Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.586
Filtrar
1.
Methods Mol Biol ; 2848: 105-116, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39240519

RESUMEN

The generation of quality data from a single-nucleus profiling experiment requires nuclei to be isolated from tissues in a gentle and efficient manner. Nuclei isolation must be carefully optimized across tissue types to preserve nuclear architecture, prevent nucleic acid degradation, and remove unwanted contaminants. Here, we present an optimized workflow for generating a single-nucleus suspension from ocular tissues of the embryonic chicken that is compatible with various downstream workflows. The described protocol enables the rapid isolation of a high yield of aggregate-free nuclei from the embryonic chicken eye without compromising nucleic acid integrity, and the nuclei suspension is compatible with single-nucleus RNA and ATAC sequencing. We detail several stopping points, either via cryopreservation or fixation, to enhance workflow adaptability. Further, we provide a guide through multiple QC points and demonstrate proof-of-principle using two commercially available kits. Finally, we demonstrate that existing in silico genotyping methods can be adopted to computationally derive biological replicates from a single pool of chicken nuclei, greatly reducing the cost of biological replication and allowing researchers to consider sex as a variable during analysis. Together, this tutorial represents a cost-effective, simple, and effective approach to single-nucleus profiling of embryonic chicken eye tissues and is likely to be easily modified to be compatible with similar tissue types.


Asunto(s)
Núcleo Celular , Pollos , Análisis de la Célula Individual , Animales , Núcleo Celular/metabolismo , Núcleo Celular/genética , Embrión de Pollo , Análisis de la Célula Individual/métodos , Ojo/embriología , Ojo/metabolismo , Criopreservación/métodos , Secuenciación de Inmunoprecipitación de Cromatina/métodos
2.
Dev Cell ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39353435

RESUMEN

Reconstructing functional neuronal circuits is one major challenge of central nervous system repair. Through activation of pro-growth signaling pathways, some neurons achieve long-distance axon regrowth. Yet, functional reconnection has hardly been obtained, as these regenerating axons fail to resume their initial trajectory and reinnervate their proper target. Axon guidance is considered to be active only during development. Here, using the mouse visual system, we show that axon guidance is still active in the adult brain in regenerative conditions. We highlight that regenerating retinal ganglion cell axons avoid one of their primary targets, the suprachiasmatic nucleus (SCN), due to Slit/Robo repulsive signaling. Together with promoting regeneration, silencing Slit/Robo in vivo enables regenerating axons to enter the SCN and form active synapses. The newly formed circuit is associated with neuronal activation and functional recovery. Our results provide evidence that axon guidance mechanisms are required to reconnect regenerating axons to specific brain nuclei.

3.
Open Biol ; 14(10): 240110, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39353569

RESUMEN

The members of the evolutionary conserved actin-binding Ezrin, Radixin and Moesin (ERM) protein family are involved in numerous key cellular processes in the cytoplasm. In the last decades, ERM proteins, like actin and other cytoskeletal components, have also been shown to be functional components of the nucleus; however, the molecular mechanism behind their nuclear activities remained unclear. Therefore, our primary aim was to identify the nuclear protein interactome of the single Drosophila ERM protein, Moesin. We demonstrate that Moesin directly interacts with the Mediator complex through direct binding to its Med15 subunit, and the presence of Moesin at the regulatory regions of the Hsp70Ab heat shock gene was found to be Med15-dependent. Both Moesin and Med15 bind to heat shock factor (Hsf), and they are required for proper Hsp gene expression under physiological conditions. Moreover, we confirmed that Moesin, Med15 and Hsf are able to bind the monomeric form of actin and together they form a complex in the nucleus. These results elucidate a mechanism by which ERMs function within the nucleus. Finally, we present the direct interaction of the human orthologues of Drosophila Moesin and Med15, which highlights the evolutionary significance of our finding.


Asunto(s)
Núcleo Celular , Proteínas de Drosophila , Respuesta al Choque Térmico , Proteínas de Microfilamentos , Unión Proteica , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Núcleo Celular/metabolismo , Humanos , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Complejo Mediador/metabolismo , Complejo Mediador/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Actinas/metabolismo , Regulación de la Expresión Génica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de la Membrana
4.
Cell Rep ; 43(10): 114790, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39356636

RESUMEN

Spindle oscillation is a waxing-and-waning neural oscillation observed in the brain, initiated at the thalamic reticular nucleus (TRN) and typically occurring at 7-15 Hz. Experiments have shown that in the adult brain, electrical synapses, rather than chemical synapses, dominate between TRN neurons, suggesting that the traditional view of spindle generation via chemical synapses may need reconsideration. Based on known experimental data, we develop a computational model of the TRN network, where heterogeneous neurons are connected by electrical synapses. The model shows that the interplay between synchronizing electrical synapses and desynchronizing heterogeneity leads to multiple synchronized clusters with slightly different oscillation frequencies whose summed-up activity produces spindle oscillation as seen in local field potentials. Our results suggest that during spindle oscillation, the network operates at the critical state, which is known for facilitating efficient information processing. This study provides insights into the underlying mechanism of spindle oscillation and its functional significance.

5.
Parkinsonism Relat Disord ; 128: 107127, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39357432

RESUMEN

BACKGROUND: Heterozygous variants in the glucocerebrosidase (GBA1) gene are the most common genetic risk factor for Parkinson's Disease (PD). GBA1-PD patients exhibit earlier disease onset, severe motor impairment, and heightened cognitive decline. Deep Brain Stimulation (DBS) offers motor improvement for PD patients, but its cognitive effects, particularly in GBA1-PD, are debated. METHODS: This study involved 96 PD patients who underwent subthalamic nucleus DBS at Hospital de la Santa Creu i Sant Pau between 2004 and 2023. Clinical and neuropsychological assessments were conducted pre- and post-surgery, focusing on Mattis Dementia Rating Scale (MDRS) and Frontal Systems Behavior Scale (FrSBe). Patients were categorized into GBA1-PD and non-GBA1-PD groups, with non-GBA1-PD further divided into cognitive fast-progressors and slow-progressors. RESULTS: GBA1 variants were present in 13.5 % of patients. GBA1-PD patients showed greater cognitive decline over time, particularly in attention, conceptualization, and memory, compared to non-GBA1-PD. Non-GBA1-PD fast-progressors exhibited significant cognitive deterioration in initiation and conceptualization within the first year post-DBS. Motor outcomes improved similarly across all groups, but slow-progressors showed a greater reduction in Levodopa Equivalent Daily Dose (LEDD). CONCLUSIONS: GBA1-PD patients experience more rapid cognitive decline, particularly in posterior-cortical and fronto-striatal functions. Additionally, a subset of non-GBA1-PD patients shows significant early cognitive decline post-DBS, especially in executive functions. Baseline MDRS scores do not predict cognitive outcomes, highlighting the need for further research to refine prognostic tools. Despite cognitive challenges, GBA1-PD patients benefit from DBS in terms of motor outcomes, underscoring the importance of individualized assessments for DBS suitability, regardless of genetic status.

6.
Artículo en Inglés | MEDLINE | ID: mdl-39361723

RESUMEN

Biobanking of tissue from clinically obtained kidney biopsies for later use with multi-omic and imaging techniques is an inevitable step to overcome the need of disease model systems and towards translational medicine. Hence, collection protocols ensuring integration into daily clinical routines using preservation media not requiring liquid nitrogen but instantly preserving kidney tissue for clinical and scientific analyses are of paramount importance. Thus, we modified a robust single nucleus dissociation protocol for kidney tissue stored snap frozen or in the preservation media RNAlaterand CellCover. Using porcine kidney tissue as surrogate for human kidney tissue, we conducted single nucleus RNA sequencing with the Chromium 10X Genomics platform. The resulting data sets from each storage condition were analyzed to identify any potential variations in transcriptomic profiles. Furthermore, we assessed the suitability of the preservation media for additional analysis techniques (proteomics, metabolomics) and the preservation of tissue architecture for histopathological examination including immunofluorescence staining. In this study, we show that in daily clinical routines the RNAlater facilitates the collection of highly preserved human kidney biopsies and enables further analysis with cutting-edge techniques like single nucleus RNA sequencing, proteomics, and histopathological evaluation. Only metabolome analysis is currently restricted to snap frozen tissue. This work will contribute to build tissue biobanks with well-defined cohorts of the respective kidney disease that can be deeply molecularly characterized, opening new horizons for the identification of unique cells, pathways and biomarkers for the prevention, early identification, and targeted therapy of kidney diseases.

7.
Biomed Pharmacother ; 180: 117514, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39362067

RESUMEN

Alcohol use disorder (AUD) is the most prevalent substance use disorder but there is incomplete knowledge of the underlying molecular etiology. Here, we examined the cytosolic proteome from the nucleus accumbens core (NAcC) of ethanol drinking rhesus macaques to identify ethanol-sensitive signaling proteins. The targets were subsequently investigated using bioinformatics, genetic, and pharmacological manipulations in mouse models of ethanol drinking. Of the 1000+ cytosolic proteins identified in our screen, 50 proteins differed significantly between control and ethanol drinking macaques. Gene Ontology analysis of the differentially expressed proteins identified enrichment in pathways regulating metabolic processes and proteasome activity. Because the family of Glutathione S-transferases (GSTs) was enriched in these pathways, validation studies targeted GSTs using bioinformatics and genetically diverse mouse models. Gstp1 and Gstm2 were identified in Quantitative Trait Loci and published gene sets for ethanol-related phenotypes (e.g., ethanol preference, conditioned taste aversion, differential expression), and recombinant inbred strains that inherited the C57BL/6J allele at the Gstp2 interval consumed higher amounts of ethanol than those that inherited the DBA/2J allele. Genetic deletion of Gstp1/2 led to increased ethanol consumption without altering ethanol metabolism or sucrose preference. Administration of the pharmacologic activator of Gstp1/2, carnosic acid, decreased voluntary ethanol drinking. Proteomic analysis of the NAcC cytosolic of heavy drinking macaques that were validated in mouse models indicate a role for glutathione-mediated redox regulation in ethanol-related neurobiology and the potential of pharmacological interventions targeting this system to modify excessive ethanol drinking.

8.
Eur J Pharmacol ; : 177023, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362391

RESUMEN

Though µ and δ opioid receptors are reported to regulate energy homeostasis, any role for κ opioid receptors in these processes remains unclear. The present study investigated the role of κ opioid receptors in regulation of feeding behavior and plasma glucose levels using nalfurafine, a κ opioid receptor agonist used clinically. Systemic injection of nalfurafine increased food intake under non-fasted conditions, but not after food deprivation, and this effect was inhibited by the κ opioid receptor antagonist norbinaltorphimine. In contrast, nalfurafine did not affect plasma glucose levels. I.c.v. injection of nalfurafine increased food intake, whereas systemic injection of nalfurafine methiodide, which does not penetrate the blood brain barrier, was without effect. In addition, nalfurafine tended to increase preproorexin mRNA in the hypothalamus. However, neither the orexin OX1 receptor antagonist YNT-1310 nor the non-selective orexin receptor antagonist suvorexant inhibited the increase in food intake induced by nalfurafine. While nalfurafine injected into the lateral hypothalamus did not affect food intake, nalfurafine injected into the nucleus accumbens increased food intake, which was inhibited by norbinaltorphimine. Finally, we examined the effect of nalfurafine on anorexia induced by the anti-cancer agent 5-fluorouracil. Reduced food intake at 2 days following 5-fluorouracil administration was alleviated across the first 3 h following daily injection of nalfurafine, though daily food intake was not influenced. These results indicate that nalfurafine promotes feeding behavior through stimulation of κ opioid receptors in the nucleus accumbens and may be a candidate for reducing anorexia due to anti-cancer agents.

9.
Acta Biomater ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362450

RESUMEN

Discectomy is the surgical standard of care to relieve low back pain caused by intervertebral disc (IVD) herniation. However, there remains annulus fibrosus (AF) defect and nucleus pulposus (NP) degeneration, which often result in recurrent herniation (re-herniation). Herein, we develop a polyphenol-modified waterborne polyurethane bioadhesives (PPU-glues) to promote therapy prognosis after discectomy. Being composed of tannic acid (TA) mixed cationic waterborne polyurethane nanodispersions (TA/WPU+) and curcumin (Cur) embedded anionic waterborne polyurethane nanodispersions (Cur-WPU-), PPU-glue gels rapidly (<10 s) and exhibits low swelling ratios, tunable degradation rates and good biocompatibility. Due to the application of an adhesion strategy combing English ivy mechanism and particle packing theory, PPU-glue also shows considerable lap shear strength against wet porcine skin (≈58 kPa) and burst pressure (≈26 kPa). The mismatched particle sizes and the opposite charges of TA/WPU+ and Cur-WPU- in PPU-glue bring electrostatic interaction and enhance particle packing density. PPU-glue possesses superior reactive oxygen species (ROS)-scavenging capacity derived from polyphenols. PPU-glue can regulate extracellular matrix (ECM) metabolism in degenerated NP cells, and it can promote therapy biologically and mechanically in degenerated rat caudal discs. In summary, this study highlights the therapeutic approach that combines AF seal and NP augmentation, and PPU-glue holds great application potentials for post discectomy therapy. STATEMENT OF SIGNIFICANCE: Currently, there is no established method for the therapy of annulus fibrosus (AF) defect and nucleus pulposus (NP) degeneration after discectomy. Herein, we developed a polyphenol-modified biomimetic polyurethane bioadhesives (PPU-glue) with strong adhesive strength and superior bioactive property. The adhesion strategy that combined a particle packing theory and an English ivy mechanism was firstly applied to the intervertebral disc repair field, which benefited AF seal. The modified method of incorporating polyphenols was utilized to confer with ROS-scavenging capacity, ECM metabolism regulation ability and anti-inflammatory property, which promoted NP augmentation. Thus, PPU-glue attained the synergy effect for post discectomy therapy, and the design principle could be universally expanded to the bioadhesives for other surgical uses.

10.
Clin Orthop Surg ; 16(5): 827-835, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39364116

RESUMEN

Background: Degeneration of nucleus pulposus (NP) cells involves multiple factors. The relationship between the canonical Wnt/ß-catenin signaling pathway and matrix metalloproteinases (MMPs) is important in cellular senescence. Protein kinase C (PKC), an intermediate of the non-canonical Wnt pathway stimulated by phorbol myristate acetate (PMA), possibly prevents NP cell senescence, although not yet demonstrated in human-based studies. This study aimed to investigate the effect of PMA stimulation on the non-canonical and canonical Wnt pathways and MMP expression in human NP cells to ascertain its inhibitory effects on the senescence of NP cells. Methods: Human disc tissues of Pfirrmann grades 1 and 2 were collected from patients during spinal surgery and subsequently cultured. Protein and ribonucleic acid (RNA) were isolated from NP cells treated with PMA (400 nM) for 24 hours. Expression of MMP1, MMP13, tissue inhibitor of matrix metalloproteinase 1 (TIMP1), a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5), transient receptor potential vanilloid 4 (TRPV4), interleukin-6 (IL-6), and ß-catenin were detected using western blot analysis. Messenger RNA (mRNA) expression of type II collagen and glycosaminoglycan (GAG) were analyzed using reverse transcription polymerase chain reaction. IL-6 and prostaglandin E2 (PGE2) levels were measured using enzyme-linked immunosorbent assay. Results: Expression of PKC-δ (intermediate of the non-canonical Wnt pathway) and ß-catenin (intermediate of the canonical Wnt pathway) was increased by PMA treatment. The mRNA levels of type II collagen and GAG increased; however, their protein levels were not altered. PMA treatment increased the expression of MMP1, TIMP1, ADAMTS5, IL-6, PGE2, and TRPV4; however, the expression of MMP13 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) was unaltered. Conclusions: PMA activated PKC-δ, affecting the non-canonical Wnt pathway; however, its effect on ß-catenin in the canonical Wnt pathway was limited. ß-catenin activation through the TRPV4 channel led to increased expression of MMP1 and ADAMTS5 and that of IL-6 and PGE2 owing to NF-κB expression. Consequently, the degeneration of NP cells was not prevented.


Asunto(s)
Degeneración del Disco Intervertebral , Núcleo Pulposo , Proteína Quinasa C , Acetato de Tetradecanoilforbol , Humanos , Degeneración del Disco Intervertebral/metabolismo , Acetato de Tetradecanoilforbol/farmacología , Proteína Quinasa C/metabolismo , Núcleo Pulposo/metabolismo , Adulto , Persona de Mediana Edad , Femenino , Masculino , Vía de Señalización Wnt/efectos de los fármacos , Células Cultivadas , beta Catenina/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/genética , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Metaloproteinasas de la Matriz/metabolismo , Metaloproteinasas de la Matriz/genética , Interleucina-6/metabolismo , Proteína ADAMTS5/metabolismo , Proteína ADAMTS5/genética , Metaloproteinasa 13 de la Matriz/metabolismo , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 1 de la Matriz/genética
11.
Pediatr Obes ; : e13173, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289875

RESUMEN

BACKGROUND: Despite the growing epidemic of paediatric obesity, questions remain regarding potential neural mechanisms for individual risk. Delay discounting is a cognitive process of comparison of valuation between immediate and delayed reward, which has been inconsistently linked to weight status. Moreover, central to the brain's reward system is the nucleus accumbens, a region structurally and functionally altered in obesity. OBJECTIVES/METHODS: This study aimed to examine the relationships between two continuous metrics of weight status, performance on a monetary delay-discounting task and nucleus accumbens functional connectivity in 10-12-year-olds from the Adolescent Brain and Cognitive Development (ABCD) Study. RESULTS: Using multilevel longitudinal linear modelling, we found greater discounting was associated with higher BMI Z-scores (BMIz) and waist-to-height ratio Z-scores (WHtRz) (N = 3819). Moreover, we observed functional connectivity of the nucleus accumbens to the cingulo-opercular, dorsal attention, fronto-parietal, salience and ventral attention networks were predictive of BMIz (N = 1817). Nucleus accumbens functional connectivity was not found to mediate the association between delay-discounting behaviour and BMIz. CONCLUSIONS: Delay discounting and nucleus accumbens functional connectivity are independently related to weight status in a large sample of early adolescents. A better understanding of the relationship between reward and overeating behaviours may better inform obesity interventions.

12.
CNS Neurosci Ther ; 30(9): e70046, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39295107

RESUMEN

BACKGROUND: Drug addiction, characterized by compulsive drug use and high relapse rates, arises from complex interactions between reward and aversion systems in the brain. The paraventricular nucleus (PVN), located in the anterior hypothalamus, serves as a neuroendocrine center and is a key component of the hypothalamic-pituitary-adrenal axis. OBJECTIVE: This review aimed to explore how the PVN impacts reward and aversion in drug addiction through stress responses and emotional regulation and to evaluate the potential of PVN as a therapeutic target for drug addiction. METHODS: We review the current literature, focusing on three main neuron types in the PVN-corticotropin-releasing factor, oxytocin, and arginine vasopressin neurons-as well as other related neurons, to understand their roles in modulating addiction. RESULTS: Existing studies highlight the PVN as a key mediator in addiction, playing a dual role in reward and aversion systems. These findings are crucial for understanding addiction mechanisms and developing targeted therapies. CONCLUSION: The role of PVN in stress response and emotional regulation suggests its potential as a therapeutic target in drug addiction, offering new insights for addiction treatment.


Asunto(s)
Núcleo Hipotalámico Paraventricular , Recompensa , Trastornos Relacionados con Sustancias , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Humanos , Animales , Trastornos Relacionados con Sustancias/psicología , Trastornos Relacionados con Sustancias/metabolismo , Trastornos Relacionados con Sustancias/fisiopatología , Hormona Liberadora de Corticotropina/metabolismo , Conducta Adictiva/psicología , Estrés Psicológico/psicología , Estrés Psicológico/metabolismo , Reacción de Prevención/fisiología , Reacción de Prevención/efectos de los fármacos , Oxitocina/metabolismo
13.
J Cancer ; 15(17): 5636-5642, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39308680

RESUMEN

Actin, primarily a cytoplasmic cytoskeleton protein, is transported in and out of the nucleus with the help of actin-binding proteins (ABPs). Actin exists in two forms, i.e., monomeric globular (G-actin) and polymerized filamentous (F-actin). While G-actin promotes gene transcription by associating with RNA polymerases, F-actin can inhibit this effect in the nucleus. Unexpectedly, we found that lovastatin, an FDA-approved lipid-lowering drug, induces actin redistribution and its translocation into the nucleus in triple-negative breast cancer (TNBC) cancer stem cells. Lovastatin treatment also decreased levels of rRNAs and stemness markers, which are transcription products of RNA Pol I and Pol II, respectively. Bioinformatics analysis showed that actin genes were positively correlated with ABP genes involved in the translocation/polymerization and transcriptional regulation of nuclear actin in breast cancer. Similar correlations were found between actin genes and RNA Pol I genes and stemness-related genes. We propose a model to explain the roles of lovastatin in inducing nucleolar stress and inhibiting stemness in TNBC cancer stem cells. In our model, lovastatin induces translocation/accumulation of F-actin in the nucleus/nucleolus, which, in turn, induces nucleolar stress and stemness inhibition by suppressing the synthesis of rRNAs and decreasing the expression of stemness-related genes. Our model has opened up a new field of research on the roles of nuclear actin in cancer biology, offering potential therapeutic targets for the treatment of TNBC.

14.
Heliyon ; 10(18): e36583, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39309767

RESUMEN

The interaction between lamin A and the cytoplasmic skeleton plays a key role in maintaining nuclear mechanical properties. However, the effect of destruction of the cytoplasmic skeleton on the 3D submicroscopic structure of lamin A has not been elucidated. In this study, we developed an image quantization algorithm to quantify changes in the submicroscopic structure of the intact lamin A 3D network within the nucleus. We used blebbistatin or nocodazole to disrupt the fibrillar structure of F-actin or tubulin, respectively, and then quantified changes in the lamin A super-resolution network structure, the morphological and mechanical properties of the nucleus and the spatial distribution of chromosomes. Ultimately, we found for the first time that disruption of the cytoplasmic skeleton changes the lamin A submicroscopic network and nuclear structural characteristics. In summary, this study contributes to understanding the trans-nuclear membrane interaction characteristics of lamin A and the cytoplasmic skeleton.

15.
Zhen Ci Yan Jiu ; 49(8): 821-828, 2024 Aug 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-39318311

RESUMEN

OBJECTIVES: To observe the effects of electroacupuncture (EA) on the morphological changes of intervertebral disc tissues, apoptosis of nucleus pulposus cells, and the protein expression of Unc-51 like autophagy-activated kinase 1 (ULK1), homologous series of yeast Atg6 (Beclin1), and light chain protease complication 3 type (LC3) in nucleus pulposus tissue of cervical spondylosis rabbits, so as to explore the role of cellular autophagy in EA treatment of cervical spondylosis. METHODS: A total of 24 New Zealand white rabbits were randomly divided into blank, model and EA groups, with 8 rabbits in each group. In the EA group, both sides of the cervical (C)3-C6 "Jiaji" (EX-B2) were stimulated by EA (2 Hz/100 Hz, 1 mA) for 25 min, once daily for 5 days in a course, with a 2-day interval between courses, totaling 4 treatment courses. X-ray was used to assess cervical spine radiographic changes and evaluate radiographic scores;transmission electron microscopy was used to observe ultrastructural changes in nucleus pulposus cells;HE staining was used to observe morphological changes of intervertebral disc tissues and conduct pathological scoring;TUNEL staining was used to observe apoptosis rate of nucleus pulposus cells;Western blot was performed to detect protein expression levels of ULK1, Beclin1, and LC3 in nucleus pulposus tissue. RESULTS: Compared with the blank group, rabbits in the model group showed significantly higher cervical spine radiographic scores (P<0.01), higher pathological scores of intervertebral disc tissues (P<0.05), increased apoptosis rate of nucleus pulposus cells (P<0.01), and decreased expression levels of ULK1, Beclin1, and LC3Ⅱ proteins in nucleus pulposus tissue (P<0.05). Compared with the model group, the EA group showed significantly lower pathological scores of intervertebral discs (P<0.05), lower apoptosis rate of nucleus pulposus cells (P<0.01), and higher protein expression levels of ULK1, Beclin1, and LC3Ⅱ in nucleus pulposus tissue (P<0.01). Rabbits in the blank control group exhibited generally normal organelle structures in nucleus pulposus tissues with few autophagic vacuoles, indicative of early stages of autophagy;while those in the model group showed disrupted organelle structures with cytoplasmic condensation and those in the EA group exhibited autophagosomes with double-membrane structures in nucleus pulposus tissues. CONCLUSIONS: EA promotes the expression of ULK1, Beclin1, and LC3Ⅱ proteins in nucleus pulposus tissues, reduces apoptosis of nucleus pulposus cells, and improves intervertebral disc degeneration.


Asunto(s)
Puntos de Acupuntura , Autofagia , Electroacupuntura , Núcleo Pulposo , Espondilosis , Animales , Conejos , Núcleo Pulposo/metabolismo , Espondilosis/terapia , Espondilosis/metabolismo , Espondilosis/genética , Humanos , Masculino , Apoptosis , Beclina-1/metabolismo , Beclina-1/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Femenino , Vértebras Cervicales/metabolismo , Disco Intervertebral/metabolismo
16.
J Physiol ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320124
17.
Appetite ; 203: 107673, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39260700

RESUMEN

A growing literature suggests manipulating dietary protein status decreases sweet consumption in rodents and in humans. Underlying neurocircuit mechanisms have not yet been determined, but previous work points towards hedonic rather than homeostatic pathways. Here we hypothesized that a history of protein restriction reduces sucrose seeking by altering mesolimbic dopamine signaling in mice. We tested this hypothesis using established behavioral tests of palatability and conditioned reward, including the palatability contrast and conditioned place preference (CPP) tests. We used modern optical sensors for measuring real-time nucleus accumbens (NAc) dopamine dynamics during voluntary sucrose consumption, via fiber photometry, in male C57/Bl6J mice maintained on low-protein high-carbohydrate (LPHC) or control (CON) diet for ∼5 weeks. Our results showed that a history of protein restriction decreased the consumption of a sucrose 'dessert' in sated mice by ∼50% compared to controls [T-test, p < 0.05]. The dopamine release in NAc during sucrose consumption was reduced, also by ∼50%, in LPHC-fed mice compared to CON [T-test, p < 0.01]. Furthermore, LPHC-feeding blocked the sucrose-conditioned place preference we observed in CON-fed mice [paired T-test, p < 0.05], indicating reduced sucrose reward. This was accompanied by a 33% decrease in neuronal activation of the NAc core, as measured by c-Fos immunolabeling from brains collected directly after the CPP test [T-test, p < 0.05]. Together, these findings advance our mechanistic understanding of how dietary protein restriction decreases the consumption of sweets-by inhibiting the incentive salience of a sucrose reward, together with reduced sucrose-evoked dopamine release in NAc.

18.
Poult Sci ; 103(12): 104259, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39278114

RESUMEN

The black-bone chicken, known for its high melanin content, holds significant economic value due to this unique trait. Particularly notable is the prominent melanin deposition observed in its breast muscle. However, the molecular mechanisms governing melanin synthesis and deposition in the breast muscle of black-bone chickens remain largely unknown. This study employed a single-nucleus transcriptome assay to identify genes associated with melanin deposition in the breast muscle of black-bone chickens, which are presumed to influence pigmentation levels. A comprehensive analysis of the nuclear transcriptome was conducted on the breast muscle of Xuefeng black-bone chickens, encompassing 18 distinct cell types, including melanocytes. Our findings revealed that STIMATE, LRRC7, ENSGALG00000049990, and GLDC play pivotal regulatory roles in melanin deposition within the breast muscle. Further exploration into the molecular mechanisms unveiled transcription factors and protein interactions suggesting that RARB, KLF15, and PRDM4 may be crucial regulators of melanin accumulation in the breast muscle. Additionally, HPGDS, GSTO1, and CYP1B1 may modulate melanin production and deposition in the breast muscle by influencing melanocyte metabolism. Our findings also suggest that melanocyte function in the breast muscle may be intertwined with intercellular signaling pathways such as PTPRK-WNT5A, NOTCH1-JAG1, IGF1R-IGF1, IDE-GCG, and ROR2-WNT5A. Leveraging advanced snRNA-seq technology, we generated a comprehensive single-cell nuclear transcriptome atlas of the breast muscle of Xuefeng black-bone chickens. This facilitated the identification of candidate genes, regulatory factors, and cellular signals potentially influencing melanin deposition and melanocyte function. Overall, our study provides crucial insights into the molecular basis of melanin deposition in chicken breast muscle, laying the groundwork for future breeding programs aimed at enhancing black-bone chicken cultivation.

19.
Mol Med Rep ; 30(5)2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39301642

RESUMEN

Following the publication of this paper, it was drawn to the Editors' attention by a concerned reader that certain of the Transwell invasion assay data shown in Figs. 2E, 3E, 4E and 5E, and the Transwell migration assay data shown in Fig. 2D, were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes that had either already been published elsewhere prior to the submission of this paper to Molecular Medicine Reports, or were under consideration for publication at around the same time (some of which have already been retracted). Moreover, data were also found to be duplicated comparing the data panels in Figs. 3D and 4D, such that data which were intended to have shown the results from differently performed experiments had been derived from the same original source. In view of the fact that certain of the abovementioned data had already apparently been published previously, the Editor of Molecular Medicine Reports has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 22: 4163­4172, 2020; DOI: 10.3892/mmr.2020.11498].

20.
Front Bioeng Biotechnol ; 12: 1428189, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39323762

RESUMEN

Gait disturbance is a common and severe symptom of Parkinson's disease that severely impairs quality of life. Current treatments provide only partial benefits with wide variability in outcomes. Also, deep brain stimulation of the subthalamic nucleus (STN-DBS), a mainstay treatment for bradykinetic-rigid symptoms and parkinsonian tremor, is poorly effective on gait. We applied a novel DBS paradigm, adjusting the current amplitude linearly with respect to subthalamic beta power (adaptive DBS), in one parkinsonian patient with gait impairment and chronically stimulated with conventional DBS. We studied the kinematics of gait and gait initiation (anticipatory postural adjustments) as well as subthalamic beta oscillations with both conventional and adaptive DBS. With adaptive DBS, the patient showed a consistent and long-lasting improvement in walking while retaining benefits on other disease-related symptoms. We suggest that adaptive DBS can benefit gait in Parkinson's disease possibly by avoiding overstimulation and dysfunctional entrainment of the supraspinal locomotor network.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA