Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.502
Filtrar
1.
J Environ Sci (China) ; 147: 642-651, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003079

RESUMEN

Nowadays, it is still a challenge to prepared high efficiency and low cost formaldehyde (HCHO) removal catalysts in order to tackle the long-living indoor air pollution. Herein, δ-MnO2 is successfully synthesized by a facile ozonation strategy, where Mn2+ is oxidized by ozone (O3) bubble in an alkaline solution. It presents one of the best catalytic properties with a low 100% conversion temperature of 85°C for 50 ppm of HCHO under a GHSV of 48,000 mL/(g·hr). As a comparison, more than 6 times far longer oxidation time is needed if O3 is replaced by O2. Characterizations show that ozonation process generates a different intermediate of tetragonal ß-HMnO2, which would favor the quick transformation into the final product δ-MnO2, as compared with the relatively more thermodynamically stable monoclinic γ-HMnO2 in the O2 process. Finally, HCHO is found to be decomposed into CO2 via formate, dioxymethylene and carbonate species as identified by room temperature in-situ diffuse reflectance infrared fourier transform spectroscopy. All these results show great potency of this facile ozonation routine for the highly active δ-MnO2 synthesis in order to remove the HCHO contamination.


Asunto(s)
Formaldehído , Compuestos de Manganeso , Óxidos , Ozono , Ozono/química , Compuestos de Manganeso/química , Formaldehído/química , Óxidos/química , Contaminantes Atmosféricos/química , Oxidación-Reducción , Temperatura , Contaminación del Aire Interior/prevención & control , Catálisis
2.
Sci Total Environ ; 947: 174405, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38960186

RESUMEN

In this study, the chemical mechanisms of O3 and nitrate formation as well as the control strategy were investigated based on extensive observations in Tai'an city in the NCP and an observation-constrained box model. The results showed that O3 pollution was severe with the maximum hourly O3 concentration reaching 150 ppb. Higher O3 concentration was typically accompanied by higher PM2.5 concentrations, which could be ascribed to the common precursors of VOCs and NOx. The modeled averaged peak concentrations of OH, HO2, and RO2 were relatively higher compared to previous observations, indicating strong atmospheric oxidation capacity in the study area. The ROx production rate increased from 2.8 ppb h-1 to 5 ppb h-1 from the clean case to the heavily polluted case and was dominated by HONO photolysis, followed by HCHO photolysis. The contribution of radical-self combination to radical termination gradually exceeded NO2 + OH from clean to polluted cases, indicating that O3 formation shifted to a more NOx-limited regime. The O3 production rate increased from 14 ppb h-1 to 22 ppb h-1 from clean to heavily polluted cases. The relative incremental reactivity (RIR) results showed that VOCs and NOx had comparable RIR values during most days, which suggested that decreasing VOCs or NOx was both effective in alleviating O3 pollution. In addition, HCHO, with the largest RIR value, made important contribution to O3 production. The Empirical Kinetic Modeling Approach (EKMA) revealed that synergistic control of O3 and nitrate can be achieved by decreasing both NOx and VOCs emissions (e.g., alkenes) with the ratio of 3:1. This study emphasized the importance of NOx abatement for the synergistic control of O3 and nitrate pollution in the Tai'an area as the sustained emissions control has shifted the O3 and nitrate formation to a more NOx-limited regime.

3.
Int Immunopharmacol ; 139: 112673, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39018686

RESUMEN

This prospective, randomized, controlled clinical trial assessed the therapeutic effects of major ozone autohemotherapy (O3-MAH) in patients with post-acute sequelae of COVID-19 (PASC). Seventy-three eligible participants were randomly assigned to an O3-MAH plus conventional therapy group (n = 35) or a conventional therapy alone group (n = 38). Symptom score, pulmonary function, 6-minute walk distance (6MWD), and hematological, biochemical, and immunological parameters were evaluated before and after the interventions. Both groups demonstrated improvements in various parameters post-intervention, but efficacy was greater in the O3-MAH group than the conventional treatment group; with intervention effectiveness defined as a ≥ 50 % reduction in symptom score, 25 of 35 patients (71 %) responded to O3-MAH, while 17/38 patients (45 %) responded to conventional treatment alone (P = 0.0325). Significant improvements in symptom scores (P = 0.0478), tidal volume (P = 0.0374), predicted 6MWD (P = 0.0032), and coagulation and inflammatory indicators were noted in the O3-MAH group compared with the conventional treatment group. O3-MAH was more likely to be effective in patients with elevated CRP levels. Furthermore, O3-MAH markedly improved cellular immunity, and this improvement became more pronounced with extended treatment duration. In summary, combining O3-MAH with conventional treatment was more effective than conventional therapy alone in improving symptoms, pulmonary function, inflammation, coagulation, and cellular immunity in patients with PASC. Further research is now warranted to validate these findings and individualize the regimen.

4.
Huan Jing Ke Xue ; 45(7): 3778-3788, 2024 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-39022926

RESUMEN

The spatial-temporal distribution pattern of surface O3 over the Qinghai-Xizang Plateau (QXP) was analyzed based on air quality monitoring data and meteorological data from 12 cities on the QXP from 2015 to 2021. Kolmogorov-Zurbenko (KZ) filtering was employed to separate the original O3-8h series into components at different time scales. Then, multiple linear regression of meteorological variables was used to quantitatively isolate the effects of meteorology and emissions. The results revealed that the annual mass concentrations of surface O3-8h from 2015 to 2021 in 12 cities over the QXP ranged from 78.7 to 156.7 µg·m-3, and the exceedance rates of O3 mass concentrations (National Air Quality Standard of grade II) ranged from 0.7%-1.5%. The monthly O3-8h mass concentration displayed a single-peak inverted "V"-shape and a multi-peak "M"-shape. The maximum monthly concentration of O3 occurred in April to July, and valleys occurred in July, September, and December. The short-term, seasonal, and long-term components of O3-8hdecomposed by KZ filtering contributed 29.6%, 51.4%, and 9.1% to the total variance in the original O3 sequence in 12 cities, respectively. From the whole region, the meteorological conditions were unfavorable for O3 reduction on the QXP from 2015 to 2017, which made the long-term component of O3 increase by 0.2-2.1 µg·m-3. The meteorological conditions were favorable for O3-8h reduction from 2018 to 2021, which led to the long-term component of O3-8h decrease by 0.4-1.1 µg·m-3. The meteorological conditions increased the long-term component of O3-8h in Ngari, Lhasa, Naqu, Nyingchi, Qamdo, Haixi, and Xining, with an average contribution of 30.1%. The meteorological conditions decreased the long-term component of O3-8h in Shigatse and Golog, with contributions of 359.0% and 56.5%, respectively. The increase in the long-term component of O3-8h in Ngari, Shigatse, Nagqu, Haixi, and Xining could be due to the rapid decrease in the long-term component of PM2.5 (4.04 µg·ï¼ˆm3·a)-1).

5.
Huan Jing Ke Xue ; 45(7): 3789-3798, 2024 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-39022927

RESUMEN

Guanzhong urban agglomeration has a good development foundation and great development potential, and it has a unique strategic position in the national all-round opening up pattern. In recent years, the problem of near-surface ozone (O3) in the Guanzhong Region has become increasingly prominent, which has become a bottleneck affecting the continuous improvement of air quality. In order to effectively prevent and control O3 pollution, this study analyzed the characteristics of annual, monthly, and daily changes in O3 concentration in the Guanzhong Region based on the environmental monitoring data from 2018 to 2021. A geo-detector was used to study the driving factors of the spatial differentiation of O3 concentration, and the sources of O3 were analyzed using a backward trajectory model and emission inventory construction. The results showed that the daily and monthly variation in O3 concentration in the Guanzhong Region were unimodal. The daily maximum value appeared at 15:00, the minimum value appeared at 07:00, the peak value of the monthly average appeared in June, and the valley value appeared in December. The O3 concentration was highest in summer, followed by that in spring, and the lowest in winter. The days of O3 exceeding the standard showed mainly mild pollution, and moderate and above pollution showed a trend of decreasing first and then increasing. The O3 concentration in the Guanzhong Region was mainly closely related to precursors and meteorological factors, and the explanatory power of the interaction of each factor was significantly greater than that of any single factor. The regional transport of O3 concentration in the Guanzhong Region was mainly affected by easterly airflow, followed by the northwest direction, with the potential source areas located mainly in Henan Province and Hubei Province. The main local sources of volatile organic compounds (VOCs) were solvent use sources, process sources, and mobile sources, and the main emission sources of nitrogen oxides (NOx) were mobile sources and industrial production combustion sources. The research results have a guiding significance for O3 joint prevention and control in the Guanzhong Region.

6.
Huan Jing Ke Xue ; 45(7): 3799-3807, 2024 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-39022928

RESUMEN

The sensitivity analysis of ozone generation in key ozone-polluted regions and cities is an important basis for the prevention and control of near-surface ozone (O3) pollution. Based on the five-year data of ozone, VOCs, and NOx from three typical stations in Shanghai, namely Dianshan Lake Station (suburban area), Pudong Station (urban area), and Xinlian Station (industrial area) from 2016 to 2020, the nonlinear relationship between ozone and precursors (VOCs and NOx) during the high-ozone season in the five years was quantitatively analyzed using an observation model. The results showed that the peak months of near-surface ozone in Shanghai were from April to September during 2016 to 2020, with the highest values appearing from June to August. The volume fraction of VOCs and NO2 concentration had a strong indicative significance for the O3 concentration at Pudong Station. The O3 concentration at Dianshan Lake Station was mainly influenced by regional environment, meteorological factors, and cross-regional transmission. The ozone concentration at Xinlian Station was a combination of environmental background concentration and industrial area photochemical pollution. Pudong Station and Dianshan Lake Station were in the VOCs control zone. Xinlian Station was gradually closer to the NOx control zone from 2016 to 2019, transitioning to the VOCs control zone since 2020. The L·OH of Pudong Station, Dianshan Lake Station, and Xinlian Station were: NOx control area>collaborative control area>VOCs control area.

7.
Huan Jing Ke Xue ; 45(7): 3808-3814, 2024 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-39022929

RESUMEN

Based on the ozone (O3) monitoring data of the Pearl River Delta (PRD) from 2015 to 2022 and the reanalysis of meteorological data, the impact of meteorological conditions on the annual variation and trends of the maximum daily 8-hour average O3 concentration (MDA8-O3) were quantified using multiple linear regression (MLR) and LMG methods. The results indicated that the MLR model constructed using meteorological parameters from individual months in autumn better simulated the variation in MDA8-O3 compared to that in the model built using meteorological parameters from the entire autumn season. The combined influence of total cloud cover, relative humidity, 2 m maximum temperature, and 850 hPa zonal wind led to a reduction of 34.1 µg·m-3 in MAD8-O3 in 2020 compared to that in 2019, with contributions of 31.3%, 45.2%, 15.8%, and 6.7%, respectively. The observed trends of MDA8-O3 in the PRD for September, October, November, and the autumn season during 2015-2022 were 7.3, 5.2, 4.8, and 5.8 µg·ï¼ˆm3·a)-1, respectively. Among these, the trends driven by meteorological factors were 3.6, 2.4, 2.4, and 3.1 µg·ï¼ˆm3·a)-1. Overall, meteorological conditions contributed 53.4% to the variations in autumn MDA8-O3 in the PRD from 2015 to 2022.

8.
Huan Jing Ke Xue ; 45(7): 3815-3827, 2024 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-39022930

RESUMEN

High spatiotemporal resolution data on near-surface ozone concentration distribution is of great significance for monitoring and controlling atmospheric ozone pollution and improving the living environment. Using TROPOMI-L3 NO2, HCHO products, and ERA5-land high-resolution data as estimation variables, an XGBoost-LME model was constructed to estimate the near-surface ozone concentration in the Beijing-Tianjin-Hebei Region. The results showed that: ① Through correlation analysis, surface 2 m temperature (T2M), 2 m dewpoint temperature (D2M), surface solar radiation downwards (SSRD), tropospheric formaldehyde (HCHO), and tropospheric nitrogen dioxide (NO2) were important factors affecting the near-surface ozone concentration in the Beijing-Tianjin-Hebei Region. Among them, T2M, SSRD, and D2M had strong correlations, with correlation coefficients of 0.82, 0.75, and 0.71, respectively. ② Compared with that of other models, the XGBoost-LME model had the best performance in terms of various indicators. The ten-fold cross-validation evaluation indicators R2, MAE, and RMSE were 0.951, 9.27 µg·m-3, and 13.49 µg·m-3, respectively. At the same time, the model performed well at different time scales. ③ In terms of time, there was a significant seasonal difference in near-surface ozone concentration in the Beijing-Tianjin-Hebei Region in 2019, with the concentration changing in the order of summer > spring > autumn > winter. The monthly average ozone concentration in the region showed an inverted "V" trend, with a slight increase in September. The highest value occurred in July, whereas the lowest value occurred in December. In terms of spatial distribution, the near-surface ozone concentrations in the Beijing-Tianjin-Hebei Region during the months of February and March were generally at the same levels. In January, November, and December, there was a relatively insignificant trend of higher concentrations in the north and lower concentrations in the south. For the remaining months, the spatial distribution of near-surface ozone concentrations in this area predominantly exhibited a pattern of higher concentrations in the south and lower concentrations in the north. High-value areas were predominantly found in the plain regions of the southern part with lower altitudes, dense population, and higher industrial emissions; low-value areas, on the other hand, were primarily located in mountainous areas of the northern part with higher altitudes, sparse population, higher vegetation coverage, and lower industrial emissions.

9.
Huan Jing Ke Xue ; 45(7): 3828-3838, 2024 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-39022931

RESUMEN

Based on a typical ozone (O3) pollution process in Jinan City from June 16 to 26, 2021, the variation characteristics of O3 and its precursor volatile organic compounds (VOCs) during different pollution periods (clean period (CP), pollution rise period (PRP), heavy pollution period (HPP), and pollution decline period (PDP)) in the urban area were analyzed. Both positive matrix factorization (PMF) and an observation-based model (OBM) were used to identify the main sources of VOCs, O3 production mechanisms, and sensitive species. The results showed that the average value of ρ(O3-8h) during the HPP period in the urban area was (246.67±11.24) µg·m-3, and ρ(O3-1h) had a peak value of 300 µg·m-3. The volume fractions of VOCs and NO2 concentration were affected by the decrease in planetary boundary layer and wind speed, which were 76.99%-145.36% and 127.78%-141.18% higher than those in the other three periods, respectively, and were the main reasons for the aggravation of O3 pollution. Alkanes, oxygenated volatile organic compounds (OVOCs), and halogenated hydrocarbons accounted for 43.81%, 20.98%, and 17.43% of VOCs in urban areas, respectively. All of them showed significant growth during the HPP period, with acetone, propane, and ethane being the top three species by volume in each stage and isopentane showing the highest growth during the HPP period. Alkene, alkanes, and aromatic hydrocarbons accounted for 40.19%, 28.06%, and 21.92% of the ozone generation potential (OFP). 1-butene, toluene, isopentane, and isoprene were the species with higher OFP. Isoprene had the highest OFP during the PRP phase, and 1-butene had the highest OFP during the HPP phase. The volume fraction of isopentane significantly increased OFP. The correlation coefficient between VOCs and CO preliminarily indicated that motor vehicle exhaust and oil and gas volatilization were the main sources of VOCs during the HPP period. Further use of PMF revealed that solvent use sources, combustion sources, motor vehicle exhaust+oil and gas volatilization sources, industrial emission sources, and plant sources were important sources of VOCs in urban areas. The contribution of motor vehicle exhaust+oil and gas volatilization sources in the HPP period to VOCs was 3.09-14.72 times higher than that in other periods. The contribution of solvent use sources to VOCs was approximately 2.50 times higher than that in the CP and PRP periods. The main sources of VOCs volume fraction increase were motor vehicle exhaust, oil and gas volatilization sources, and solvent use sources. Potential sources and concentration weight analysis found that VOCs were also affected by the transmission of VOCs to Binzhou and Dongying in the northeast direction. The OBM results indicated that the main pathway of O3 formation in urban areas was the reaction of peroxide hydroxyl radicals (HO2·ï¼‰ and methyl peroxide radicals (CH3O2·ï¼‰ with NO, and the net ozone generation rate during the HPP phase [P(O3)net] was 24×10-9 h-1. Based on the sensitivity experiment results, the alkene components of 1-butene, propylene, cis-2-butene, and ethylene were the dominant species for O3 production.

10.
Proc Natl Acad Sci U S A ; 121(28): e2321770121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38950370

RESUMEN

Solar particle events (SPEs) are short-lived bursts of high-energy particles from the solar atmosphere and are widely recognized as posing significant economic risks to modern society. Most SPEs are relatively weak and have minor impacts on the Earth's environment, but historic records contain much stronger SPEs which have the potential to alter atmospheric chemistry, impacting climate and biological life. The impacts of such strong SPEs would be far more severe when the Earth's protective geomagnetic field is weak, such as during past geomagnetic excursions or reversals. Here, we model the impacts of an extreme SPE under different geomagnetic field strengths, focusing on changes in atmospheric chemistry and surface radiation using the atmosphere-ocean-chemistry-climate model SOCOL3-MPIOM and the radiation transfer model LibRadtran. Under current geomagnetic conditions, an extreme SPE would increase NOx concentrations in the polar stratosphere and mesosphere, causing reductions in extratropical stratospheric ozone lasting for about a year. In contrast, with no geomagnetic field, there would be a substantial increase in NOx throughout the entire atmosphere, resulting in severe stratospheric ozone depletion for several years. The resulting ground-level ultraviolet (UV) radiation would remain elevated for up to 6 y, leading to increases in UV index up to 20 to 25% and solar-induced DNA damage rates by 40 to 50%. The potential evolutionary impacts of past extreme SPEs remain an important question, while the risks they pose to human health in modern conditions continue to be underestimated.

11.
Sci Total Environ ; 946: 174327, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38955271

RESUMEN

We employed an enhanced WRF-Chem to investigate the discrete mechanisms of aerosol-radiation-feedback (ARF), extinction-photochemistry (AEP), and heterogeneous-reactions (AHR) across different seasons in eastern China, aiming to assess the synergistic effects arising from the simultaneous operation of multiple processes on O3 and PM2.5. Our findings demonstrated that ARF fostered the accumulation of pollutants and moisture, initiating two distinct feedback mechanisms concerning O3. The elevation in the NO/NO2 ratio amplified O3 consumption. Increased near-surface moisture diminished upper-level cloud formation, thereby enhancing photolysis rates and O3 photochemical production. The pronounced impact of heightened NO/NO2 on O3 led to a decrease of 0.1-2.7 ppb. When decoupled from ARF, AEP led to a more significant reduction in photolysis rates, resulting in declines in both O3 and PM2.5, except for an anomalous increase observed in summer, with O3 increasing by 1.6 ppb and PM2.5 by 2.5 µg m-3. The heterogeneous absorption of hydroxides in spring, autumn, and winter predominantly governed the AHR-induced variation of O3, leading to a decrease in O3 by 0.7-1 ppb. Conversely, O3 variations in summer were primarily dictated by O3-sensitive chemistry, with heterogeneous absorption of NOy catalyzing a decrease of 2.4 ppb in O3. Furthermore, AHR accentuated PM2.5 by facilitating the formation of fine sulfates and ammonium while impeding nitrate formation. In summer, the collective impact of ARF, AEP, and AHR (ALL) led to a substantial reduction of 6.2 ppb in O3, alleviating the secondary oxidation of PM2.5 and leading to a decrease of 0.3 µg m-3 in PM2.5. Conversely, albeit aerosol substantially depleted O3 by 0.4-4 ppb through their interactions except for summer, aerosol feedback on PM2.5 was more pronounced, resulting in a significant increase of 1.7-6.1 µg m-3 in PM2.5. Our study underscored the seasonal disparities in the ramifications of multifaceted aerosol-ozone interplay on air quality.

12.
Sci Bull (Beijing) ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38955565

RESUMEN

The terrestrial ecosystem in China mitigates 21%-45% of the national contemporary fossil fuel CO2 emissions every year. Maintaining and strengthening the land carbon sink is essential for reaching China's target of carbon neutrality. However, this sink is subject to large uncertainties due to the joint impacts of climate change, air pollution, and human activities. Here, we explore the potential of strengthening land carbon sink in China through anthropogenic interventions, including forestation, ozone reduction, and litter removal, taking advantage of a well-validated dynamic vegetation model and meteorological forcings from 16 climate models. Without anthropogenic interventions, considering Shared Socioeconomic Pathways (SSP) scenarios, the land sink is projected to be 0.26-0.56 Pg C a-1 at 2060, to which climate change contributes 0.06-0.13 Pg C a-1 and CO2 fertilization contributes 0.08-0.44 Pg C a-1 with the stronger effects for higher emission scenarios. With anthropogenic interventions, under a close-to-neutral emission scenario (SSP1-2.6), the land sink becomes 0.47-0.57 Pg C a-1 at 2060, including the contributions of 0.12 Pg C a-1 by conservative forestation, 0.07 Pg C a-1 by ozone pollution control, and 0.06-0.16 Pg C a-1 by 20% litter removal over planted forest. This sink can mitigate 90%-110% of the residue anthropogenic carbon emissions in 2060, providing a solid foundation for the carbon neutrality in China.

13.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(4): 687-692, 2024 Aug 18.
Artículo en Chino | MEDLINE | ID: mdl-39041566

RESUMEN

OBJECTIVE: To evaluate the effects of fine particle matter (PM2.5) and ozone (O3) combined exposure on adenosine triphosphate (ATP) amount and ATPase activities in nasal mucosa of Sprague Dawley (SD) rats. METHODS: Twenty male SD rats were divided into control group (n=10) and exposure group (n=10) by random number table method. The rats were fed in the conventional clean environment and the air pollutant exposure system established by our team, respectively, and exposed for 208 d. During the exposure period, the concentrations of PM2.5 and O3 in the exposure system were monitored, and a comprehensive assessment of PM2.5 and O3 in the exposure system was conducted by combining self-measurement and site data. On the 208 d of exposure, the core, liver, spleen, kidney, testis and other major organs and nasal mucosal tissues of the rats were harvested. Each organ was weighed and the organ coefficient calculated. The total amount of ATP was measured by bioluminescence, and the activities of Na+-K+ -ATPase and Ca2+ -ATPase were detected by spectrophotometry. The t test of two independent samples was used to compare the differences among the indicator groups. RESULTS: From the 3rd week to the end of exposure duration, the body weight of the rats in the exposure group was higher than that in the control group (P < 0.05), and there was no significant difference in organ coefficients between the two groups. The average daily PM2.5 concentration in the exposure group was (30.68±19.23) µg/m3, and the maximum 8 h ozone concentration (O3-8 h) was (82.45±35.81) µg/m3. The chemiluminescence value (792.4±274.1) IU/L of ATP in nasal mucosa of the rats in the exposure group was lower than that in the control group (1 126.8±218.1) IU/L. The Na+-K+-ATPase activity (1.53±0.85) U/mg in nasal mucosa of the rats in the exposure group was lower than that in the control group (4.31±1.60) U/mg (P < 0.05). The protein content of nasal mucosa in the control group and the exposure group were (302.14±52.51) mg/L and (234.58±53.49) mg/L, respectively, and the activity of Ca2+-ATPase was (0.81±0.27) U/mg and (0.99±0.73) U/mg, respectively. There was no significant difference between the groups. CONCLUSION: The ability of power capacity decreased in the rat nasal mucossa under the sub-chronic low-concentration exposure of PM2.5 and O3.


Asunto(s)
Adenosina Trifosfato , Contaminantes Atmosféricos , Mucosa Nasal , Ozono , Material Particulado , Ratas Sprague-Dawley , Animales , Masculino , Ratas , Mucosa Nasal/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfatasas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Exposición a Riesgos Ambientales/efectos adversos
14.
Sci Total Environ ; 946: 174365, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38960176

RESUMEN

There is considerable academic interest in the particle-ozone synergistic relationship (PO) between fine particulate matter (PM2.5) and ozone (O3). Using various synoptic weather patterns (SWPs), we quantitatively assessed the variations in the PO, which is relevant to formulating policies aimed at controlling complex pollution in the air. First, based on one-year sampling data from March 2018 to February 2019, the SWPs classification of the Yangtze River Delta (YRD) was conducted using the sum-of-squares technique (SS). Five dominant SWPs can be found in the YRD region, including the Aleutian low under SWP1 (occurring 45 % of the year), a tropical cyclone under SWP2 (21 %), the tropical cyclone and western Pacific Subtropical High (WPSH) under SWP3 (15.4 %), the WPSH under SWP4 (6.9 %), and a continental high pressure under SWP5 (3.1 %). The phenomenon of a "seesaw" between PM2.5 and O3 concentrations exhibited significant spatial heterogeneity, which was influenced by meteorological mechanisms. Second, the multi-linear regression (MLR) model and the partial correlation (PCOR) analysis were employed to quantify the effects of dominant components and meteorological factors on the PO. Meteorological variables could collectively explain only 33.0 % of the PM2.5 variations, but 58.0 % for O3. O3 promoted each other with low concentrations of PM2.5 but was inhibited by high concentrations of PM2.5. High relative humidity (RH) was conducive to the generation of PM2.5 secondary components and enhanced the radiative effects of aerosols and the negative correlation of PO. In addition, attention should be paid to assessing the combined effects of precursor levels, weather, and chemical reactions on the particle-ozone complex pollution. The control of O3 pollutants should be intensified in summer, while the focus should be on reducing PM2.5 pollutants in winter. Prevention and control measures need to reflect the differences in weather conditions and pollution characteristics, with a focus on RH and secondary components of PM2.5.

15.
Environ Sci Pollut Res Int ; 31(33): 45588-45601, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967847

RESUMEN

The performance of catalytic ability of MFe2O4/MoS2 in the ozonation process was investigated in this work. The synthesized MnFe2O4/MoS2 was optimize prepared and then characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photo-electron spectroscopy, and magnetic saturation strength. The results showed that when Cphenol = 200 mg/L, initial pH = 9.0, Q = 0.10 L/min, and CMnFe2O4/MoS2 = 0.10 g/L, MnFe2O4/MoS2 addition improved the degradation efficiency of phenol by 20.0%. The effects of pH, catalyst dosage, and inorganic ions on the phenol removal by the MnFe2O4/MoS2 catalytic ozonation were investigated. Five cycle experiments proved that MnFe2O4/MoS2 had good recyclability and stability. MnFe2O4/MoS2 also showed good catalytic performance in the treatment of coal chemical wastewater pesticide wastewater. The MnFe2O4 doped with MoS2 could provide abundant surface active sites for ozone and promote the stable cycle of Mn2+/Mn3+and Fe2+/Fe3+, thus generating large amounts of •OH and improving the degradation of phenol by ozonation. The MnFe2O4/MoS2/ozonation treatment system provides a technical reference and theoretical basis for industrial wastewater treatment.


Asunto(s)
Ozono , Aguas Residuales , Aguas Residuales/química , Ozono/química , Catálisis , Compuestos Férricos/química , Compuestos de Manganeso/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Fenoles/química , Molibdeno/química , Disulfuros/química
16.
Environ Sci Pollut Res Int ; 31(33): 45913-45928, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38980483

