Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803567

RESUMEN

The effectiveness of somatic cell nuclear transfer (SCNT) in mammals seems to be still characterized by the disappointingly low rates of cloned embryos, fetuses, and progeny generated. These rates are measured in relation to the numbers of nuclear-transferred oocytes and can vary depending on the technique applied to the reconstruction of enucleated oocytes. The SCNT efficiency is also largely affected by the capability of donor nuclei to be epigenetically reprogrammed in a cytoplasm of reconstructed oocytes. The epigenetic reprogrammability of donor nuclei in SCNT-derived embryos appears to be biased, to a great extent, by the extranuclear (cytoplasmic) inheritance of mitochondrial DNA (mtDNA) fractions originating from donor cells. A high frequency of mtDNA heteroplasmy occurrence can lead to disturbances in the intergenomic crosstalk between mitochondrial and nuclear compartments during the early embryogenesis of SCNT-derived embryos. These disturbances can give rise to incorrect and incomplete epigenetic reprogramming of donor nuclei in mammalian cloned embryos. The dwindling reprogrammability of donor nuclei in the blastomeres of SCNT-derived embryos can also be impacted by impaired epigenetic rearrangements within terminal ends of donor cell-descended chromosomes (i.e., telomeres). Therefore, dysfunctions in epigenetic reprogramming of donor nuclei can contribute to the enhanced attrition of telomeres. This accelerates the processes of epigenomic aging and replicative senescence in the cells forming various tissues and organs of cloned fetuses and progeny. For all the above-mentioned reasons, the current paper aims to overview the state of the art in not only molecular mechanisms underlying intergenomic communication between nuclear and mtDNA molecules in cloned embryos but also intrinsic determinants affecting unfaithful epigenetic reprogrammability of telomeres. The latter is related to their abrasion within somatic cell-inherited chromosomes.


Asunto(s)
Cromosomas de los Mamíferos/genética , Epigénesis Genética , Herencia Extracromosómica/genética , Genoma Mitocondrial , Mamíferos/genética , Técnicas de Transferencia Nuclear , Telómero/genética , Animales
2.
BMC Plant Biol ; 20(1): 503, 2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33143645

RESUMEN

BACKGROUND: Cytoplasmic male sterility (CMS) is a widely used trait for hybrid seed production in many crops. Sugar beet CMS is associated with a unique mitochondrial protein named preSATP6 that forms a 250-kDa complex. Restorer-of-fertility 1 (Rf1) is a nuclear gene that suppresses CMS and is, hence, one of the targets of sugar beet breeding. Rf1 has dominant, semi-dominant and recessive alleles, suggesting that it may be a multi-allelic locus; however, the molecular basis for differences in genetic action is obscure. Molecular cloning of Rf1 revealed a gene (orf20) whose protein products produced in transgenics can bind with preSATP6 to generate a novel 200-kDa complex. The complex is also detected in fertility-restored anthers concomitant with a decrease in the amount of the 250-kDa complex. Molecular diversity of the Rf1 locus involves organizational diversity of a gene cluster composed of orf20-like genes (RF-Oma1s). We examined the possibility that members of the clustered RF-Oma1 in this locus could be associated with fertility restoration. RESULTS: Six yet uncharacterized RF-Oma1s from dominant and recessive alleles were examined to determine whether they could generate the 200-kDa complex. Analyses of transgenic calli revealed that three RF-Oma1s from a dominant allele could generate the 200-kDa complex, suggesting that clustered RF-Oma1s in the dominant allele can participate in fertility restoration. None of the three copies from two recessive alleles was 200-kDa generative. The absence of this ability was confirmed by analyzing mitochondrial complexes in anthers of plants having these recessive alleles. Together with our previous data, we designed a set of PCR primers specific to the 200-kDa generative RF-Oma1s. The amount of mRNA measured by this primer set inversely correlated with the amount of the 250-kDa complex in anthers and positively correlated with the strength of the Rf1 alleles. CONCLUSIONS: Fertility restoration by sugar beet Rf1 can involve multiple RF-Oma1s clustered in the locus, implying that stacking 200-kDa generative copies in the locus strengthens the efficacy, whereas the absence of 200-kDa generative copies in the locus makes the allele recessive irrespective of the copy number. We propose that sugar beet Rf1 is a complex locus.


Asunto(s)
Alelos , Beta vulgaris/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , Fertilidad/genética , Dosificación de Gen , Genes de Plantas/fisiología , Sitios Genéticos/genética , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente
3.
Genome Biol Evol ; 12(12): 2314-2327, 2020 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-32853350

RESUMEN

Cytoplasmic male sterility (MS) in plants is caused by MS-inducing mitochondria, which have emerged frequently during plant evolution. Nuclear restorer-of-fertility (Rf)genes can suppress their cognate MS-inducing mitochondria. Whereas many Rfs encode a class of RNA-binding protein, the sugar beet (Caryophyllales) Rf encodes a protein resembling Oma1, which is involved in the quality control of mitochondria. In this study, we investigated the molecular evolution of Oma1 homologs in plants. We analyzed 37 plant genomes and concluded that a single copy is the ancestral state in Caryophyllales. Among the sugar beet Oma1 homologs, the orthologous copy is located in a syntenic region that is preserved in Arabidopsis thaliana. The sugar beet Rf is a complex locus consisting of a small Oma1 homolog family (RF-Oma1 family) unique to sugar beet. The gene arrangement in the vicinity of the locus is seen in some but not all Caryophyllalean plants and is absent from Ar. thaliana. This suggests a segmental duplication rather than a whole-genome duplication as the mechanism of RF-Oma1 evolution. Of thirty-seven positively selected codons in RF-Oma1, twenty-six of these sites are located in predicted transmembrane helices. Phylogenetic network analysis indicated that homologous recombination among the RF-Oma1 members played an important role to generate protein activity related to suppression. Together, our data illustrate how an evolutionarily young Rf has emerged from a lineage-specific paralog. Interestingly, several evolutionary features are shared with the RNA-binding protein type Rfs. Hence, the evolution of the sugar beet Rf is representative of Rf evolution in general.


Asunto(s)
Beta vulgaris/genética , Evolución Molecular , Infertilidad Vegetal/genética , Genes Mitocondriales , Familia de Multigenes , Filogenia , Selección Genética
4.
Plants (Basel) ; 9(3)2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32182978

RESUMEN

Cytoplasmic male sterility (CMS) is a widely used trait for hybrid seed production. Although male sterility is caused by S cytoplasm (male-sterility inducing mitochondria), the action of S cytoplasm is suppressed by restorer-of-fertility (Rf), a nuclear gene. Hence, the genetics of Rf has attained particular interest among plant breeders. The genetic model posits Rf diversity in which an Rf specifically suppresses the cognate S cytoplasm. Molecular analysis of Rf loci in plants has identified various genes; however, pentatricopeptide repeat (PPR) protein (a specific type of RNA-binding protein) is so prominent as the Rf-gene product that Rfs have been categorized into two classes, PPR and non-PPR. In contrast, several shared features between PPR- and some non-PPR Rfs are apparent, suggesting the possibility of another grouping. Our present focus is to group Rfs by molecular genetic classes other than the presence of PPRs. We propose three categories that define partially overlapping groups of Rfs: association with post-transcriptional regulation of mitochondrial gene expression, resistance gene-like copy number variation at the locus, and lack of a direct link to S-orf (a mitochondrial ORF associated with CMS). These groups appear to reflect their own evolutionary background and their mechanism of conferring S cytoplasm specificity.

5.
R Soc Open Sci ; 6(11): 190853, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31827833

RESUMEN

Restorer-of-fertility (Rf) is a suppressor of cytoplasmic male sterility (CMS), a mitochondrion-encoded trait that has been reported in many plant species. The occurrence of CMS is considered to be independent in each lineage; hence, the question of how Rf evolved was raised. Sugar beet Rf resembles Oma1, a gene for quality control of the mitochondrial inner membrane. Oma1 homologues comprise a small gene family in the sugar beet genome, unlike Arabidopsis and other eukaryotes. The sugar beet sequence that best matched Arabidopsis atOma1 was named bvOma1; sugar beet Rf (RF1-Oma1) was another member. During anther development, atOma1 mRNA was detected from the tetrad to the microspore stages, whereas bvOma1 mRNA was detected at the microspore stage and RF1-Oma1 mRNA was detected during the meiosis and tetrad stages. A transgenic study revealed that, whereas RF1-Oma1 can bind to a CMS-specific protein and alter the higher-order structure of the CMS-specific protein complex, neither bvOma1 nor atOma1 show such activity. We favour the hypothesis that an ancestral Oma1 gene duplicated to form a small gene family, and that one of the copies evolved and acquired a novel expression pattern and protein function as an Rf, i.e. RF1-Oma1 evolved via neofunctionalization.

6.
EBioMedicine ; 36: 316-328, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30232024

RESUMEN

We hypothesized that changes in the mitochondrial DNA (mtDNA) would significantly influence whole body metabolism, adiposity and gene expression in response to diet. Because it is not feasible to directly test these predictions in humans we used Mitochondrial-Nuclear eXchange mice, which have reciprocally exchanged nuclear and mitochondrial genomes between different Mus musculus strains. Results demonstrate that nuclear-mitochondrial genetic background combination significantly alters metabolic efficiency and body composition. Comparative RNA sequencing analysis in adipose tissues also showed a clear influence of the mtDNA on regulating nuclear gene expression on the same nuclear background (up to a 10-fold change in the number of differentially expressed genes), revealing that neither Mendelian nor mitochondrial genetics unilaterally control gene expression. Additional analyses indicate that nuclear-mitochondrial genome combination modulates gene expression in a manner heretofore not described. These findings provide a new framework for understanding complex genetic disease susceptibility.


Asunto(s)
Adiposidad/genética , Metabolismo Energético/genética , Epistasis Genética , Regulación de la Expresión Génica , Genes Mitocondriales , Mitocondrias/genética , Mitocondrias/metabolismo , Tejido Adiposo/metabolismo , Animales , Biomarcadores , Composición Corporal , Femenino , Perfilación de la Expresión Génica , Antecedentes Genéticos , Genoma Mitocondrial , Masculino , Ratones , Transcriptoma
7.
G3 (Bethesda) ; 8(3): 953-965, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29330162

RESUMEN

Cucumber (Cucumis sativus L.) has a large, paternally transmitted mitochondrial genome. Cucumber plants regenerated from cell cultures occasionally show paternally transmitted mosaic (MSC) phenotypes, characterized by slower growth, chlorotic patterns on the leaves and fruit, lower fertility, and rearrangements in their mitochondrial DNAs (mtDNAs). MSC lines 3, 12, and 16 originated from different cell cultures all established using the highly inbred, wild-type line B. These MSC lines possess different rearrangements and under-represented regions in their mtDNAs. We completed RNA-seq on normalized and non-normalized cDNA libraries from MSC3, MSC12, and MSC16 to study their nuclear gene-expression profiles relative to inbred B. Results from both libraries indicated that gene expression in MSC12 and MSC16 were more similar to each other than MSC3. Forty-one differentially expressed genes (DEGs) were upregulated and one downregulated in the MSC lines relative to B. Gene functional classifications revealed that more than half of these DEGs are associated with stress-response pathways. Consistent with this observation, we detected elevated levels of hydrogen peroxide throughout leaf tissue in all MSC lines compared to wild-type line B. These results demonstrate that independently produced MSC lines with different mitochondrial polymorphisms show unique and shared nuclear responses. This study revealed genes associated with stress response that could become selection targets to develop cucumber cultivars with increased stress tolerance, and further support of cucumber as a model plant to study nuclear-mitochondrial interactions.


Asunto(s)
Cucumis sativus/genética , ADN Mitocondrial , Regulación de la Expresión Génica de las Plantas , Endogamia , Mosaicismo , Mutación , Transcriptoma , Núcleo Celular/genética , Núcleo Celular/metabolismo , Biología Computacional/métodos , Cucumis sativus/metabolismo , Perfilación de la Expresión Génica , Biblioteca de Genes , Genoma Mitocondrial , Secuenciación de Nucleótidos de Alto Rendimiento , Mitocondrias/genética , Mitocondrias/metabolismo , Anotación de Secuencia Molecular , Fenotipo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA