Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Ageing Res Rev ; 99: 102408, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38969142

RESUMEN

Alzheimer's disease (AD) and osteoporosis are two diseases that mainly affect elderly people, with increases in the occurrence of cases due to a longer life expectancy. Several epidemiological studies have shown a reciprocal association between both diseases, finding an increase in incidence of osteoporosis in patients with AD, and a higher burden of AD in osteoporotic patients. This epidemiological relationship has motivated the search for molecules, genes, signaling pathways and mechanisms that are related to both pathologies. The mechanisms found in these studies can serve to improve treatments and establish better patient care protocols.


Asunto(s)
Enfermedad de Alzheimer , Osteoporosis , Humanos , Enfermedad de Alzheimer/epidemiología , Osteoporosis/epidemiología , Incidencia
2.
Front Immunol ; 14: 1310262, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38106424

RESUMEN

Classically, particle-induced periprosthetic osteolysis at the implant-bone interface has explained the aseptic loosening of joint replacement. This response is preceded by triggering both the innate and acquired immune response with subsequent activation of osteoclasts, the bone-resorbing cells. Although particle-induced periprosthetic osteolysis has been considered a foreign body chronic inflammation mediated by myelomonocytic-derived cells, current reports describe wide heterogeneous inflammatory cells infiltrating the periprosthetic tissues. This review aims to discuss the role of those non-myelomonocytic cells in periprosthetic tissues exposed to wear particles by showing original data. Specifically, we discuss the role of T cells (CD3+, CD4+, and CD8+) and B cells (CD20+) coexisting with CD68+/TRAP- multinucleated giant cells associated with both polyethylene and metallic particles infiltrating retrieved periprosthetic membranes. This review contributes valuable insight to support the complex cell and molecular mechanisms behind the aseptic loosening theories of orthopedic implants.


Asunto(s)
Prótesis Articulares , Osteólisis , Humanos , Osteólisis/metabolismo , Prótesis Articulares/efectos adversos , Osteoclastos/metabolismo , Inflamación/metabolismo , Polietileno/efectos adversos , Polietileno/metabolismo
3.
J Biol Chem ; 299(12): 105379, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37871745

RESUMEN

Osteoclasts are specialized cells responsible for bone resorption, a highly energy-demanding process. Focus on osteoclast metabolism could be a key for the treatment of osteolytic diseases including osteoporosis. In this context, AMP-activated protein kinase α1 (AMPKα1), an energy sensor highly expressed in osteoclasts, participates in the metabolic reconfiguration during osteoclast differentiation and activation. This study aimed to elucidate the role of AMPKα1 during osteoclastogenesis in vitro and its impact in bone loss in vivo. Using LysMcre/0AMPK⍺1f/f animals and LysMcre/0 as control, we evaluated how AMPKα1 interferes with osteoclastogenesis and bone resorption activity in vitro. We found that AMPKα1 is highly expressed in the early stages of osteoclastogenesis. Genetic deletion of AMPKα1 leads to increased gene expression of osteoclast differentiation and fusion markers. In addition, LysMcre/0AMPK⍺1f/f mice had an increased number and size of differentiated osteoclast. Accordingly, AMPKα1 negatively regulates bone resorption in vitro, as evidenced by the area of bone resorption in LysMcre/0AMPK⍺1f/f osteoclasts. Our data further demonstrated that AMPKα1 regulates mitochondrial fusion and fission markers upregulating Mfn2 and downregulating DRP1 (dynamics-related protein 1) and that Ctskcre/0AMPK⍺1f/f osteoclasts lead to an increase in the number of mitochondria in AMPK⍺1-deficient osteoclast. In our in vivo study, femurs from Ctskcre/0AMPK⍺1f/f animals exhibited bone loss associated with the increased number of osteoclasts, and there was no difference between Sham and ovariectomized group. Our data suggest that AMPKα1 acts as a negative regulator of osteoclastogenesis, and the depletion of AMPKα1 in osteoclast leads to a bone loss state similar to that observed after ovariectomy.


Asunto(s)
Resorción Ósea , Osteoclastos , Animales , Femenino , Ratones , Resorción Ósea/genética , Resorción Ósea/metabolismo , Diferenciación Celular , Ratones Endogámicos C57BL , Osteoclastos/metabolismo , Osteogénesis , Osteoporosis/genética , Osteoporosis/metabolismo , Ligando RANK/metabolismo
4.
Colloids Surf B Biointerfaces ; 229: 113448, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37451224

RESUMEN

Titanium with nanotopography (Ti Nano) favors osteoblast differentiation and attenuates the osteoclast inhibitory effects on osteoblasts. Because the interactions between nanotopography and osteoclasts are underexplored, the aims of this study were to evaluate the effects of Ti Nano on osteoclast differentiation and activity, and the influence of osteoblasts on osteoclast-Ti Nano interaction. The discs were conditioned with a mixture of 10 N H2SO4 and 30% aqueous H2O2 to create Ti Nano and non-conditioned Ti discs were used as control (Ti Control). Osteoclasts were cultured on Ti Control and Ti Nano in the presence of osteoblasts in an indirect co-culture system. Also, osteoclasts were cultured on polystyrene and calcium phosphate plates in conditioned media by osteoblasts grown on Ti Control and Ti Nano. While Ti Control exhibited an irregular and smooth surface, Ti Nano presented nanopores distributed throughout the whole surface. Additionally, anisotropy was higher on Ti Nano than Ti Control. Nanotopography favored the gene expression of osteoclast markers but inhibited osteoclast differentiation and activity, and the presence of osteoblasts enhanced the effects of Ti Nano on osteoclasts. Such findings were mimicked by conditioned medium of osteoblasts cultured on Ti Nano, which reduced the osteoclast differentiation and activity. In conclusion, our results indicated that nanotopography regulates osteoblast-osteoclast crosstalk and further investigations should focus the impact of these bone cell interactions on Ti osseointegration.


Asunto(s)
Osteoclastos , Titanio , Titanio/farmacología , Titanio/metabolismo , Peróxido de Hidrógeno/farmacología , Osteoblastos , Diferenciación Celular
5.
Front Immunol ; 14: 1206099, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404829

RESUMEN

Introduction: Osteoclasts play a crucial role in bone resorption, and impairment of their differentiation can have significant implications for bone density, especially in individuals with HIV who may be at risk of altered bone health. The present study aimed to investigate the effects of HIV infection on osteoclast differentiation using primary human monocyte-derived macrophages as precursors. The study focused on assessing the impact of HIV infection on cellular adhesion, cathepsin K expression, resorptive activity, cytokine production, expression of co-receptors, and transcriptional regulation of key factors involved in osteoclastogenesis. Methods: Primary human monocyte-derived macrophages were utilized as precursors for osteoclast differentiation. These precursors were infected with HIV, and the effects of different inoculum sizes and kinetics of viral replication were analyzed. Subsequently, osteoclastogenesis was evaluated by measuring cellular adhesion, cathepsin K expression, and resorptive activity. Furthermore, cytokine production was assessed by monitoring the production of IL-1ß, RANK-L, and osteoclasts. The expression levels of co-receptors CCR5, CD9, and CD81 were measured before and after infection with HIV. The transcriptional levels of key factors for osteoclastogenesis (RANK, NFATc1, and DC-STAMP) were examined following HIV infection. Results: Rapid, massive, and productive HIV infection severely impaired osteoclast differentiation, leading to compromised cellular adhesion, cathepsin K expression, and resorptive activity. HIV infection resulted in an earlier production of IL-1ß concurrent with RANK-L, thereby suppressing osteoclast production. Infection with a high inoculum of HIV increased the expression of the co-receptor CCR5, as well as the tetraspanins CD9 and CD81, which correlated with deficient osteoclastogenesis. Massive HIV infection of osteoclast precursors affected the transcriptional levels of key factors involved in osteoclastogenesis, including RANK, NFATc1, and DC-STAMP. Conclusions: The effects of HIV infection on osteoclast precursors were found to be dependent on the size of the inoculum and the kinetics of viral replication. These findings underscore the importance of understanding the underlying mechanisms to develop novel strategies for the prevention and treatment of bone disorders in individuals with HIV.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Osteoclastos/metabolismo , Catepsina K , VIH-1/metabolismo , Infecciones por VIH/metabolismo , Factores de Transcripción NFATC/metabolismo , Macrófagos/metabolismo , Proteínas Portadoras/metabolismo , Citocinas/metabolismo
6.
J Dent Res ; 102(4): 440-449, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36749069

RESUMEN

Osteoclasts play a key role in the regulation of bone mass and are highly active metabolically. Here we show that a metabolic reprogramming toward the hexosamine biosynthetic pathway (HBP) is required not only for osteoclast differentiation but also to determine the bone resorption mode during physiological and pathological bone remodeling. We found that pharmacological inhibition of O-GlcNAc transferase (OGT) significantly reduced protein O-GlcNAcylation and osteoclast differentiation. Accordingly, genetic deletion of OGT also inhibited osteoclast formation and downregulated critical markers related to osteoclasts differentiation and function (NFATc1, αvintegrin, cathepsin K). Indeed, cells treated with OSMI-1, an OGT inhibitor, also reduced nuclear translocation of NFATc1. Furthermore, the addition of exogenous N-acetylglucosamine (GlcNAc) strongly increased osteoclast formation and demineralization ability. Strikingly, our data show for the first time that O-GlcNAcylation facilitates an aggressive trench resorption mode in human cells. The incubation of osteoclasts with exogenous GlcNAc increases the percentage of erosion by trench while having no effect on pit resorption mode. Through time-lapse recording, we documented that osteoclasts making trenches moving across the bone surface are sensitive to GlcNAcylation. Finally, osteoclast-specific Ogt-deficient mice show increased bone density and reduced inflammation-induced bone loss during apical periodontitis model. We show that osteoclast-specific Ogt-deficient mice are less susceptible to develop bacterial-induced periapical lesion. Consistent with this, Ogt-deleted mice showed a decreased number of tartrate-resistant acid phosphatase-positive cells lining the apical periodontitis site. In summary, here we describe a hitherto undiscovered role of the HBP/O-GlcNAcylation axis tuning resorption mode and dictating bone resorption outcome.


Asunto(s)
Resorción Ósea , Periodontitis Periapical , Ratones , Humanos , Animales , Hexosaminas/metabolismo , Vías Biosintéticas , Resorción Ósea/metabolismo , Osteoclastos/metabolismo , Factores de Transcripción/metabolismo
7.
Cells ; 12(4)2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36831188

RESUMEN

Obesity is an alarming disease that favors the upset of other illnesses and enhances mortality. It is spreading fast worldwide may affect more than 1 billion people by 2030. The imbalance between excessive food ingestion and less energy expenditure leads to pathological adipose tissue expansion, characterized by increased production of proinflammatory mediators with harmful interferences in the whole organism. Bone tissue is one of those target tissues in obesity. Bone is a mineralized connective tissue that is constantly renewed to maintain its mechanical properties. Osteoblasts are responsible for extracellular matrix synthesis, while osteoclasts resorb damaged bone, and the osteocytes have a regulatory role in this process, releasing growth factors and other proteins. A balanced activity among these actors is necessary for healthy bone remodeling. In obesity, several mechanisms may trigger incorrect remodeling, increasing bone resorption to the detriment of bone formation rates. Thus, excessive weight gain may represent higher bone fragility and fracture risk. This review highlights recent insights on the central mechanisms related to obesity-associated abnormal bone. Publications from the last ten years have shown that the main molecular mechanisms associated with obesity and bone loss involve: proinflammatory adipokines and osteokines production, oxidative stress, non-coding RNA interference, insulin resistance, and changes in gut microbiota. The data collection unveils new targets for prevention and putative therapeutic tools against unbalancing bone metabolism during obesity.


Asunto(s)
Resorción Ósea , Osteoclastos , Humanos , Osteoclastos/metabolismo , Osteoblastos/metabolismo , Huesos , Resorción Ósea/metabolismo , Obesidad/metabolismo
8.
Mol Biol Rep ; 50(3): 2857-2863, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36609750

RESUMEN

PURPOSE: This work compiles the characteristics of bone cells involved in the physiological bone remodeling. METHODS: A narrative review of the literature was performed. RESULTS: Remodeling is a different process from modeling. Remodeling allows old or damaged bone tissue to be renewed, ensuring the maintenance of bone fracture resistance, as well as maintaining calcium and phosphorus homeostasis. We present the role of osteoclasts, a multinucleated cell with hematopoietic origin responsible for resorbing bone. The formation of osteoclasts depends on the cytokines macrophage colony stimulating factor (M-CSF) and receptor activator of NF-kB ligand (RANKL) and can be blocked by osteoprotegerin. Furthermore, this review highlights the features of osteoblasts, polarized cubic cells of mesenchymal origin that deposit bone and also covers osteocytes and bone lining cells. This review presents the five fundamental phases of bone remodeling and addresses aspects of its regulation through hormones and growth factors. CONCLUSIONS: Knowledge of the current concepts of physiological bone remodeling is necessary for the study of the different pathologies that affect the bone tissue and thus helps in the search for new therapies.


Asunto(s)
Glicoproteínas de Membrana , Osteocitos , Glicoproteínas de Membrana/metabolismo , Diferenciación Celular/fisiología , Proteínas Portadoras/metabolismo , Osteoclastos/metabolismo , Osteoblastos/metabolismo
9.
Braz. dent. j ; Braz. dent. j;33(5): 35-45, Sep.-Oct. 2022. graf
Artículo en Inglés | LILACS-Express | LILACS, BBO - Odontología | ID: biblio-1403781

RESUMEN

Abstract To investigate osteoclast formation in vivo and if leukotriene B4 (LTB4) loaded in microspheres (MS) could be used as a therapeutical strategy to promote a sustained delivery of the mediator and prevent osteoclast differentiation. Methods: In vivo, apical periodontitis was induced in mice to investigate osteoclast differentiation and signaling in absence of 5-lipoxygenase (5-LO). In vitro, LTB4-MS were prepared using an oil-in-water emulsion solvent extraction-evaporation process. Characterization and efficiency of LTB4 encapsulation were investigated. J774A.1 macrophages were cultured in the presence of monocyte colony-stimulating factor (M-CSF) and ligand for receptor activator of nuclear factor kappa B (RANKL) and then stimulated with LTB4-MS. Cytotoxicity, in vitro MS-LTB4 uptake, osteoclast formation and gene expression were measured. Results: We found that 5-LO negatively regulates osteoclastic formation in vivo during apical periodontitis development. In vitro, LTB4-MS were up-taken by macrophages and were not cytotoxic to the cells. LTB4-MS inhibited osteoclast formation and the synthesis of osteoclastogenic genes Acp5, Mmp9, Calcr and Ctsk. LTB4-MS inhibited differentiation of macrophages into an osteoclastic phenotype and cell activation under M-CSF and RANKL stimulus.


Resumo O objetivo deste trabalho foi Investigar a formação de osteoclastos in vivo e se o leucotrieno B4 (LTB4) incorporado em microesferas (MS) poderia ser usado como estratégia terapêutica para promover uma entrega sustentada do mediador e prevenir a diferenciação dos osteoclastos. Métodos: In vivo, a periodontite apical foi induzida em camundongos para investigar a diferenciação e sinalização de osteoclastos na ausência de 5-lipoxigenase (5-LO). In vitro, LTB4-MS foi preparado usando um processo de evaporação e extração de solvente de emulsão de óleo em água. A caracterização e a eficiência do encapsulamento do LTB4 foram investigadas. Macrófagos J774A.1 foram cultivados na presença de fator estimulador de colônia de monócitos (M-CSF) e ligante para o receptor ativador do fator nuclear kappa B (RANKL) e, então, estimulados com LTB4-MS. Citotoxicidade, captação in vitro de MS-LTB4, formação de osteoclastos e expressão gênica foram avaliadas. Resultados: A via 5-LO regula negativamente a formação de osteoclastos in vivo durante o desenvolvimento da periodontite apical. In vitro, LTB4-MS foram fagocitadas pelos macrófagos e não foram citotóxicos para as células. LTB4-MS inibiu a formação de osteoclastos e a síntese dos genes pró-osteoclastogênicos Acp5, Mmp9, Calcr e Ctsk. Conclusões: LTB4-MS inibiu a diferenciação de macrófagos em um fenótipo osteoclástico e a ativação celular sob estímulo de M-CSF e RANKL.

10.
Curr Issues Mol Biol ; 44(3): 1182-1190, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35723300

RESUMEN

Osteoporosis (OP) is the most common bone disease affecting elderly individuals. The diagnosis of this pathology is most commonly made on the basis of bone fractures. Several microRNAs (miRNAs/miRs) have been identified as possible biomarkers for the diagnosis and treatment of OP. miRNAs can regulate gene expression, and determining their functions can provide potential pharmacological targets for treating OP. A previous study showed that miR-1270 was upregulated in monocytes derived from postmenopausal women with OP. Therefore, the present study aimed to uncover the role of miR-1270 in regulating bone metabolism. To reveal the mechanism underlying the regulatory effect of miR-1270 on interferon regulatory factor 8 (IRF8) expression, luciferase assay, reverse transcription-quantitative PCR, and Western blot analysis were performed. The results suggest that miR-1270 could regulate the mRNA and protein expression levels of IRF8 by directly binding to its 3'-untranslated region. The effects of miR-1270 overexpression and IRF8 silencing on cell proliferation, migration, and invasion were also evaluated. To the best of our knowledge, the current study was the first to support the crucial role of miR-1270 in bone metabolism via modulation of IRF8 expression. In addition, miR-1270 overexpression could attenuate human osteoblast-like cells' proliferation and migration ability.

11.
J Mol Histol ; 53(4): 669-677, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35701706

RESUMEN

Osteoclasts are specialized cells that degrade and resorb bone. Bisphosphonates (BPs) are drugs with well-known capacity to inhibit the resorption of mineralized tissues. Nitrogen-containing BPs, like alendronate (ALN) and zoledronic acid (ZA), inactivate osteoclast activity mostly by alterations on the cytoskeleton architecture of the cell. In this study, we used an in vitro model to test the hypothesis that bisphosphonates may have inhibitory effects on the osteoclastogenesis and osteoclast activity after the therapy was discontinued. Primary osteoclasts were generated from mouse bone marrow in media supplemented with 1,25-dihydroxyvitamin D3 and cultivated over bones pre-treated with ALN and ZA. The pre-saturation of the bone slices with bisphosphonates did not affect cell viability. We found, however, that by disrupting the gene expression of RANKL and OPG the osteoclastogenesis and resorption activity of osteoclasts was significantly disturbed. These inhibitory effects were confirmed by scanning electron microscopy resorption assay, assessment of osteoclast ultrastructure, and by gene expression analysis of TRAP and Cathepsin K. In conclusion, ALN and ZA adhered to the bone matrix reduced the osteoclast activity in vitro.


Asunto(s)
Resorción Ósea , Osteogénesis , Animales , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/metabolismo , Huesos/metabolismo , Difosfonatos/metabolismo , Difosfonatos/farmacología , Ratones , Osteoclastos/metabolismo , Ácido Zoledrónico/metabolismo , Ácido Zoledrónico/farmacología
13.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35328707

RESUMEN

Oncostatin M (OSM), which belongs to the IL-6 family of cytokines, is the most potent and effective stimulator of osteoclast formation in this family, as assessed by different in vitro assays. Osteoclastogenesis induced by the IL-6 type of cytokines is mediated by the induction and paracrine stimulation of the osteoclastogenic cytokine receptor activator of nuclear factor κ-B ligand (RANKL), expressed on osteoblast cell membranes and targeting the receptor activator of nuclear factor κ-B (RANK) on osteoclast progenitor cells. The potent effect of OSM on osteoclastogenesis is due to an unusually robust induction of RANKL in osteoblasts through the OSM receptor (OSMR), mediated by a JAK-STAT/MAPK signaling pathway and by unique recruitment of the adapter protein Shc1 to the OSMR. Gene deletion of Osmr in mice results in decreased numbers of osteoclasts and enhanced trabecular bone caused by increased trabecular thickness, indicating that OSM may play a role in physiological regulation of bone remodeling. However, increased amounts of OSM, either through administration of recombinant protein or of adenoviral vectors expressing Osm, results in enhanced bone mass due to increased bone formation without any clear sign of increased osteoclast numbers, a finding which can be reconciled by cell culture experiments demonstrating that OSM can induce osteoblast differentiation and stimulate mineralization of bone nodules in such cultures. Thus, in vitro studies and gene deletion experiments show that OSM is a stimulator of osteoclast formation, whereas administration of OSM to mice shows that OSM is not a strong stimulator of osteoclastogenesis in vivo when administered to adult animals. These observations could be explained by our recent finding showing that OSM is a potent stimulator of the osteoclastogenesis inhibitor WNT16, acting in a negative feedback loop to reduce OSM-induced osteoclast formation.


Asunto(s)
Oncostatina M/metabolismo , Osteoclastos , Ligando RANK , Animales , Diferenciación Celular , Retroalimentación , Interleucina-6/metabolismo , Ratones , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Ligando RANK/metabolismo , Proteínas Wnt/metabolismo
14.
Biomater Adv ; 134: 112548, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35012895

RESUMEN

The bone remodeling process is crucial for titanium (Ti) osseointegration and involves the crosstalk between osteoclasts and osteoblasts. Considering the high osteogenic potential of Ti with nanotopography (Ti Nano) and that osteoclasts inhibit osteoblast differentiation, we hypothesized that nanotopography attenuate the osteoclast-induced disruption of osteoblast differentiation. Osteoblasts were co-cultured with osteoclasts on Ti Nano and Ti Control and non-co-cultured osteoblasts were used as control. Gene expression analysis using RNAseq showed that osteoclasts downregulated the expression of osteoblast marker genes and upregulated genes related to histone modification and chromatin organization in osteoblasts grown on both Ti surfaces. Osteoclasts also inhibited the mRNA and protein expression of osteoblast markers, and such effect was attenuated by Ti Nano. Also, osteoclasts increased the protein expression of H3K9me2, H3K27me3 and EZH2 in osteoblasts grown on both Ti surfaces. ChIP assay revealed that osteoclasts increased accumulation of H3K27me3 that represses the promoter regions of Runx2 and Alpl in osteoblasts grown on Ti Control, which was reduced by Ti Nano. In conclusion, these data show that despite osteoclast inhibition of osteoblasts grown on both Ti Control and Ti Nano, the nanotopography attenuates the osteoclast-induced disruption of osteoblast differentiation by preventing the increase of H3K27me3 accumulation that represses the promoter regions of some key osteoblast marker genes. These findings highlight the epigenetic mechanisms triggered by nanotopography to protect osteoblasts from the deleterious effects of osteoclasts, which modulate the process of bone remodeling and may benefit the osseointegration of Ti implants.


Asunto(s)
Osteoclastos , Titanio , Histonas/metabolismo , Metilación , Osteoblastos , Osteoclastos/metabolismo , Propiedades de Superficie , Titanio/farmacología
15.
J Histochem Cytochem ; 70(2): 169-179, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34915746

RESUMEN

Osteoclasts are cells whose main function is the resorption of bone matrix. However, several factors, including medications, can interfere with the resorption process. Alendronate (ALN), a nitrogen-containing type of bisphosphonate, and dexamethasone (DEX), a glucocorticoid, are drugs that may affect the resorption activity. The aim of this study is to investigate the effects of ALN, and/or DEX on osteoclast gene expression and resorption activity in primary mouse marrow cultures stimulated with 1,25-dihydroxyvitamin D3, a model for the bone microenvironment. Cultures were treated only with ALN (10-5 M), DEX (10-6 M), and with a combination of both agents. Viability assays performed at days 5, 7, and 9 showed the highest number of viable cells at day 7. All the following assays were then performed at day 7 of cell culture: tartrate resistant acid phosphatase (TRAP) histochemistry, receptor activator of nuclear factor kappa B ligand (RANKL) immunofluorescence, osteoprotegerin (OPG), and RANKL gene expression by qPCR and resorption analysis by scanning electron microscopy. Treatment with ALN, DEX, and the combination of both did not promote significant changes in the number of TRAP+ cells, although larger giant cells were detected in groups treated with DEX. DEX treatment increased the gene expression of RANKL and reduced OPG. The treatment with ALN reduced the depth of the resorption pits, but their inhibitory effect was less effective when administered with DEX.


Asunto(s)
Alendronato/farmacología , Médula Ósea/efectos de los fármacos , Resorción Ósea/tratamiento farmacológico , Dexametasona/farmacología , Osteoclastos/efectos de los fármacos , Animales , Bovinos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ratones , Ratones Endogámicos BALB C
16.
Rev. Fac. Med. UNAM ; 64(1): 7-16, ene.-feb. 2021. graf
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1250767

RESUMEN

Resumen: El tejido óseo, anteriormente considerado como una estructura mecánica de soporte y movimiento, ha mostrado una participación importante en la homeostasis del organismo, incluyendo al metabolismo energético y el tejido adiposo. En la actualidad se considera un órgano endócrino que sintetiza moléculas reguladoras del metabolismo denominadas osteocinas. A su vez, el tejido adiposo, considerado como una glándula de secreción interna, ayuda a mantener la reserva energética del organismo y produce proteínas y moléculas como las adipocinas, algunas de las cuales afectan directamente al hueso. El análisis del ciclo resorción/formación ósea, muestra que la masa ósea es reflejo del balance entre ambas. Cuando se pierde este balance y hay reducción de la masa ósea con aumento de la fragilidad, aparece la osteoporosis lo que incrementa el riesgo de fractura. Una de cada 3 mujeres y 1 de cada 5 hombres mayores de 50 años presenta una fractura por osteoporosis. La interacción entre tejido adiposo y hueso está mediada por citocinas, osteocinas y adipocinas. La obesidad puede incidir en el hueso por varios mecanismos entre los cuales se encuentran los inflamatorios y los inducidos por citocinas derivadas de los adipocitos como la leptina y la adiponectina que pueden modificar el metabolismo óseo. Evidencias apoyan el efecto negativo de la obesidad sobre la salud del hueso, aunque estudios al respecto aún son contradictorios.


Abstract: The bone tissue, previously considered as a mechanical support for structure and movement, has shown an important participation in the homeostasis of the body, including energy metabolism and adipose tissue. Currently, it is considered an endocrine organ that synthesizes regulatory molecules of metabolism called osteokines. At the same time, the adipose tissue, considered as an internal secretion gland, helps to maintain the body energy and produces proteins and mol ecules such as adipokines, some of which affect the bone directly. The analysis of bone resorption/formation cycle shows that bone mass is a reflection of the balance between both. When this balance is lost and there is a reduction of bone mass with increased fragility, osteoporosis appears and increases the risk of fracture. One in three women and one in five men over 50 years old have a fracture due to osteoporosis. The interaction between adipose tissue and bone is mediated by cytokines, osteokines and adipokines. Obesity may affect the bone by several mechanisms, among which the inflammatory is included and those induced by cytokines secreted by adipocytes such as leptin and adiponectin which can modify bone metabolism. Evidence supports the negative effect of obesity on bone health, although studies about it are still contradictory.

17.
Clin Oral Investig ; 25(7): 4699-4707, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33449195

RESUMEN

OBJECTIVES: The aim of this study was to investigate the inflammatory infiltrate, osteoclast formation, and expression of MMP-9 during the healing phase following root canal treatment in teeth with apical periodontitis. MATERIALS AND METHODS: Apical periodontitis was induced in dogs teeth, and root canal treatment was performed in a single visit or using calcium hydroxide as intracanal medication. One hundred and eighty days following treatment the presence of inflammation was examined, and the tissues were stained to detect osteoclasts by means of a tartrate resistant alkaline phosphatase (TRAP) assay. Synthesis of MMP-9 was detected using Western blotting and immunohistochemistry. RESULTS: Teeth with apical periodontitis that had root canal therapy performed in a single visit presented a higher synthesis of MMP-9 compared with root canal treatment using calcium hydroxide. Treatment with calcium hydroxide resulted in a reduced amount of inflammatory cells and MMP-9 positive cells. Osteoclast formation, the number of MMP-9 positive osteoclasts and cementocytes, was reduced following root canal treatment, regardless of the root canal treatment protocol used. CONCLUSION: Root canal treatment reduced the amount of inflammatory cells and osteoclasts in periapical area. The use of calcium hydroxide as intracanal medication resulted in a lower synthesis of MMP-9, though the number of osteoclasts and MMP-9 positive osteoclasts were similar between the groups. CLINICAL RELEVANCE: Periapical bone repair following root canal treatment is impacted by therapy performed either in single visit or using calcium hydroxide dressing measured by inflammatory cell recruitment, osteoclast formation, and MMP-9 synthesis.


Asunto(s)
Periodontitis Periapical , Materiales de Obturación del Conducto Radicular , Animales , Hidróxido de Calcio/farmacología , Cavidad Pulpar , Perros , Inflamación , Metaloproteinasa 9 de la Matriz , Osteoclastos , Periodontitis Periapical/tratamiento farmacológico , Irrigantes del Conducto Radicular , Tratamiento del Conducto Radicular
18.
J Mol Histol ; 52(2): 321-333, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33409945

RESUMEN

It is known that estrogen deficiency increases osteoclast formation and activity. Autophagy, a cell survival pathway, has been shown to be crucial for osteoclast function. However, little is known about the effects of estrogen depletion on osteoclast autophagy. Here, we evaluated the effects of estrogen deficiency in the immunoexpression of autophagy mediators in alveolar bone osteoclasts of ovariectomized rats. Twelve adult female rats were ovariectomized (OVX-group) or SHAM-operated (SHAM-group). After three weeks, the rats were euthanized and maxillary fragments containing alveolar bone of the first molars were processed for light microscopy or transmission electron microscopy (TEM). Paraffin-sections were subjected to the TRAP method (osteoclast marker) or to the immunohistochemical detections of beclin-1, LC3α, and p62 (autophagy mediators); araldite-sections were processed for TEM. The number of TRAP-positive osteoclasts and the number of immunolabeled-multinucleated cells (MNCs) along the alveolar bone surface of the first molar were computed. The number of TRAP-positive osteoclasts and the number of beclin-1-, LC3α- and p62-immunolabelled osteoclasts were significantly higher in OVX-group than the SHAM-group. MNCs were frequently located juxtaposed to Howship lacunae along the alveolar bone surface, indicating that these cells are osteoclasts. TEM revealed osteoclasts exhibiting autophagosomes. Our data indicate that autophagy plays an important role during estrogen deficiency-induced osteoclastogenesis. Thus, our results contribute to a better understanding on the role of autophagy on osteoclasts under estrogenic deficiency, and reinforce the idea that modulation of autophagy may be a useful tool to inhibit excessive oral bone resorption in post-menopausal women.


Asunto(s)
Autofagia/fisiología , Estrógenos/metabolismo , Osteoclastos/citología , Osteoclastos/metabolismo , Animales , Resorción Ósea/metabolismo , Femenino , Microscopía Electrónica de Transmisión , Ratas , Ratas Wistar
19.
Int Endod J ; 54(5): 736-752, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33277697

RESUMEN

AIM: To evaluate the periodontium response to tricalcium silicate (TCS) with zirconium oxide (ZrO2 ) or niobium oxide (Nb2 O5 ) used in the sealing of perforated pulp chamber floors in rat maxillary molars. METHODOLOGY: In eighty rats, the perforations in right maxillary molars were filled with either TCS + ZrO2 , TCS + Nb2 O5 , White MTA (used as a gold standard material) or no repair material was placed (Sham Group, SG); the left molars of SG, were used as controls (CG). Sections of maxillary fragments following 7, 15, 30 and 60 days were used to evaluate the volume densities of inflammatory cells (VvIC) and fibroblasts (VvFb), width of the periodontal space, amount of collagen, number of osteoclasts and number of IL-6-immunostained cells. The data were subjected to two-way ANOVA followed by Tukey's test (P ≤ 0.05). RESULTS: At all periods, significant differences in VvIC were not detected among TCS + ZrO2, TCS + Nb2 O5 and MTA groups, which had values significantly lower (P < 0.05) than the SG. Significant differences in the number of IL-6-immunolabelled cells were not observed among TCS + ZrO2 , TCS + Nb2 O5 and MTA groups (P > 0.05) at 15, 30 and 60 days. At 7, 15 and 30 days, the number of osteoclast was significantly greater in TCS + ZrO2, TCS + Nb2 O5 and MTA (P < 0.05) than in the CG; no significant difference was detected after 60 days (P > 0.05). The width of the periodontal space and amount of collagen in TCS + ZrO2 and TCS + Nb2 O5 groups were similar to the CG at 30 and 60 days while SG specimens had a significant reduction (P < 0.05) in the amount of collagen and significant increase (P < 0.05) in the width of the periodontal space. CONCLUSIONS: TCS + ZrO2 and TCS + Nb2 O5 were associated with periodontium repair since these materials allowed the reestablishment of periodontal space width and collagen formation when used in the filling of uninfected perforations in the pulp chamber floor of maxillary rat molars. Furthermore, the significant reduction in the periodontal space of TCS + ZrO2 and TCS + Nb2 O5 specimens after 60 days confirmed that the experimental materials were associated with a more rapid recovery of the injured tissues than MTA.


Asunto(s)
Niobio , Óxidos , Animales , Compuestos de Calcio , Cavidad Pulpar , Combinación de Medicamentos , Ensayo de Materiales , Diente Molar/cirugía , Ratas , Cemento de Silicato , Silicatos , Circonio
20.
Front Pharmacol ; 11: 579926, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33364953

RESUMEN

Periodontal disease (PD) is a prevalent inflammatory disease with the most severe consequence being the loss of the alveolar bone and teeth. We therefore aimed to evaluate the effects of telmisartan (TELM), an angiotensin II type 1 receptor (Agtr1) antagonist, on the PD-induced alveolar bone loss, in Wistar (W) and Spontaneous Hypertensive Rats (SHRs). PD was induced by ligating the lower first molars with silk, and 10 mg/kg TELM was concomitantly administered for 15 days. The hemimandibles were subjected to microtomography, ELISA was used for detecting tumor necrosis factor (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), CXCL3, and CCL2, while qRT-PCR was used for analyzing expression of components of renin-angiotensin system (RAS) (Agt, Ace, Agt1r, Agt2r, Ace2, and Masr), and bone markers (Runx2, Osx, Catnb, Alp, Col1a1, Opn, Ocn, Bsp, Bmp2, Trap, Rank, Rankl, CtsK, Mmp-2, Mmp-9, and osteoclast-associated receptor (Oscar)). The SHR + PD group showed greater alveolar bone loss than the W + PD group, what was significantly inhibited by treatment with TELM, especially in the SHR group. Additionally, TELM reduced the production of TNF-α, IL-1ß, and CXCL3 in the SHR group. The expression of Agt increased in the groups with PD, while Agtr2 reduced, and TELM reduced the expression of Agtr1 and increased the expression of Agtr2, in W and SHRs. PD did not induce major changes in the expression of bone formation markers, except for the expression of Alp, which decreased in the PD groups. The bone resorption markers expression, Mmp9, Ctsk, and Vtn, was higher in the SHR + PD group, compared to the respective control and W + PD group. However, TELM attenuated these changes and increased the expression of Runx2 and Alp. Our study suggested that TELM has a protective effect on the progression of PD, especially in hypertensive animals, as evaluated by the resorption of the lower alveolar bone. This can be partly explained by the modulation in the expression of Angiotensin II receptors (AT1R and AT2R), reduced production of inflammatory mediators, the reduced expression of resorption markers, and the increased expression of the bone formation markers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA