Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 382(2274): 20230101, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38826047

RESUMEN

Optical projection tomography (OPT) is a three-dimensional mesoscopic imaging modality that can use absorption or fluorescence contrast, and is widely applied to fixed and live samples in the mm-cm scale. For fluorescence OPT, we present OPT implemented for accessibility and low cost, an open-source research-grade implementation of modular OPT hardware and software that has been designed to be widely accessible by using low-cost components, including light-emitting diode (LED) excitation and cooled complementary metal-oxide-semiconductor (CMOS) cameras. Both the hardware and software are modular and flexible in their implementation, enabling rapid switching between sample size scales and supporting compressive sensing to reconstruct images from undersampled sparse OPT data, e.g. to facilitate rapid imaging with low photobleaching/phototoxicity. We also explore a simple implementation of focal scanning OPT to achieve higher resolution, which entails the use of a fan-beam geometry reconstruction method to account for variation in magnification. This article is part of the Theo Murphy meeting issue 'Open, reproducible hardware for microscopy'.

2.
Sensors (Basel) ; 23(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38139660

RESUMEN

The practical, rapid, and accurate optical 3D reconstruction of transparent objects with contemporary non-contact optical techniques, has been an open challenge in the field of optical metrology. The combination of refraction, reflection, and transmission in transparent objects makes it very hard to use common off-the-shelf 3D reconstruction solutions to accurately reconstruct transparent objects in three dimensions without completely coating the object with an opaque material. We demonstrate in this work that a specific class of transparent objects can indeed be reconstructed without the use of opaque spray coatings, via Optical Projection Tomography (OPT). Particularly, the 3D reconstruction of large thin-walled hollow transparent objects can be achieved via OPT, without the use of refractive-index-matching liquid, accurately enough for use in both cultural heritage and beverage packaging industry applications. We compare 3D reconstructions of our proposed OPT method to those achieved by an industrial-grade 3D scanner and report average shape differences of ±0.34 mm for 'shelled' hollow objects and ±0.92 mm for 'non-shelled' hollow objects. A disadvantage of using OPT, which was noticed on the thicker 'non-shelled' hollow objects, as opposed to the 'shelled' hollow objects, was that it induced partial filling of hollow areas and the deformation of embossed features.

3.
Cells ; 12(19)2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37830581

RESUMEN

Induced pluripotent stem cell (iPSC) technology enables differentiation of human hepatocytes or hepatocyte-like cells (iPSC-HLCs). Advances in 3D culturing platforms enable the development of more in vivo-like liver models that recapitulate the complex liver architecture and functionality better than traditional 2D monocultures. Moreover, within the liver, non-parenchymal cells (NPCs) are critically involved in the regulation and maintenance of hepatocyte metabolic function. Thus, models combining 3D culture and co-culturing of various cell types potentially create more functional in vitro liver models than 2D monocultures. Here, we report the establishment of 3D cultures of iPSC-HLCs alone and in co-culture with human umbilical vein endothelial cells (HUVECs) and adipose tissue-derived mesenchymal stem/stromal cells (hASCs). The 3D cultures were performed as spheroids or on microfluidic chips utilizing various biomaterials. Our results show that both 3D spheroid and on-chip culture enhance the expression of mature liver marker genes and proteins compared to 2D. Among the spheroid models, we saw the best functionality in iPSC-HLC monoculture spheroids. On the contrary, in the chip system, the multilineage model outperformed the monoculture chip model. Additionally, the optical projection tomography (OPT) and electrical impedance tomography (EIT) system revealed changes in spheroid size and electrical conductivity during spheroid culture, suggesting changes in cell-cell connections. Altogether, the present study demonstrates that iPSC-HLCs can successfully be cultured in 3D as spheroids and on microfluidic chips, and co-culturing iPSC-HLCs with NPCs enhances their functionality. These 3D in vitro liver systems are promising human-derived platforms usable in various liver-related studies, specifically when using patient-specific iPSCs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Endoteliales , Hepatocitos/metabolismo , Hígado , Técnicas de Cultivo de Célula/métodos
4.
Front Neurosci ; 17: 1189615, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397462

RESUMEN

Traumatic brain injury (TBI) is caused by a wide range of physical events and can induce an even larger spectrum of short- to long-term pathophysiologies. Neuroscientists have relied on animal models to understand the relationship between mechanical damages and functional alterations of neural cells. These in vivo and animal-based in vitro models represent important approaches to mimic traumas on whole brains or organized brain structures but are not fully representative of pathologies occurring after traumas on human brain parenchyma. To overcome these limitations and to establish a more accurate and comprehensive model of human TBI, we engineered an in vitro platform to induce injuries via the controlled projection of a small drop of liquid onto a 3D neural tissue engineered from human iPS cells. With this platform, biological mechanisms involved in neural cellular injury are recorded through electrophysiology measurements, quantification of biomarkers released, and two imaging methods [confocal laser scanning microscope (CLSM) and optical projection tomography (OPT)]. The results showed drastic changes in tissue electrophysiological activities and significant releases of glial and neuronal biomarkers. Tissue imaging allowed us to reconstruct the injured area spatially in 3D after staining it with specific nuclear dyes and to determine TBI resulting in cell death. In future experiments, we seek to monitor the effects of TBI-induced injuries over a prolonged time and at a higher temporal resolution to better understand the subtleties of the biomarker release kinetics and the cell recovery phases.

5.
Methods Mol Biol ; 2592: 1-19, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36507982

RESUMEN

The rodent pancreas is the prevalent model system for preclinical diabetes research. However, due to the compound endocrine-exocrine organization of the gland, with the endocrine islets of Langerhans scattered by the thousands throughout the much greater exocrine parenchyma, stereological assessments of endocrine cell mass, commonly insulin-producing ß-cells, are exceedingly challenging. In recent years, optical mesoscopic imaging techniques such as optical projection tomography (OPT) and light sheet fluorescence microscopy (LSFM) have seen dramatic developments, enabling 3D visualization of fluorescently labeled cells in mm- to cm-sized tissues with µm resolution. Here we present a protocol for 3D visualization and "absolute" quantitative assessments of, for example, islet mass throughout the volume of rodent pancreata with maintained spatial context.


Asunto(s)
Islotes Pancreáticos , Tomografía Óptica , Animales , Roedores , Tomografía Óptica/métodos , Páncreas/diagnóstico por imagen , Microscopía Fluorescente , Imagen Molecular , Islotes Pancreáticos/diagnóstico por imagen , Imagenología Tridimensional/métodos
6.
Elife ; 112022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36377467

RESUMEN

The acquisition of movable jaws was a major event during vertebrate evolution. The role of NK3 homeobox 2 (Nkx3.2) transcription factor in patterning the primary jaw joint of gnathostomes (jawed vertebrates) is well known, however knowledge about its regulatory mechanism is lacking. In this study, we report a proximal enhancer element of Nkx3.2 that is deeply conserved in most gnathostomes but undetectable in the jawless hagfish and lamprey. This enhancer is active in the developing jaw joint region of the zebrafish Danio rerio, and was thus designated as jaw joint regulatory sequence 1 (JRS1). We further show that JRS1 enhancer sequences from a range of gnathostome species, including a chondrichthyan and mammals, have the same activity in the jaw joint as the native zebrafish enhancer, indicating a high degree of functional conservation despite the divergence of cartilaginous and bony fish lineages or the transition of the primary jaw joint into the middle ear of mammals. Finally, we show that deletion of JRS1 from the zebrafish genome using CRISPR/Cas9 results in a significant reduction of early gene expression of nkx3.2 and leads to a transient jaw joint deformation and partial fusion. Emergence of this Nkx3.2 enhancer in early gnathostomes may have contributed to the origin and shaping of the articulating surfaces of vertebrate jaws.


Asunto(s)
Pez Cebra , Animales , Evolución Biológica , Genoma , Maxilares , Lampreas , Mamíferos/genética , Secuencias Reguladoras de Ácidos Nucleicos , Pez Cebra/genética , Regulación del Desarrollo de la Expresión Génica/genética , Eliminación de Gen , Vertebrados/genética , Vertebrados/crecimiento & desarrollo
7.
Plants (Basel) ; 11(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35567165

RESUMEN

Plant-parasitic nematodes are a significant cause of yield losses and food security issues. Specifically, nematodes of the genus Meloidogyne can cause significant production losses in horticultural crops around the world. Understanding the mechanisms of the ever-changing physiology of plant roots by imaging the galls induced by nematodes could provide a great insight into their control. However, infected roots are unsuitable for light microscopy investigation due to the opacity of plant tissues. Thus, samples must be cleared to visualize the interior of whole plants in order to make them transparent using clearing agents. This work aims to identify which clearing protocol and microscopy system is the most appropriate to obtain 3D images of tomato cv. Durinta and eggplant cv. Cristal samples infected with Meloidogyne incognita to visualize and study the root-nematode interaction. To that extent, two clearing solutions (BABB and ECi), combined with three different dehydration solvents (ethanol, methanol and 1-propanol), are tested. In addition, the advantages and disadvantages of alternative imaging techniques to confocal microscopy are analyzed by employing an experimental custom-made setup that combines two microscopic techniques, light sheet fluorescence microscopy and optical projection tomography, on a single instrument.

8.
J Microsc ; 286(3): 201-219, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35460574

RESUMEN

Optical mesoscale imaging is a rapidly developing field that allows the visualisation of larger samples than is possible with standard light microscopy, and fills a gap between cell and organism resolution. It spans from advanced fluorescence imaging of micrometric cell clusters to centimetre-size complete organisms. However, with larger volume specimens, new problems arise. Imaging deeper into tissues at high resolution poses challenges ranging from optical distortions to shadowing from opaque structures. This manuscript discusses the latest developments in mesoscale imaging and highlights limitations, namely labelling, clearing, absorption, scattering, and also sample handling. We then focus on approaches that seek to turn mesoscale imaging into a more quantitative technique, analogous to quantitative tomography in medical imaging, highlighting a future role for digital and physical phantoms as well as artificial intelligence.


This review discusses the state of the art of an emerging field called mesoscale imaging. Mesoscale imaging refers to the trend towards imaging ever-larger samples that exceed the classic microscopy domain and is also referred to as 'mesoscopic imaging'. In optical imaging, this refers to objects between the microscopic and macroscopic scale that are imaged with subcellular resolution; in practice, this implies the imaging of objects from millimetre up to cm size with µm or nm resolution. As such, the mesoscopy field spans the boundary between classic 'biological' imaging and preclinical 'biomedical' imaging, typically utilising lower magnification objective lenses with a bigger field of view. We discuss the types of samples currently imaged with examples, and highlight how this type of imaging fills the gap between microscopic and macroscopic imaging, allowing further insight into the organisation of tissues in an organism. We also discuss the challenges of imaging such large samples, from sample handling to labelling and optical phenomena that stand in the way of quantitative imaging. Finally, we put the current state of the art into context within the neighbouring fields and outline future developments, such as the use of 'phantom' test samples and artificial intelligence for image analysis that will underpin the quality of mesoscale imaging.


Asunto(s)
Inteligencia Artificial , Imagenología Tridimensional , Imagenología Tridimensional/métodos , Microscopía/métodos , Imagen Óptica/métodos , Tomografía/métodos
9.
Phys Med Biol ; 66(20)2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34587596

RESUMEN

OBJECTIVE: Imaging of tissue engineered three-dimensional (3D) specimens is challenging due to their thickness. We propose a novel multimodal imaging technique to obtain multi-physical 3D images and the electrical conductivity spectrum of tissue engineered specimensin vitro. APPROACH: We combine simultaneous recording of rotational multifrequency electrical impedance tomography (R-mfEIT) with optical projection tomography (OPT). Structural details of the specimen provided by OPT are used here as geometrical priors for R-mfEIT. MAIN RESULTS: This data fusion enables accurate retrieval of the conductivity spectrum of the specimen. We demonstrate experimentally the feasibility of the proposed technique using a potato phantom, adipose and liver tissues, and stem cells in biomaterial spheroids. The results indicate that the proposed technique can distinguish between viable and dead tissues and detect the presence of stem cells. SIGNIFICANCE: This technique is expected to become a valuable tool for monitoring tissue engineered specimens' growth and viabilityin vitro.


Asunto(s)
Tomografía Óptica , Tomografía , Algoritmos , Conductividad Eléctrica , Impedancia Eléctrica , Fantasmas de Imagen , Tomografía/métodos , Tomografía Computarizada por Rayos X
10.
Front Endocrinol (Lausanne) ; 12: 633063, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746904

RESUMEN

The exocrine-endocrine multipart organization of the pancreas makes it an exceedingly challenging organ to analyze, quantitatively and spatially. Both in rodents and humans, estimates of the pancreatic cellular composition, including beta-cell mass, has been largely relying on the extrapolation of 2D stereological data originating from limited sample volumes. Alternatively, they have been obtained by low resolution non-invasive imaging techniques providing little detail regarding the anatomical organization of the pancreas and its cellular and/or molecular make up. In this mini-review, the state of the art and the future potential of currently existing and emerging high-resolution optical imaging techniques working in the mm-cm range with µm resolution, here referred to as mesoscopic imaging approaches, will be discussed regarding their contribution toward a better understanding of pancreatic anatomy both in normal conditions and in the diabetic setting. In particular, optical projection tomography (OPT) and light sheet fluorescence microscopy (LSFM) imaging of the pancreas and their associated tissue processing and computational analysis protocols will be discussed in the light of their current capabilities and future potential to obtain more detailed 3D-spatial, quantitative, and molecular information of the pancreas.


Asunto(s)
Microscopía Fluorescente/métodos , Imagen Óptica/métodos , Páncreas/diagnóstico por imagen , Tomografía Óptica/métodos , Humanos , Imagenología Tridimensional/métodos
11.
J Pathol ; 254(1): 31-45, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33527355

RESUMEN

Maturity-onset diabetes of the young type 5 (MODY5) is due to heterozygous mutations or deletion of HNF1B. No mouse models are currently available to recapitulate the human MODY5 disease. Here, we investigate the pancreatic phenotype of a unique MODY5 mouse model generated by heterozygous insertion of a human HNF1B splicing mutation at the intron-2 splice donor site in the mouse genome. This Hnf1bsp2/+ model generated with targeted mutation of Hnf1b mimicking the c.544+1G>T (T) mutation identified in humans, results in alternative transcripts and a 38% decrease of native Hnf1b transcript levels. As a clinical feature of MODY5 patients, the hypomorphic mouse model Hnf1bsp2/+ displays glucose intolerance. Whereas Hnf1bsp2/+ isolated islets showed no altered insulin secretion, we found a 65% decrease in pancreatic insulin content associated with a 30% decrease in total large islet volume and a 20% decrease in total ß-cell volume. These defects were associated with a 30% decrease in expression of the pro-endocrine gene Neurog3 that we previously identified as a direct target of Hnf1b, showing a developmental etiology. As another clinical feature of MODY5 patients, the Hnf1bsp2/+ pancreases display exocrine dysfunction with hypoplasia. We observed chronic pancreatitis with loss of acinar cells, acinar-to-ductal metaplasia, and lipomatosis, with upregulation of signaling pathways and impaired acinar cell regeneration. This was associated with ductal cell deficiency characterized by shortened primary cilia. Importantly, the Hnf1bsp2/+ mouse model reproduces the pancreatic features of the human MODY5/HNF1B disease, providing a unique in vivo tool for molecular studies of the endocrine and exocrine defects and to advance basic and translational research. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Enfermedades del Sistema Nervioso Central/genética , Enfermedades del Sistema Nervioso Central/fisiopatología , Esmalte Dental/anomalías , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatología , Modelos Animales de Enfermedad , Factor Nuclear 1-beta del Hepatocito/genética , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/fisiopatología , Páncreas/fisiopatología , Animales , Enfermedades del Sistema Nervioso Central/patología , Esmalte Dental/patología , Esmalte Dental/fisiopatología , Diabetes Mellitus Tipo 2/patología , Humanos , Enfermedades Renales Quísticas/patología , Ratones , Ratones Transgénicos , Mutación , Páncreas/patología , Fenotipo
12.
J Exp Bot ; 71(10): 2898-2909, 2020 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-32383442

RESUMEN

Developmental biology relies heavily on our ability to generate three-dimensional images of live biological specimens through time, and to map gene expression and hormone response in these specimens as they undergo development. The last two decades have seen an explosion of new bioimaging technologies that have pushed the limits of spatial and temporal resolution and provided biologists with invaluable new tools. However, plant tissues are difficult to image, and no single technology fits all purposes; choosing between many bioimaging techniques is not trivial. Here, we review modern light microscopy and computed projection tomography methods, their capabilities and limitations, and we discuss their current and potential applications to the study of flower development and fertilization.


Asunto(s)
Imagenología Tridimensional , Microscopía , Flores , Tomografía
13.
J Med Imaging (Bellingham) ; 7(2): 026002, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32280730

RESUMEN

Purpose: Preclinical studies often compare micro-computed tomography (micro-CT) imaging with histology using optical microscopy of fluorescently labeled slides. However, correlating the images is difficult because the tissues appear differently in the two modalities. It would be valuable to have a single contrast medium visible on both radiographic and optical imaging. Approach: We have explored the detectability of fluorescently labeled gold nanoparticles under micro-CT and optical projection tomography (OPT) in agarose phantoms and a murine melanoma tumor model. Murine melanoma cells were used to induce tumor growth in the right hind legs of 12 C57Bl6 mice, with the maximal tumor size of 1 cm 3 . We injected Cy3 fluorescently coated gold nanorods directly into the tumors. The mice were scanned with in vivo micro-CT (for pre- and post-contrast scans). Once euthanized, the hind leg was dissected and scanned with a higher resolution specimen micro-CT and OPT. Results: The distribution of the gold nanoparticles appeared to be contained and isolated to the tumor. Alignment of micro-CT specimen scans with the OPT scans was possible, although there was also autofluorescence of the surrounding muscle tissue. Conclusions: This study highlights the potential use of fluorescently labeled gold nanoparticles for imaging murine melanoma tumors using micro-CT and OPT.

14.
J Biomed Opt ; 24(11): 1-4, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31705637

RESUMEN

Lymph node biopsy is a primary means of staging breast cancer, yet standard pathological techniques are time-consuming and typically sample less than 1% of the total node volume. A low-cost fluorescence optical projection tomography (OPT) protocol is demonstrated for rapid imaging of whole lymph nodes in three dimensions. The relatively low scattering properties of lymph node tissue can be leveraged to significantly improve spatial resolution of lymph node OPT by employing angular restriction of photon detection. It is demonstrated through porcine lymph node metastases models that simple filtered-backprojection reconstruction is sufficient to detect and localize 200-µm-diameter metastases (the smallest clinically significant) in 1-cm-diameter lymph nodes.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Ganglios Linfáticos/patología , Metástasis Linfática/diagnóstico por imagen , Tomografía Óptica/métodos , Animales , Biopsia , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Dispersión de Radiación , Esferoides Celulares , Porcinos
15.
J Microsc ; 275(1): 3-10, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31012490

RESUMEN

We present a numerical analysis and experimental characterisation of spatial resolution in optical projection tomography (OPT) and light-sheet fluorescence microscopy (LSFM) using their 'standard' systems. Although both techniques provide spatial resolution at the micrometre scale for mesoscopic (millimetre to centimetre) samples, LSFM provides higher lateral (∼3 µm, ∼34% of OPT) but lower axial (∼25.8 µm, 295% of OPT) resolution as compared to OPT (∼8.75 µm, 100%) when imaging the same sample (∼2 mm). Moreover, OPT provides isotropic spatial resolution due to its rotational scanning which may reduce the ambiguity in 3D analysis, so it is more practically appropriate for relatively large samples. We also demonstrate the application performances of both techniques by imaging various biological tissues, illustrating their imaging ability at different spatial scales. LAY DESCRIPTION: Optical projection tomography (OPT) and light-sheet fluorescence microscopy (LSFM) are generally used to extract 3D information from relatively large biological tissues/organs/embryos or even some small animals. Both techniques have made a great progress in recent decades and have been widely applied in life science, medical research and so on. The different implementation features of these two techniques results in isotropic and anisotropic spatial resolution respectively, making a dilemma for the researchers to choose the appropriate system when imaging the samples with different size. So far, there is no study to numerically discuss the differences between their image formation properties and to adequately quantify their own strengths and limitations. In our work, we quantified the imaging behaviour in 'standard' OPT and LSFM using both numerical analysis and experimental characterisations, showing the relationship between spatial resolution and sample size in each system. We also demonstrated the detailed structure differences when imaging various biological tissues. We believe this work will be useful and can provide a reference for the 3D fluorescence-imaging-based researchers.


Asunto(s)
Luz , Microscopía Fluorescente/métodos , Tomografía Óptica/métodos , Animales , Encéfalo , Imagenología Tridimensional/instrumentación , Imagenología Tridimensional/métodos , Pulmón , Ratones , Análisis Numérico Asistido por Computador/instrumentación
16.
J Biophotonics ; 12(7): e201800481, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30729697

RESUMEN

Recent progress in three-dimensional optical imaging techniques allows visualization of many comprehensive biological specimens. Optical clearing methods provide volumetric and quantitative information by overcoming the limited depth of light due to scattering. However, current imaging technologies mostly rely on the synthetic or genetic fluorescent labels, thus limits its application to whole-body visualization of generic mouse models. Here, we report a label-free optical projection tomography (LF-OPT) technique for quantitative whole mouse embryo imaging. LF-OPT is based on the attenuation contrast of light rather than fluorescence, and it utilizes projection imaging technique similar to computed tomography for visualizing the volumetric structure. We demonstrate this with a collection of mouse embryo morphologies in different stages using LF-OPT. Additionally, we extract quantitative organ information applicable toward high-throughput phenotype screening. Our results indicate that LF-OPT can provide multi-scale morphological information in various tissues including bone, which can be difficult in conventional optical imaging technique.


Asunto(s)
Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/diagnóstico por imagen , Imagenología Tridimensional/métodos , Tomografía Óptica/métodos , Animales , Ratones
17.
Methods Mol Biol ; 1926: 185-199, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30742273

RESUMEN

Optical projection tomography (OPT) is a 3D imaging technology. The 3D tomographic reconstruction permits precise analysis and quantification of various structures in developing embryonic tissues and adult organs of small rodents or biopsies. OPT enables detailed and accurate studies of kidney organogenesis, namely, ureteric tree branching morphogenesis and nephron quantification.


Asunto(s)
Riñón/citología , Organogénesis/fisiología , Tomografía Óptica/métodos , Animales , Técnicas de Cultivo de Órganos/métodos
18.
J Biomed Opt ; 24(3): 1-6, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30302967

RESUMEN

Blood coagulation is an important role in the hemostasis process. In the observation using microscopies, an aggregation structure of red blood cells indicates the degree of blood coagulation. Recently, it has been proposed that digital holographic microscopy (DHM) is a powerful tool for biomedical cell imaging on the basis of quantitative phase information. DHM has the advantage in that the real-time and three-dimensional (3-D) quantitative phase imaging can be realized in the wide field of view, which means that the 3-D morphological parameters of biological cells without a staining process are obtained in real time. We report the complete 3-D quantitative phase imaging of blood coagulation structures by optical projection tomography in a flow cytometry using DHM.


Asunto(s)
Coagulación Sanguínea/fisiología , Citometría de Flujo/métodos , Holografía/métodos , Imagenología Tridimensional/métodos , Microscopía/métodos , Tomografía Óptica/métodos , Procesamiento de Imagen Asistido por Computador/métodos
19.
Elife ; 72018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30234486

RESUMEN

The earliest developmental origins of dysmorphologies are poorly understood in many congenital diseases. They often remain elusive because the first signs of genetic misregulation may initiate as subtle changes in gene expression, which are hard to detect and can be obscured later in development by secondary effects. Here, we develop a method to trace back the origins of phenotypic abnormalities by accurately quantifying the 3D spatial distribution of gene expression domains in developing organs. By applying Geometric Morphometrics to 3D gene expression data obtained by Optical Projection Tomography, we determined that our approach is sensitive enough to find regulatory abnormalities that have never been detected previously. We identified subtle but significant differences in the gene expression of a downstream target of a Fgfr2 mutation associated with Apert syndrome, demonstrating that these mouse models can further our understanding of limb defects in the human condition. Our method can be applied to different organ systems and models to investigate the etiology of malformations.


Asunto(s)
Acrocefalosindactilia/patología , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Mutación Missense , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Animales , Biometría , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Tomografía Computarizada por Rayos X
20.
Differentiation ; 103: 14-23, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30262218

RESUMEN

Recent studies in our lab have utilized three imaging techniques to visualize the developing human fetal urogenital tract in three dimensions: optical projection tomography, scanning electron microscopy and lightsheet fluorescence microscopy. We have applied these technologies to examine changes in morphology and differential gene expression in developing human external genital specimens from the ambisexual stage (<9 weeks fetal age) to well-differentiated male and female organs (>13 weeks fetal age). This work outlines the history and function of each of these three imaging modalities, our methods to prepare specimens for each and the novel findings we have produced thus far. We believe the images in this paper of human fetal urogenital organs produced using lightsheet fluorescence microscopy are the first published to date.


Asunto(s)
Desarrollo Fetal/genética , Imagenología Tridimensional/métodos , Diferenciación Sexual/genética , Sistema Urogenital/ultraestructura , Femenino , Humanos , Masculino , Microscopía Electrónica de Rastreo , Sistema Urogenital/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA