Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Evol Bioinform Online ; 15: 1176934319889974, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31839702

RESUMEN

Scientific workflows can be understood as arrangements of managed activities executed by different processing entities. It is a regular Bioinformatics approach applying workflows to solve problems in Molecular Biology, notably those related to sequence analyses. Due to the nature of the raw data and the in silico environment of Molecular Biology experiments, apart from the research subject, 2 practical and closely related problems have been studied: reproducibility and computational environment. When aiming to enhance the reproducibility of Bioinformatics experiments, various aspects should be considered. The reproducibility requirements comprise the data provenance, which enables the acquisition of knowledge about the trajectory of data over a defined workflow, the settings of the programs, and the entire computational environment. Cloud computing is a booming alternative that can provide this computational environment, hiding technical details, and delivering a more affordable, accessible, and configurable on-demand environment for researchers. Considering this specific scenario, we proposed a solution to improve the reproducibility of Bioinformatics workflows in a cloud computing environment using both Infrastructure as a Service (IaaS) and Not only SQL (NoSQL) database systems. To meet the goal, we have built 3 typical Bioinformatics workflows and ran them on 1 private and 2 public clouds, using different types of NoSQL database systems to persist the provenance data according to the Provenance Data Model (PROV-DM). We present here the results and a guide for the deployment of a cloud environment for Bioinformatics exploring the characteristics of various NoSQL database systems to persist provenance data.

2.
Sensors (Basel) ; 17(5)2017 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-28448469

RESUMEN

The development of the Internet of Things (IoT) is closely related to a considerable increase in the number and variety of devices connected to the Internet. Sensors have become a regular component of our environment, as well as smart phones and other devices that continuously collect data about our lives even without our intervention. With such connected devices, a broad range of applications has been developed and deployed, including those dealing with massive volumes of data. In this paper, we introduce a Distributed Data Service (DDS) to collect and process data for IoT environments. One central goal of this DDS is to enable multiple and distinct IoT middleware systems to share common data services from a loosely-coupled provider. In this context, we propose a new specification of functionalities for a DDS and the conception of the corresponding techniques for collecting, filtering and storing data conveniently and efficiently in this environment. Another contribution is a data aggregation component that is proposed to support efficient real-time data querying. To validate its data collecting and querying functionalities and performance, the proposed DDS is evaluated in two case studies regarding a simulated smart home system, the first case devoted to evaluating data collection and aggregation when the DDS is interacting with the UIoT middleware, and the second aimed at comparing the DDS data collection with this same functionality implemented within the Kaa middleware.

3.
J Digit Imaging ; 29(6): 716-729, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27440183

RESUMEN

Lung cancer is the leading cause of cancer-related deaths in the world, and its main manifestation is pulmonary nodules. Detection and classification of pulmonary nodules are challenging tasks that must be done by qualified specialists, but image interpretation errors make those tasks difficult. In order to aid radiologists on those hard tasks, it is important to integrate the computer-based tools with the lesion detection, pathology diagnosis, and image interpretation processes. However, computer-aided diagnosis research faces the problem of not having enough shared medical reference data for the development, testing, and evaluation of computational methods for diagnosis. In order to minimize this problem, this paper presents a public nonrelational document-oriented cloud-based database of pulmonary nodules characterized by 3D texture attributes, identified by experienced radiologists and classified in nine different subjective characteristics by the same specialists. Our goal with the development of this database is to improve computer-aided lung cancer diagnosis and pulmonary nodule detection and classification research through the deployment of this database in a cloud Database as a Service framework. Pulmonary nodule data was provided by the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI), image descriptors were acquired by a volumetric texture analysis, and database schema was developed using a document-oriented Not only Structured Query Language (NoSQL) approach. The proposed database is now with 379 exams, 838 nodules, and 8237 images, 4029 of them are CT scans and 4208 manually segmented nodules, and it is allocated in a MongoDB instance on a cloud infrastructure.


Asunto(s)
Nube Computacional , Bases de Datos Factuales , Diagnóstico por Computador , Neoplasias Pulmonares/diagnóstico por imagen , Nódulo Pulmonar Solitario/diagnóstico por imagen , Humanos , Interpretación de Imagen Radiográfica Asistida por Computador , Reproducibilidad de los Resultados , Tomografía Computarizada por Rayos X
4.
F1000Res ; 5: 93, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-29026521

RESUMEN

Databases which store and manage long-term scientific information related to life science are used to store huge amounts of quantitative attributes. Introduction of a new entity attribute requires modification of the existing data tables and the programs that use these data tables. The solution is increasing the virtual data tables while the number of screens remains the same. The main objective of the present study was to introduce a logic called Joker Tao (JT) which provides universal data storage for cloud-based databases. It means all types of input data can be interpreted as an entity and attribute at the same time, in the same data table.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA