Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 704
Filtrar
1.
Front Microbiol ; 15: 1442126, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39211320

RESUMEN

Introduction: Atopic dermatitis (AD) is a common clinical recurrent atopic disease in dermatology, most seen in children and adolescents. In recent years, AD has been found to be closely associated with microbial communities. Methods: To explore the synergistic effects between colonizing bacteria from different sites and AD, we comparatively analyzed the skin, oral, and gut microbiota of children with AD (50 individuals) and healthy children (50 individuals) by 16S rRNA gene sequencing. Twenty samples were also randomly selected from both groups for metabolic and macrogenomic sequencing. Results: The results of our sequencing study showed reduced microbiota diversity in the oral, skin, and gut of children with AD (P < 0.05). Metabolomics analysis showed that serotonergic synapse, arachidonic acid metabolism, and steroid biosynthesis were downregulated at all three loci in the oral, skin, and gut of children with AD (P < 0.05). Macrogenomic sequencing analysis showed that KEGG functional pathways of the three site flora were involved in oxidative phosphorylation, ubiquitin-mediated proteolysis, mRNA surveillance pathway, ribosome biogenesis in eukaryotes, proteasome, basal transcription factors, peroxisome, MAPK signaling pathway, mitophagy, fatty acid elongation, and so on (P < 0.05). Discussion: The combined microbial, metabolic, and macrogenetic analyses identified key bacteria, metabolites, and pathogenic pathways that may be associated with AD development. We provides a more comprehensive and in-depth understanding of the role of the microbiota at different sites in AD patients, pointing to new directions for future diagnosis, treatment and prognosis.

2.
Food Sci Nutr ; 12(8): 5329-5340, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39139934

RESUMEN

Bee Propolis has been used for its therapeutic properties, including anti-inflammatory, antibacterial, antifungal, and immune-stimulating properties, for centuries as a functional food. This study reviewed the effectiveness of propolis as a functional food on oral-related diseases as a rich bioflavonoid produced by honey bees. A literature search was conducted to identify studies published that investigated the effects of propolis on oral health and its ability to treat related diseases. The search was performed in electronic databases using relevant keywords. Initially, 3429 studies were identified through database searching, and based on the inclusion and exclusion criteria, 22 articles were eligible to be included. Reviewing the articles, propolis was recognized as a functional food and promising agent to balance oral microbiota and prevent oral diseases due to its effectiveness on related bacteria, its anti-inflammatory properties, and its activity against Porphyromonas gingivalis and Actinomyces Oris allowed it to be an effective substance to prevent periodontal diseases. Based on our findings, Propolis is a desirable preventive option for various oral health conditions, including dental caries and periodontal diseases. Therefore, it is recommended to be consumed as a functional food in our daily diet, which can reduce the risk of oral disease and improve oral health.

3.
J Oral Microbiol ; 16(1): 2391640, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161727

RESUMEN

Gastric cancer is one of the most common malignant tumors worldwide and has a high mortality rate. However, tests for the early screening and diagnosis of gastric cancer are limited and invasive. Certain oral microorganisms are over-expressed in gastric cancer, but there is heterogeneity among different studies. Notably, each oral ecological niche harbors specific microorganisms. Among them, tongue coating, saliva, and dental plaque are important and unique ecological niches in the oral cavity. The colonization environment in different oral niches may be a source of heterogeneity. In this paper, we systematically discuss the latest developments in the field of the oral microbiota and gastric cancer and elucidate the enrichment of microorganisms in the oral ecological niches of the tongue coatings, saliva, and dental plaque in gastric cancer patients. The various potential mechanisms by which the oral microbiota induces gastric cancer (activation of an excessive inflammatory response; promotion of proliferation, migration, invasion, and metastasis; and secretion of carcinogens, leading to imbalance in gastric microbial communities) are explored. In this paper, we also highlight the applications of the rapeutics targeting the oral microbiota in gastric cancer and suggests future research directions related to the relationship between the oral microbiota and gastric cancer.

4.
Vet Sci ; 11(8)2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39195805

RESUMEN

Probiotics demonstrated effectiveness in modulating oral microbiota and improving oral health in humans and rodents. However, its effects and applications on the oral microbiota of cats remain underexplored. Twelve healthy cats were randomly assigned to a control group (CON) and a composite probiotic group (CPG) for a 42-day trial. The CPG diet included additional supplementation of Bifidobacterium animalis subsp. lactis HN019, Lactobacillus acidophilus NCFM, and Lactobacillus casei LC-11, each at approximately 1 × 1010 CFU/kg. On days 0 and 42, microbial samples were collected from the gingiva, tooth surfaces, and tongue of all cats for 16S rRNA gene sequencing. Bacteroidetes, Firmicutes, and Proteobacteria were the dominant phyla across all oral sites. The CPG treatment enriched seven genera, such as Moraxella, Actinomyces, and Frederiksenia in the gingiva. Meanwhile, Bergeyella and Streptococcus were enriched on the tooth surfaces, while Bergeyella, Flavobacterium, and Luteimonas were enriched on the tongue. Furthermore, the composite probiotic effectively suppressed eight genera, such as Bacteroides, Desulfovibrio, and Filifactor in the gingiva of CPG cats, as well as Helcococcus, Lentimicrobium, and Campylobacter on tooth surfaces, and Porphyromonas, Treponema, and Fusibacter on the tongue. These findings suggest that the composite probiotic used in this study modulates the feline oral microbiota by supporting beneficial or commensal bacteria and inhibiting oral pathogens, demonstrating potential to improve oral health in cats.

5.
Sci Rep ; 14(1): 18402, 2024 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117753

RESUMEN

Gaining a comprehensive understanding of the role played by the oral microbiome in moderate to severe plaque psoriasis and its potential implications for disease management and development holds significant importance. With the objective of exploring correlations between the oral microbiota and severe psoriasis, this study involved 72 severe psoriasis patients and 16 healthy individuals, whose clinical manifestations and living habits were carefully recorded. Cutting-edge techniques such as 16S rRNA gene sequencing and bioinformatics analysis were employed to compare the microbial flora, investigating dynamic changes among severe plaque psoriasis patients, psoriatic arthritis patients and healthy individuals. The findings revealed noteworthy patterns including increased levels of Aggregatibacter in the psoriatic arthritis group, accompanied by a decrease in the level of Prevotella. Moreover, the enrichment o Capnocytandophaga (P = 0.009), Campylobacter (P = 0.0022), and Acetobacter (P = 0.0292) was notably more substantial in the psoriasis group compared to the control group, whereas certain bacterial species such as Bacteroides (P = 0.0049), Muribaculaceae (P = 0.0048) demonstrated decreased enrichment. Additionally, the psoriatic arthritis group exhibited significantly higher levels of Ralstonia, Bifidobacterium and Micromonospora. Based on these findings, it can be inferred that individuals with lower levels of Prevotella and higher levels of Corynebacterium may be more susceptible to psoriasis exacerbation.


Asunto(s)
Artritis Psoriásica , Microbiota , Psoriasis , ARN Ribosómico 16S , Humanos , Artritis Psoriásica/microbiología , Femenino , Masculino , Psoriasis/microbiología , Microbiota/genética , Adulto , Persona de Mediana Edad , ARN Ribosómico 16S/genética , Boca/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Enfermedades de la Uña/microbiología , Estudios de Casos y Controles
6.
BMC Oral Health ; 24(1): 993, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182077

RESUMEN

BACKGROUND: Periodontitis is the sixth-most common disease worldwide. The oral microbiome composition and its association with Periodontal disease (PD) have been largely explored; however, limited studies have explored the microbial profiles of both oral and toothbrushes in patients with PD. Thus, this study aimed to ascertain the oral and toothbrushes microbial composition in high-altitude populations, hypothesizing that their correlation with periodontal health would differ from those at lower altitudes, potentially indicating links between environmental factors, microbial colonization patterns, and periodontal health in distinct geographic contexts. METHODS: In the present study, we enrolled 35 individuals including 21 healthy and 14 diagnosed with PD from the Lhasa region of Tibet, China. Saliva and toothbrush samples were collected from each participant to assess the association between toothbrush usage and oral microbiome with PD using 16 S rRNA gene-specific V3-V4 regions sequencing. To assess the oral and toothbrush microbiome composition and diversity and its possible link to PD. RESULTS: Significantly higher Alpha diversity (Shannon index) was observed between the PD group and PD toothbrushes (p = 0.00021) and between the PD group and Healthy toothbrushes (p = 0.00041). The predominant species were Proteobacteria, Bacteroidota, Firmicutes, Actinobacteria, and Fusobacteria, with genera Pseudomonas, Veillonella, Neisseria, Acinetobacter, and Haemophilus. In addition, PICRUST2 analysis unveiled 44 significant pathways differentiating the disease and healthy groups, along with 29 pathways showing significant differences between their respective toothbrush microbial profiles. The distinct oral and toothbrush microbial composition among high-altitude populations suggests potential adaptations to the challenges of high-altitude environments. CONCLUSION: This study emphasizes the importance of tailored dental care strategies, accounting for altitude and racial factors, to effectively manage periodontal health in these communities. Further research is warranted to investigate the specific microbial mechanisms and develop targeted interventions for optimizing oral health in populations across varying altitudes.


Asunto(s)
Altitud , Enfermedades Periodontales , Cepillado Dental , Humanos , Masculino , Estudios de Casos y Controles , Femenino , Cepillado Dental/instrumentación , Adulto , Enfermedades Periodontales/microbiología , Persona de Mediana Edad , Microbiota , Tibet , Saliva/microbiología , Boca/microbiología
7.
BMC Oral Health ; 24(1): 1001, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187802

RESUMEN

BACKGROUND: Oral microbiota comprises polymicrobial communities shaped by mutualistic coevolution with the host, contributing to homeostasis and regulating immune function. Nevertheless, dysbiosis of oral bacterial communities is associated with a number of clinical symptoms that ranges from infections to oral cancer. Peri-implant diseases are biofilm-associated inflammatory conditions affecting the soft and hard tissues around dental implants. Characterization and identification of the biofilm community are essential for the understanding of the pathophysiology of such diseases. For that sampling methods should be representative of the biofilm communities Therefore, there is a need to know the effect of different sampling strategies on the biofilm characterization by next generation sequencing. METHODS: With the aim of selecting an appropriate microbiome sampling procedure for periimplant biofilms, next generation sequencing was used for characterizing the bacterial communities obtained by three different sampling strategies two months after transepithelial abutment placement: adjacent periodontal crevicular fluid (ToCF), crevicular fluid from transepithelial abutment (TACF) and transepithelial abutment (TA). RESULTS: Significant differences in multiple alpha diversity indices were detected at both the OTU and the genus level between different sampling procedures. Differentially abundant taxa were detected between sample collection strategies, including peri-implant health and disease related taxa. At the community level significant differences were also detected between TACF and TA and also between TA and ToCF. Moreover, differential network properties and association patterns were identified. CONCLUSIONS: The selection of sample collection strategy can significantly affect the community composition and structure. TRIAL REGISTRATION: This research is part of a randomized clinical trial that was designed to assess the effect of transepithelial abutment surface on the biofilm formation. The trial was registered at Trial Registration ClinicalTrials.gov under the number NCT03554876.


Asunto(s)
Biopelículas , Implantes Dentales , Líquido del Surco Gingival , Microbiota , Humanos , Líquido del Surco Gingival/microbiología , Implantes Dentales/microbiología , Persona de Mediana Edad , Manejo de Especímenes/métodos , Femenino , Masculino , Secuenciación de Nucleótidos de Alto Rendimiento , Bacterias/clasificación , Bacterias/aislamiento & purificación , Anciano
8.
Cureus ; 16(7): e64396, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39130947

RESUMEN

Orthodontic appliances significantly influence the microbiological dynamics within the oral cavity, transforming symbiotic relationships into dysbiotic states that can lead to periodontal diseases. This review synthesizes current findings on how orthodontic treatments, particularly fixed and removable appliances, foster niches for bacterial accumulation and complicate oral hygiene maintenance. Advanced culture-independent methods were employed to identify shifts toward anaerobic and pathogenic bacteria, with fixed appliances showing a more pronounced impact compared to clear aligners. The study underscores the importance of meticulous oral hygiene practices and routine dental monitoring to manage these microbial shifts effectively. By highlighting the relationship between appliance type, surface characteristics, treatment duration, and microbial changes, this review aims to enhance dental professionals' understanding of periodontal risks associated with orthodontic appliances and strategies to mitigate these risks. The findings are intended to guide clinicians in optimizing orthodontic care to prevent plaque-associated diseases, ensuring better periodontal health outcomes for patients undergoing orthodontic treatment.

9.
Nat Sci Sleep ; 16: 1091-1108, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100910

RESUMEN

Background: Obstructive sleep apnea (OSA) patients commonly experience high rates of depression. This study aims to examine the oral microbiota characteristics of OSA and those with comorbid major depressive disorder (OSA+MDD) patients. Methods: Participants were enrolled from Aug 2022 to Apr 2023. Polysomnography, psychiatrist interviews, and scales were used to diagnose OSA and MDD. Oral samples were collected from participants by rubbing swabs on buccal mucosa, palate, and gums. Oral microbiota was analyzed via whole-genome metagenomics and bioinformatic analysis followed sequencing. Venous blood was drawn to detect plasma inflammatory factor levels. Results: The study enrolled 33 OSA patients, 28 OSA+MDD patients, and 28 healthy controls. Significant differences were found in 8 phyla, 229 genera, and 700 species of oral microbiota among the three groups. Prevotellaceae abundance in the OSA and OSA+MDD groups was significantly lower than that in healthy controls. Linear discriminant analysis effect size (LEfSe) analysis showed that Streptococcaceae and Actinobacteria were the characteristic oral microbiota of the OSA and OSA+MDD groups, respectively. KEGG analysis indicates 30 pathways were changed in the OSA and OSA+MDD groups compared with healthy controls, and 23 pathways were changed in the OSA group compared with the OSA+MDD group. Levels of IL-6 in the OSA+MDD group were significantly higher than in the healthy group, correlating positively with the abundance of Schaalia, Campylobacter, Fusobacterium, Alloprevotella, and Candidatus Nanosynbacter in the oral, as well as with Hamilton Anxiety Rating Scale and Hamilton Depression Rating Scale scores. Conclusion: Significant differences in oral microbiota populations and gene function were observed among the three groups. OSA patients were characterized by a decreased abundance of Prevotellaceae and an increased abundance of Streptococcaceae. OSA+MDD patients had an increased abundance of Actinobacteria. IL-6 might regulate the relationship between depression and the oral microbiota in OSA+MDD patients.

10.
J Clin Med ; 13(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39124746

RESUMEN

Background/Objectives: Gastroesophageal reflux disease (GORD) is caused by gastric contents refluxing back into the oesophagus and oral cavity. It can lead to injuries to the mucosa in the form of erosion and ulcers. Our past research have shown acid reflux severity and disease progression is associated with alternations in the microbiota of the distal oesophagus. The aim of this study was to explore whether changes in the oral microbiota occurred in GORD patients and establish any associations with reflux severity. Methods: Fresh mouthwash samples were collected from 58 patients experiencing reflux symptoms referred for 24 h pH monitoring. The participants were categorised into three groups based on their DeMeester scores: Normal (<14.72), Mild (14.2-50), and Moderate/severe (>51). Microorganism identity and diversity were generated using hypervariable tag sequencing and analysing the V1-V3 region of the 16S rRNA gene. Results: No differences in microbiota diversity were found in oral microbiota between groups using the Chiao1 diversity index and Shannon diversity index. Microbiota in the Mild group showed reductions in Rothia dentocariosa and Lautropia, while Moryella and Clostridiales_1 were increased compared with the Normal group. In the Moderate/severe group, the abundance of Rothia aeria was reduced compared with the Normal group, while Schwartzia, Rs_045, Paludibacter, S. satelles, Treponema, and T. socranskii all had increased abundance. The abundance of Prevotella pallens was higher in the Mild group compared with Moderate/severe, while S. satelles and Paludibacter abundances were lower. Conclusions: Our study shows the oral microbiome show significant differences between acid reflux severity groups, as categorised by DeMeester score.

11.
Am J Med ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39151680

RESUMEN

BACKGROUND: Many individuals experience long COVID after SARS-CoV-2 infection. As microbiota can influence health, it may change with COVID-19. This study investigated differences in oral microbiota between COVID-19 patients with and without long COVID. METHODS: Based on a prospective follow-up investigation, this nested case-control study evaluated the differences in oral microbiota in individuals with and without long COVID (Symptomatic and Asymptomatic groups), which were assessed by 16S rRNA sequencing on tongue coating samples. A predictive model was established using machine learning based on specific differential microbial communities. RESULTS: One-hundred-and-eight patients were included (n=54 Symptomatic group). The Symptomatic group had higher Alpha diversity indices (observed_otus, Chao1, Shannon, and Simpson indices), differences in microbial composition (Beta diversity), and microbial dysbiosis with increased diversity and relative abundance of pathogenic bacteria. Marker bacteria (c__Campylobacterota, o__Coriobacteriales, o__Pseudomonadales, and o__Campylobacterales) were associated with long COVID by linear discriminant analysis effect size and receiver operating characteristic curves (AUC 0.821). CONCLUSION: There were distinct variations in oral microbiota between COVID-19 patients with and without long COVID. Changes in oral microbiota may indicate long COVID.

12.
Oral Oncol ; 157: 106973, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39033683

RESUMEN

The article "Characterization of oral microbiota in HPV and non-HPV head and neck squamous cell carcinoma and its association with patient outcomes" by Chan et al. investigates the relationship between oral microbiota, HPV infection, and patient outcomes in head and neck squamous cell carcinoma (HNSCC). This comprehensive study, involving 166 Chinese adults, utilized advanced sequencing techniques to profile bacterial and HPV regions in paired tumor and control tissues. The findings highlight the complex interplay between microbiota dysbiosis, HPV infection, and HNSCC progression. Despite the robustness of the study, limitations include potential biases in DNA extraction and PCR amplification, and unaccounted environmental factors. Recommendations for future research include increasing sequencing depth, comparing DNA extraction methods, using multiple bioinformatics pipelines, and controlling for environmental variables. Longitudinal studies and microbiota-targeted interventions are suggested to further elucidate the role of oral microbiota in HNSCC and improve patient outcomes.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Microbiota , Infecciones por Papillomavirus , Humanos , Neoplasias de Cabeza y Cuello/microbiología , Neoplasias de Cabeza y Cuello/virología , Carcinoma de Células Escamosas/microbiología , Carcinoma de Células Escamosas/virología , Infecciones por Papillomavirus/virología , Infecciones por Papillomavirus/microbiología , Infecciones por Papillomavirus/complicaciones , Boca/microbiología , Carcinoma de Células Escamosas de Cabeza y Cuello/microbiología , Carcinoma de Células Escamosas de Cabeza y Cuello/virología , Femenino , Masculino
13.
Acta Vet Scand ; 66(1): 26, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956712

RESUMEN

Capnocytophaga canimorsus and Capnocytophaga cynodegmi are commensal bacteria in the oral cavities of dogs. Both are zoonotic pathogens that could infect humans via dog bites. C. canimorsus may cause life-threatening infections in humans, whereas C. cynodegmi infections tend to be milder and more localized. Capsular serovars A-C of C. canimorsus seem to be virulence-associated. Some of the C. canimorsus serovars described to date can also be detected in other Capnocytophaga species, including C. cynodegmi. The objective of this pilot study was to investigate the emergence of C. canimorsus and C. cynodegmi after birth in oral cavities of puppies and to evaluate the impact of the dam's Capnocytophaga spp. carrier status on the emergence. Ten litters, altogether 59 puppies, were included in the study. The puppies and their dams were sampled at five time points over seven weeks after whelping. Oral swab samples taken were investigated for the presence of C. canimorsus and C. cynodegmi by species-specific polymerase chain reaction (PCR), the specificity of which was verified by sequencing a selection of the PCR products. Samples that were positive in Capnocytophaga PCR reactions were also capsular-typed by PCR to gain more knowledge about the Capnocytophaga spp. present in the samples. Altogether 10.2% and 11.9% of puppies, or 20.0% and 30.0% of litters tested PCR-positive for C. canimorsus and C. cynodegmi, respectively. Capnocytophaga PCR-positive puppy samples were always positive for only C. cynodegmi or C. canimorsus, not both. Most Capnocytophaga PCR-positive puppies became positive at the age of 5 to 7 weeks. Only a minority (5/16) of the C. cynodegmi PCR-positive dog samples were positive in capsular typing PCR, whereas all C. canimorsus PCR-positive dog samples were negative in capsular typing PCR. For all Capnocytophaga PCR-positive puppies, their dam was positive for the same Capnocytophaga species. These results suggest that puppies become colonized by C. cynodegmi or C. canimorsus from their dams at the time of deciduous teeth eruption.


Asunto(s)
Animales Recién Nacidos , Capnocytophaga , Enfermedades de los Perros , Infecciones por Bacterias Gramnegativas , Boca , Animales , Capnocytophaga/aislamiento & purificación , Capnocytophaga/genética , Perros , Proyectos Piloto , Boca/microbiología , Animales Recién Nacidos/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/microbiología , Enfermedades de los Perros/microbiología , Enfermedades de los Perros/diagnóstico , Femenino , Masculino
14.
J Reprod Immunol ; 165: 104298, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39002425

RESUMEN

BACKGROUND: This study aims to conduct a preliminary exploration of the correlation between the oral microbiota of full-term pregnant women and both local placental immunity and the systemic immune system of the mother. METHODS: A total of 26 pregnant women participated in this study, with samples collected from oral swabs, placental tissue, and peripheral venous blood. High-throughput sequencing was used to examine the oral microbial community. Flow cytometry was employed to assess immune cells in placental tissue and peripheral venous blood. ELISA and Luminex liquid bead chip technology were utilized to detect cytokines in both placental tissue and peripheral venous blood. RESULTS: In placental tissue, The oral microbial community is primarily negatively correlated with placental CD3+CD4+CD8+T cells and positively correlated with placental IL-5. In the peripheral blood, The oral microbial community is primarily positively correlated with maternal systemic immune parameters, including CD3+CD4+ T cells and the CD4+/CD8+ ratio, as well as positively correlated with peripheral IL-18. CONCLUSIONS: The oral microbiota of full-term pregnant women participates in the regulatory function of the maternal immune system. Meanwhile, the oral microbial community may also be an important factor mediating local immune regulation in the placenta.

15.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39000406

RESUMEN

Diabetes mellitus (DM) poses a significant challenge to global health, with its prevalence projected to rise dramatically by 2045. This narrative review explores the bidirectional relationship between periodontitis (PD) and type 1 diabetes mellitus (T1DM), focusing on cellular and molecular mechanisms derived from the interplay between oral microbiota and the host immune response. A comprehensive search of studies published between 2008 and 2023 was conducted to elucidate the association between these two diseases. Preclinical and clinical evidence suggests a bidirectional relationship, with individuals with T1DM exhibiting heightened susceptibility to periodontitis, and vice versa. The review includes recent findings from human clinical studies, revealing variations in oral microbiota composition in T1DM patients, including increases in certain pathogenic species such as Porphyromonas gingivalis, Prevotella intermedia, and Aggregatibacter actinomycetemcomitans, along with shifts in microbial diversity and abundance. Molecular mechanisms underlying this association involve oxidative stress and dysregulated host immune responses, mediated by inflammatory cytokines such as IL-6, IL-8, and MMPs. Furthermore, disruptions in bone turnover markers, such as RANKL and OPG, contribute to periodontal complications in T1DM patients. While preventive measures to manage periodontal complications in T1DM patients may improve overall health outcomes, further research is needed to understand the intricate interactions between oral microbiota, host response, periodontal disease, and systemic health in this population.


Asunto(s)
Diabetes Mellitus Tipo 1 , Microbiota , Enfermedades Periodontales , Humanos , Diabetes Mellitus Tipo 1/microbiología , Diabetes Mellitus Tipo 1/complicaciones , Enfermedades Periodontales/microbiología , Periodontitis/microbiología , Periodontitis/complicaciones , Periodontitis/inmunología
16.
Front Cell Infect Microbiol ; 14: 1393108, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38975327

RESUMEN

Multiple research groups have consistently underscored the intricate interplay between the microbiome and apical periodontitis. However, the presence of variability in experimental design and quantitative assessment have added a layer of complexity, making it challenging to comprehensively assess the relationship. Through an unbiased methodological refinement analysis, we re-analyzed 4 microbiota studies including 120 apical samples from infected teeth (with/without root canal treatment), healthy teeth, using meta-analysis and machine learning. With high-performing machine-learning models, we discover disease signatures of related species and enriched metabolic pathways, expanded understanding of apical periodontitis with potential therapeutic implications. Our approach employs uniform computational tools across datasets to leverage statistical power and define a reproducible signal potentially linked to the development of secondary apical periodontitis (SAP).


Asunto(s)
Aprendizaje Automático , Microbiota , Periodontitis Periapical , Periodontitis Periapical/microbiología , Humanos , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biología Computacional/métodos
17.
Front Vet Sci ; 11: 1418101, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948672

RESUMEN

Feline chronic gingivostomatitis (FCGS) is an ulcerative and/or proliferative disease that typically affects the palatoglossal folds. Because of its unknown pathogenesis and long disease course, it is difficult to treat and has a high recurrence rate. Most of the bacteria in the oral microbiota exist in the mouth symbiotically and maintain a dynamic balance, and when the balance is disrupted, they may cause disease. Disturbance of the oral microbiota may play an important role in the development of FCGS. In this study, the medical records of 3109 cats in three general pet hospitals in Xi 'an were collected. Sixty-one cats with FCGS were investigated via questionnaires, routine oral examinations and laboratory examinations. Oral microbiota samples were collected from 16 FCGS-affected cats, and microbial species were identified by 16S rDNA sequencing. The results showed that the incidence of FCGS had no significant correlation with age, sex or breed. However, the incidence of FCGS was associated with immunization, a history of homelessness and multicat rearing environments. The number of neutrophils and the serum amyloid A concentration were increased, and the percentage of cells positive for calicivirus antigen was high in all cases. All the cats had different degrees of dental calculus, and there were problems such as loss of alveolar bone or tooth resorption. Compared with those in healthy cats, the bacterial diversity and the abundance of anaerobic bacteria were significantly increased in cats with FCGS. Porphyromonas, Treponemas and Fusobacterium were abundant in the mouths of the affected cats and may be potential pathogens of FCGS. After tooth extraction, a shift could be seen in the composition of the oral microbiota in cats with FCGS. An isolated bacteria obtained from the mouths of the affected cats was homologous to P. gulae. Both the identified oral microbiota and the isolated strain of the cats with FCGS had high sensitivity to enrofloxacin and low sensitivity to metronidazole. This study provides support to current clinical criteria in diagnosing FCGS and proposes a more suitable antibiotic therapy.

18.
Artículo en Inglés | MEDLINE | ID: mdl-38949882

RESUMEN

Oral Squamous cell carcinoma (OSCC) is the 14th most frequent cancer with 300,000 new cases and 100,000 deaths reported annually. Even with advanced therapy, the treatment outcomes are poor at advanced stages of the disease. The diagnosis of early OSCC is of paramount clinical value given the high mortality rate associated with the late stages of the disease. Recently, the role of microbiome in the disease manifestation, including oral cancer, has garnered considerable attention. But, to establish the role of bacteria in oral cancer, it is important to determine the differences in the colonization pattern in non-tumour and tumour tissues. In this study, 16S rRNA based metagenomic analyses of 13 tumorous and contralateral anatomically matched normal tissue biopsies, obtained from patients with advanced stage of OSCC were evaluated to understand the correlation between OSCC and oral microbiome. In this study we identified Fusobacterium, Prevotella, Capnocytophaga, Leptotrichia, Peptostreptococcus, Parvimonas and Bacteroidetes as the most significantly enriched taxa in OSCC lesions compared to the non-cancerous tissues. Further, PICRUSt2 analysis unveiled enhanced expression of metabolic pathways associated with L-lysine fermentation, pyruvate fermentation, and isoleucine biosynthesis in those microbes associated with OSCC tissues. These findings provide valuable insights into the distinctive microbial signatures associated with OSCC, offering potential biomarkers and metabolic pathways underlying OSCC pathogenesis. While our focus has primarily centred on microbial signatures, it is essential to recognize the pivotal role of host factors such as immune responses, genetic predisposition, and the oral microenvironment in shaping OSCC development and microbiome composition.

19.
J Oral Microbiol ; 16(1): 2382620, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055280

RESUMEN

Background: Oral microbes mediate the production of nitric oxide (NO) through the denitrification pathway. This study aimed to investigate the association between oral microbial nitrate metabolism and prognosis in acute ischemic stroke (AIS) patients. Methods: This prospective, observational, single-center cohort study included 124 AIS patients admitted within 24 hours of symptom onset, with 24-hour ambulatory blood pressure data. Oral swabs were collected within 24 hours. Hypertensive AIS patients were stratified by the coefficient of variation (CV) of 24-hour systolic blood pressure. Microbial composition was analyzed using LEfSe and PICRUSt2 for bacterial and functional pathway identification. Results: Significant differences in oral microbiota composition were observed between hypertensive AIS patients with varying CVs. Lower CV groups showed enrichment of nitrate-reducing bacteria and "Denitrification, nitrate => nitrogen" pathways. The TAX score of oral nitrate-reducing bacteria, derived from LASSO modeling, independently correlated with 90-day modified Rankin Scale scores, serving as an independent risk factor for poor prognosis. Mediation analyses suggested indirect that the TAX score not only directly influences outcomes but also indirectly affects them by modulating 24-hour systolic blood pressure CV. Conclusions: AIS patients with comorbid hypertension and higher systolic blood pressure CV exhibited reduced oral nitrate-reducing bacteria, potentially worsening outcomes.

20.
Front Cell Infect Microbiol ; 14: 1383878, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055977

RESUMEN

Objective: The human microbiota plays a key role in cancer diagnosis, pathogenesis, and treatment. However, osteosarcoma-associated oral microbiota alterations have not yet been unraveled. The aim of this study was to explore the characteristics of oral microbiota in osteosarcoma patients compared to healthy controls, and to identify potential microbiota as a diagnostic tool for osteosarcoma. Methods: The oral microbiota was analyzed in osteosarcoma patients (n = 45) and matched healthy controls (n = 90) using 16S rRNA MiSeq sequencing technology. Results: The microbial richness and diversity of the tongue coat were increased in osteosarcoma patients as estimated by the abundance-based coverage estimator indices, the Chao, and observed operational taxonomy units (OTUs). Principal component analysis delineated that the oral microbial community was significant differences between osteosarcoma patients and healthy controls. 14 genera including Rothia, Halomonas, Rhodococcus, and Granulicatella were remarkably reduced, whereas Alloprevotella, Prevotella, Selenomonas, and Campylobacter were enriched in osteosarcoma. Eventually, the optimal four OTUs were identified to construct a microbial classifier by the random forest model via a fivefold cross-validation, which achieved an area under the curve of 99.44% in the training group (30 osteosarcoma patients versus 60 healthy controls) and 87.33% in the test group (15 osteosarcoma patients versus 30 healthy controls), respectively. Notably, oral microbial markers validated strong diagnostic potential distinguishing osteosarcoma patients from healthy controls. Conclusion: This study comprehensively characterizes the oral microbiota in osteosarcoma and reveals the potential efficacy of oral microbiota-targeted biomarkers as a noninvasive biological diagnostic tool for osteosarcoma.


Asunto(s)
Bacterias , Microbiota , Boca , Osteosarcoma , ARN Ribosómico 16S , Humanos , Osteosarcoma/microbiología , Osteosarcoma/diagnóstico , Masculino , Femenino , ARN Ribosómico 16S/genética , Boca/microbiología , Adulto , Adulto Joven , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Adolescente , Estudios de Casos y Controles , ADN Bacteriano/genética , Neoplasias Óseas/microbiología , Neoplasias Óseas/diagnóstico , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA