacity to cross blood-brain barrier to avoid predicaments of the clinical applications of NSCs that include autoimmune responses, ethical/religious concerns, and the problematic logistics of acquiring fetal tissues. More importantly, NSC-EVs inherit excellent neuroprotective and neuroregenerative potential and immunomodulatory capabilities from parent cells, and display outstanding therapeutic effects on mitigating behavioral alterations and pathological phenotypes of patients or animals with neurological diseases. In this review, we first comprehensively summarize the progress in functional research and application of NSC-EVs in different neurological diseases, including neurodegenerative diseases, acute neurological diseases, dementia/cognitive dysfunction, and peripheral diseases. Next, we provide our thoughts on current limitations/concerns as well as tremendous potential of NSC-EVs in clinical applications. Last, we discuss future directions of further investigations on NSC-EVs and their probable applications in both basic and clinical research.

8.
Stem Cell Res Ther ; 14(1): 3, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36600321

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a common progressive neurodegenerative disease characterized by memory impairments, and there is no effective therapy. Neural stem/progenitor cell (NSPC) has emerged as potential novel therapy for AD, and we aim to explore whether neural stem/progenitor cell therapy was effective for rodent models of AD. METHODS: We searched PubMed, Embase, Cochrane Library and Web of Science up to December 6, 2022. The outcomes included cognitive function, pathological features and BDNF. The GetData Graph Digitizer software (version 2.26) was applied to extract numerical values, and RevMan 5.3 and Stata 16 were used to analyze data. The SYRCLE risk of bias tool was used to assess study quality. RESULTS: We evaluated 22 mice studies and 8 rat studies. Compared to control groups, cognitive function of NSPC groups of both mice studies (SMD = - 1.96, 95% CI - 2.47 to - 1.45, I2 = 75%, P < 0.00001) and rat studies (SMD = - 1.35, 95% CI - 2.11 to - 0.59, I2 = 77%, P = 0.0005) was apparently improved. In mice studies, NSPC group has lower Aß deposition (SMD = - 0.96, 95% CI - 1.40 to - 0.52, P < 0.0001) and p-tau level (SMD = - 4.94, 95% CI - 7.29 to - 2.95, P < 0.0001), higher synaptic density (SMD = 2.02, 95% CI 0.50-3.55, P = 0.009) and BDNF (SMD = 1.69, 95% CI 0.61-2.77, P = 0.002). Combined with nanoformulation (SMD = - 1.29, 95% CI - 2.26 to - 0.32, I2 = 65%, P = 0.009) and genetically modified (SMD = - 1.29, 95% CI - 1.92 to - 0.66, I2 = 60%, P < 0.0001) could improve the effect of NSPC. In addition, both xenogeneic and allogeneic transplant of NSPC could reverse the cognitive impairment of AD animal models. CONCLUSIONS: Our results suggested that NSPC therapy could improve the cognitive function and slow down the progression of AD. Due to the limitations of models, more animal trials and clinical trials are needed.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Ratones , Ratas , Animales , Enfermedad de Alzheimer/terapia , Roedores , Factor Neurotrófico Derivado del Encéfalo/genética , Células Madre
9.
N Am Spine Soc J ; 13: 100184, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36479183

RESUMEN

Spinal cord injury (SCI) has been considered to cause sudden, irreversible loss of function in patients. However, developments in stem cell biology and regenerative medicine are changing this conventional notion. Here we reviewed the overview of regenerative medicine of SCI. As a consequence of the establishment of human induced pluripotent stem cells (hiPSCs), hiPSC-based therapies for SCI, such as neural stem/progenitor cell (NS/PC) transplantation, have emerged as promising therapeutic modalities. Using several animal models, hiPSC-NS/PC transplantation into subacute injured spinal cords has been repeatedly demonstrated to improve locomotor function. Some biological mechanisms underlying this improvement have been proposed. In particular, combined with advanced neuroscience techniques such as designer receptors exclusively activated by designer drugs (DREADDs), neuronal relay theory, in which the transplanted cell-derived neurons reconstruct disrupted neuronal circuits, was proven to be involved histologically, pharmaceutically, electrophysiologically, and via in vivo bioimaging. Based on these findings, hiPSC-NS/PC transplantation for subacute SCI was moved ahead to a clinical study on human patients. At the same time, the search for effective treatments for chronic SCI is proceeding gradually, combining hiPSC-NS/PC transplantation with other treatment modalities such as rehabilitation, pharmaceutical interventions, or optimal scaffolds. In addition to NS/PCs, oligodendrocyte precursor cells (OPCs) are also a promising cell source for transplantation, as demyelinated axons affected by SCI can be repaired by OPCs. Therapies with OPCs derived from hiPSCs are still in preclinical studies but have shown favorable outcomes in animal models. In the future, several therapeutic options may be available according to the pathological conditions and the time period of SCI. Moreover, the application of regenerative therapy for the spinal cord could be broadened to degenerative disorders, such as spinal canal stenosis. Summary sentence: A historical review of human induced pluripotent stem cell (hiPSC) based cell transplantation therapy for spinal cord injury (SCI), in particular about footsteps of hiPSC-derived neural stem/progenitor cell transplantation, recent clinical study, and its future perspective.

10.
Front Cell Dev Biol ; 10: 903179, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721485

RESUMEN

Although previous studies have shown that an enriched environment (EE) promotes neurogenesis and alters DNA and histone modifications, it remains largely unknown whether an EE affects epitranscriptome in the context of neuronal development. Here, we showed that EE exposure enhanced the pool of adult neural stem/progenitor cells (aNSPCs) and promoted neuronal differentiation of aNSPCs. EE exposure also improved cognitive capabilities and altered the expression of genes relating to neuronal development, neurogenesis, and memory. N 6-Methyladenosine (m6A) immunoprecipitation combined with deep sequencing (MeRIP-seq) data analysis revealed that EE exposure increased the global level of m6A and led to differential m6A mRNA modification. Differential m6A modification-associated genes are involved in neuronal development, neurogenesis, and so on. Notably, EE exposure decreased the protein level of m6A eraser Fto, but did not affect the protein level of m6A writers METTL3 and METTL14. Taken together, our results suggest that enriched environment exposure induces differential m6A mRNA modification and adds a novel layer to the interaction between the environment and epigenetics in the context of postnatal neuronal development.

11.
Cytotechnology ; 74(3): 407-420, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35733698

RESUMEN

Microglia has been reported to be able to regulate the proliferation, differentiation and survival of adult neural stem/progenitor cells (NSPCs) by modulating the microenvironment, which results in different consequences of adult neurogenesis. However, whether the microglial activation is beneficial or harmful to NSPCs is still controversial because of the complexity and variability of microglial activation phenotypes. In this study, we systematically explored the activation phenotypes of IFN-γ- or IL-4-induced microglia at different time after stimulation, and investigated the effects of the secretome of different phenotype of microglia on the process of proliferation, differentiation and survival of NSPCs. Moreover, the possible molecular pathways of secretory influence on NSPCS were further explored using western blotting. The result showed that IFN-γ and IL-4 differently regulate microglial phenotypes, IL-4 induced a M2-like phenotype, while IFN-γ induced a M1-like phenotype. These phenotypes of microglia can only be maintained for 24 h after removal of IFN-γ or IL-4 intervention. The secretome from IFN-γ- or IL-4-induced microglia also had opposite effects on NSPCs proliferation, differentiation and survival. The secretome from the IL-4-treated microglia promoted NSPCs proliferation, survival and differentiation into neurons and oligodendrocytes, while factors secreted by the INF-γ-treated microglia stimulated the NSPCs differentiation into astrocyte, inhibited the neurogenesis and oligodendrogliogenesis, and induced NSPCs apoptosis. Furthermore, the PI3K-Akt pathway mediates the effects of the secretome from IFN-γ- or IL-4-induced microglia on NSPC proliferation, differentiation, and survival. In conclusion, our results suggested that the secretome of microglia induced by IL-4 of IFN-γ differently regulate proliferation, differentiation and survival of adult neural stem/progenitor cell by targeting the PI3K-Akt pathway. These findings will help further study the biological mechanism of microglia regulating neurogenesis, and provide a therapeutic strategy for neurological diseases by regulating microglial phenotypes to affect neurogenesis.

12.
ACS Biomater Sci Eng ; 8(4): 1644-1655, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35357124

RESUMEN

Hydrogel microspheres have drawn great attention as functional three-dimensional (3D) microcarriers for cell attachment and growth, which have shown great potential in cell-based therapies and biomedical research. Hydrogels derived from a decellularized extracellular matrix (dECM) retain the intrinsic physical and biological cues from the native tissues, which often exhibit high bioactivity and tissue-specificity in promoting tissue regeneration. Herein, a novel two-stage temperature-controlling microfluidic system was developed which enabled production of pristine dECM hydrogel microspheres in a high-throughput manner. Porcine decellularized peripheral nerve matrix (pDNM) was used as the model raw dECM material for continuous generation of pDNM microgels without additional supporting materials or chemical crosslinking. The sizes of the microspheres were well-controlled by tuning the feed ratios of water/oil phases into the microfluidic device. The resulting pDNM microspheres (pDNM-MSs) were relatively stable, which maintained a spherical shape and a nanofibrous ultrastructure for at least 14 days. Schwann cells and PC12 cells preseeded on the pDNM-MSs not only showed excellent viability and an adhesive property, but also promoted cell extension compared to the commercially available gelatin microspheres. Moreover, primary neural stem/progenitor cells attached well to the pDNM-MSs, which further facilitated their proliferation. The successfully fabricated dECM hydrogel microspheres provided a highly bioactive microenvironment for 3D cell culture and functionalization, which showed promising potential in versatile biomedical applications.


Asunto(s)
Hidrogeles , Andamios del Tejido , Animales , Matriz Extracelular Descelularizada , Matriz Extracelular/química , Hidrogeles/análisis , Hidrogeles/química , Microfluídica , Microesferas , Ratas , Porcinos , Temperatura , Andamios del Tejido/química
13.
ACS Nano ; 16(2): 1986-1998, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-34842412

RESUMEN

Aligned fibrous hydrogels capable of recruiting endogenous neural stem/progenitor cells (NSPCs) show great promise in spinal cord injury (SCI) repair. However, the hydrogels suffer from severe issues in close contact with the transected nerve stumps and harnessing the NSPC fate in the lesion microenvironment. Herein, we report aligned collagen-fibrin (Col-FB) fibrous hydrogels with stretchable property, adhesive behavior, and stromal cell-derived factor-1α (SDF1α)/paclitaxel (PTX) spatiotemporal delivery capability. The resultant Col-FB fibrous hydrogels exhibited 1.98 times longer elongation at break (230%), 2.55 times lower Young's modulus (17.93 ± 1.16 KPa), and 2.21 times greater adhesive strength (3.45 ± 0.48 KPa) than collagen (Col) fibrous hydrogels. The soft aligned fibrous hydrogels simulate the oriented microstructure and soft tissue feature of a natural spinal cord and provide elasticity and adhesivity to ensure a persistent close contact with host stumps. The repair of complete transection SCI in rats demonstrates that "middle-to-bilateral" SDF1α gradient release induced endogenous NSPC migration to the lesion site in 10 days, and SDF1α/PTX sequential release promoted neuronal differentiation of the recruited NSPCs over 8 weeks, leading to hind limb locomotion recovery. The presented strategy was proved to be efficient for harnessing endogenous NSPCs, which facilitate SCI repair significantly.


Asunto(s)
Células-Madre Neurales , Traumatismos de la Médula Espinal , Regeneración de la Medula Espinal , Adhesivos , Animales , Diferenciación Celular , Hidrogeles/farmacología , Ratas , Médula Espinal , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/terapia
14.
Cell Rep ; 37(8): 110019, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34818559

RESUMEN

In cell transplantation therapy for spinal cord injury (SCI), grafted human induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NS/PCs) mainly differentiate into neurons, forming synapses in a process similar to neurodevelopment. In the developing nervous system, the activity of immature neurons has an important role in constructing and maintaining new synapses. Thus, we investigate how enhancing the activity of transplanted hiPSC-NS/PCs affects both the transplanted cells themselves and the host tissue. We find that chemogenetic stimulation of hiPSC-derived neural cells enhances cell activity and neuron-to-neuron interactions in vitro. In a rodent model of SCI, consecutive and selective chemogenetic stimulation of transplanted hiPSC-NS/PCs also enhances the expression of synapse-related genes and proteins in surrounding host tissues and prevents atrophy of the injured spinal cord, thereby improving locomotor function. These findings provide a strategy for enhancing activity within the graft to improve the efficacy of cell transplantation therapy for SCI.


Asunto(s)
Células Madre Pluripotentes Inducidas/trasplante , Locomoción/fisiología , Traumatismos de la Médula Espinal/terapia , Animales , Diferenciación Celular/fisiología , Línea Celular , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Ratones , Ratones SCID , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Células-Madre Neurales/trasplante , Neuronas/metabolismo , Recuperación de la Función , Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Trasplante de Células Madre/métodos
15.
Exp Neurobiol ; 30(4): 275-284, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34483142

RESUMEN

Neurogenesis persists in restricted regions of the adult brain, including the subventricular zone (SVZ). Adult neural stem cells (NSCs) in the SVZ proliferate and give rise to new neurons and glial cells depending on intrinsic and environmental cues. Among the multiple factors that contribute to the chemical, physical, and mechanical components of the neurogenic niche, we focused on the composition of the extracellular matrix (ECM) of vasculature and fractones in the SVZ. The SVZ consists of ECM-rich blood vessels and fractones during development and adulthood, and adult neural stem/progenitor cells (NS/PCs) preferentially attach to the laminin-rich basal lamina. To examine the ECM preference of adult NS/PCs, we designed a competition assay using cell micropatterning. Although both laminin and collagen type IV, which are the main components of basal lamina, act as physical scaffolds, adult NS/PCs preferred to adhere to laminin over collagen type IV. Interestingly, the ECM preference of adult NS/PCs could be manipulated by chemokines such as stromal-derived factor 1 (SDF1) and α6 integrin. As SDF1 re-routes NSCs and their progenitors toward the injury site after brain damage, these results suggest that the alteration in ECM preferences may provide a molecular basis for contextdependent NS/PC positioning.

16.
Exp Neurol ; 345: 113826, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34343529

RESUMEN

Nkx6.1 plays an essential role during the embryonic development of the spinal cord. However, its role in the adult and injured spinal cord is not well understood. Here we show that lentivirus-mediated Nkx6.1 expression in the adult injured mouse spinal cord promotes cell proliferation and activation of endogenous neural stem/progenitor cells (NSPCs) at the acute phase of injury. In the chronic phase, Nkx6.1 increases the number of interneurons, reduces the number of reactive astrocytes, minimizes glial scar formation, and represses neuroinflammation. Transcriptomic analysis reveals that Nkx6.1 upregulates the sequential expression of genes involved in cell proliferation, neural differentiation, and Notch signaling pathway, downregulates genes and pathways involved in neuroinflammation, reactive astrocyte activation, and glial scar formation. Together, our findings support the potential role of Nkx6.1 in neural regeneration in the adult injured spinal cord.


Asunto(s)
Gliosis/metabolismo , Proteínas de Homeodominio/biosíntesis , Células-Madre Neurales/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Factores de Edad , Animales , Femenino , Gliosis/patología , Gliosis/prevención & control , Células HEK293 , Humanos , Locomoción/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias/prevención & control , Traumatismos de la Médula Espinal/patología
17.
J Appl Toxicol ; 41(12): 1998-2010, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33977565

RESUMEN

Cadmium (Cd) is a toxic heavy metal widely found in the environment. Cd is also a potential neurotoxicant, and its exposure is associated with impairment of cognitive function. However, the underlying mechanisms by which Cd induces neurotoxicity are unclear. In this study, we investigated the in vitro effect of Cd on primary murine neural stem/progenitor cells (mNS/PCs) isolated from the subventricular zone. Our results show that Cd exposure leads to mNS/PCs G1/S arrest, promotes cell apoptosis, and inhibits cell proliferation. In addition, Cd increases intracellular and mitochondrial reactive oxygen species (ROS) that activates mitochondrial oxidative stress, decreases ATP production, and increases mitochondrial proton leak and glycolysis rate in a dose-dependent manner. Furthermore, Cd exposure decreases phosphorylation of protein kinase B (AKT) and glycogen synthase kinase-3 beta (GSK3ß) in mNS/PCs. In addition, pretreatment mNS/PCs with MitoTEMPO, a mitochondrial-targeted antioxidant, improves mitochondrial morphology and functions and attenuates Cd-induced inhibition of mNS/PCs proliferation. It also effectively reverses Cd-induced changes of phosphorylation of AKT and the expression of ß-catenin and its downstream genes. Taken together, our data suggested that AKT/GSK3ß/ß-catenin signaling pathway is involved in Cd-induced mNS/PCs proliferation inhibition via MitoROS-dependent pattern.


Asunto(s)
Cadmio/toxicidad , Proliferación Celular/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Animales , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , beta Catenina/genética , beta Catenina/metabolismo
18.
Front Neurosci ; 15: 628983, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33716653

RESUMEN

Modulating endogenous regenerative processes may represent a suitable treatment for central nervous system (CNS) injuries, such as stroke or trauma. Neural stem/progenitor cells (NS/PCs), which naturally reside in the subventricular zone (SVZ) of the adult brain, proliferate and differentiate to other cell types, and therefore may compensate the negative consequences of ischemic injury. The fate of NS/PCs in the developing brain is largely influenced by Wingless/Integrated (Wnt) signaling; however, its role in the differentiation of adult NS/PCs under ischemic conditions is still enigmatic. In our previous study, we identified the Wnt/ß-catenin signaling pathway as a factor promoting neurogenesis at the expense of gliogenesis in neonatal mice. In this study, we used adult transgenic mice in order to assess the impact of the canonical Wnt pathway modulation (inhibition or hyper-activation) on NS/PCs derived from the SVZ, and combined it with the middle cerebral artery occlusion (MCAO) to disclose the effect of focal cerebral ischemia (FCI). Based on the electrophysiological properties of cultured cells, we first identified three cell types that represented in vitro differentiated NS/PCs - astrocytes, neuron-like cells, and precursor cells. Following FCI, we detected fewer neuron-like cells after Wnt signaling inhibition. Furthermore, the immunohistochemical analysis revealed an overall higher expression of cell-type-specific proteins after FCI, indicating increased proliferation and differentiation rates of NS/PCs in the SVZ. Remarkably, Wnt signaling hyper-activation increased the abundance of proliferating and neuron-like cells, while Wnt pathway inhibition had the opposite effect. Finally, the expression profiling at the single cell level revealed an increased proportion of neural stem cells and neuroblasts after FCI. These observations indicate that Wnt signaling enhances NS/PCs-based regeneration in the adult mouse brain following FCI, and supports neuronal differentiation in the SVZ.

19.
Stem Cells ; 39(7): 929-944, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33609411

RESUMEN

Lysosomes have recently been implicated in regulation of quiescence in adult neural stem cells (NSCs). Whether lysosomes regulate the differentiation of neural stem-progenitor cells (NPCs) in the embryonic brain has remained unknown, however. We here show that lysosomes are more abundant in rapidly dividing NPCs than in differentiating neurons in the embryonic mouse neocortex and ganglionic eminence. The genes for TFEB and TFE3, master regulators of lysosomal biosynthesis, as well as other lysosome-related genes were also expressed at higher levels in NPCs than in differentiating neurons. Anatomic analysis revealed accumulation of lysosomes at the apical and basal endfeet of NPCs. Knockdown of TFEB and TFE3, or that of the lysosomal transporter Slc15a4, resulted in premature differentiation of neocortical NPCs. Conversely, forced expression of an active form of TFEB (TFEB-AA) suppressed neuronal differentiation of NPCs in association with upregulation of NPC-related genes. These results together point to a previously unappreciated role for TFEB and TFE3, and possibly for lysosomes, in maintenance of the undifferentiated state of embryonic NPCs. We further found that lysosomes are even more abundant in an NPC subpopulation that rarely divides and includes the embryonic origin of adult NSCs than in the majority of NPCs that divide frequently for construction of the embryonic brain, and that overexpression of TFEB-AA also suppressed the cell cycle of neocortical NPCs. Our results thus also implicate lysosomes in establishment of the slowly dividing, embryonic origin of adult NSCs.


Asunto(s)
Neocórtex , Células-Madre Neurales , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Diferenciación Celular/fisiología , Lisosomas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ratones , Células-Madre Neurales/metabolismo
20.
Cell Biosci ; 11(1): 21, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33468253

RESUMEN

BACKGROUND: Previous studies demonstrated the dependence of cancer on nerve. Recently, a growing number of studies reveal that cancer cells share the property and regulatory network with neural stem/progenitor cells. However, relationship between the property of neural stemness and cell tumorigenicity is unknown. RESULTS: We show that neural stem/progenitor cells, but not non-neural embryonic or somatic stem/progenitor cell types, exhibit tumorigenicity and the potential for differentiation into tissue types of all germ layers when they are placed in non-native environment by transplantation into immunodeficient nude mice. Likewise, cancer cells capable of tumor initiation have the property of neural stemness because of their abilities in neurosphere formation in neural stem cell-specific serum-free medium and in differentiation potential, in addition to their neuronal differentiation potential that was characterized previously. Moreover, loss of a pro-differentiation factor in myoblasts, which have no tumorigenicity, lead to the loss of myoblast identity, and gain of the property of neural stemness, tumorigenicity and potential for re-differentiation. By contrast, loss of neural stemness via differentiation results in the loss of tumorigenicity. These suggest that the property of neural stemness contributes to cell tumorigenicity, and tumor phenotypic heterogeneity might be an effect of differentiation potential of neural stemness. Bioinformatic analysis reveals that neural genes in general are correlated with embryonic development and cancer, in addition to their role in neural development; whereas non-neural genes are not. Most of neural specific genes emerged in typical species representing transition from unicellularity to multicellularity during evolution. Genes in Monosiga brevicollis, a unicellular species that is a closest known relative of metazoans, are biased toward neural cells. CONCLUSIONS: We suggest that the property of neural stemness is the source of cell tumorigenicity. This is due to that neural biased unicellular state is the ground state for multicellularity and hence cell type diversification or differentiation during evolution, and tumorigenesis is a process of restoration of neural ground state in somatic cells along a default route that is pre-determined by an evolutionary advantage of neural state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...