RESUMEN

One effective option to minimize N-nitrosodimethylamine (NDMA) in finished drinking water is to identify and control its precursors. However, previous works to identify significant precursors use formation potential (FP) tests using high doses to assure the maximum NDMA formation rather than the NDMA formation in finished waters. In this study, we applied characteristic low treatment doses of ozone (O3)-to-dissolved organic carbon (DOC) of target compounds of 0.8 mg/mg and NH2Cl of 2.5 ± 0.2 mg Cl2/L to evaluate the NDMAFP yields of organic compounds bearing N,N-dimethylamine (DMA) and N,N-dimethylhydrazine (DMH) during preozonation and post-chloramination. The results in pH-buffered Milli-Q water showed a significant decrease from ≤ 52% to non-detectable levels in the O3-NDMAFP yields of O3-reactive precursors (i.e., DMH-like compounds) after preozonation and post-chloramination. Similarly, a significant decrease from 0.5 to 12% to nonquantifiable levels was observed for the NH2Cl-NDMAFP yields of NH2Cl-reactive precursors; however, the NH2Cl-NDMAFP yields of N,N-dimethylbenzylamine (DMBzA)-like compounds only decreased from ~ 110 to ≤ 43%, suggesting that these compounds could contribute to NH2Cl-NDMAFPs even after preozonation. The effect of the matrix in sewage-effluent and lake water samples varied and was specific for precursors; for example, the O3-NDMAFP yield of 1,1,1',1'-tetramethyl-4,4'-(methylene-di-p-phenylene) disemicarbazide (TMDS), an important O3-reactive NDMA precursor, did not significantly decrease when tested in sewage-effluent samples. Based on the previous occurrence concentration of TMDS in sewage samples, we estimated an NDMAFP of ~ 315 ng/L. This estimate exceeds the guidance concentrations of NDMA (3-100 ng/L), highlighting the importance of TMDS and its related compounds for NDMA formation.


Asunto(s)
Dimetilnitrosamina , Compuestos de Nitrógeno , Ozono , Contaminantes Químicos del Agua , Dimetilnitrosamina/química , Contaminantes Químicos del Agua/química , Ozono/química , Compuestos de Nitrógeno/química , Purificación del Agua , Agua Potable/química
17.
ACS Sens ; 9(7): 3707-3719, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38985951

RESUMEN

Gas sensors based on ambipolar materials offer significant advantages in reducing the size of the analytical system and enhancing its efficiency. Here, bilayer heterojunction devices are constructed using different octafluorinated phthalocyanine complexes, with Zn and Co as metal centers, combined with a lutetium bisphthalocyanine complex (LuPc2). Stable p-type behavior is observed for the ZnF8Pc/LuPc2 device under both electron-donating (NH3) and -oxidizing (NO2 and O3) gaseous species, while the CoF8Pc/LuPc2 device exhibits n-type behavior under reducing gases and p-type behavior under oxidizing gases. The nature of majority of the charge carriers of Co-based devices varies depending on the nature of target gases, displaying an ambipolar behavior. Both heterojunction devices demonstrate stable and observable response toward all three toxic gases in the sub-ppm range. Remarkably, the Co-based device is highly sensitive toward ammonia with a limit of detection (LOD) of 200 ppb, whereas the Zn-based device demonstrates exceptional sensitivity toward oxidizing gases, with excellent LOD values of 4.9 and 0.75 ppb toward NO2 and O3, respectively, which makes it one of the most effective organic heterojunction sensors reported so far for oxidizing gases.


Asunto(s)
Gases , Indoles , Zinc , Indoles/química , Gases/análisis , Gases/química , Zinc/química , Zinc/análisis , Isoindoles , Límite de Detección , Cobalto/química , Lutecio/química , Amoníaco/análisis , Dióxido de Nitrógeno/análisis , Dióxido de Nitrógeno/química , Compuestos Organometálicos/química , Contaminantes Atmosféricos/análisis
18.
Environ Sci Technol ; 58(29): 12865-12874, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38995089

RESUMEN

Short-term exposure to PM2.5 or O3 can increase mortality risk; however, limited studies have evaluated their interaction. A multicity time series study was conducted to investigate the synergistic effect of PM2.5 and O3 on mortality in China, using mortality data and high-resolution pollutant predictions from 272 cities in 2013-2015. Generalized additive models were applied to estimate associations of PM2.5 and O3 with mortality. Modification and interaction effects were explored by stratified analyses and synergistic indexes. Deaths attributable to PM2.5 and O3 were evaluated with or without modification of the other pollutant. The risk of total nonaccidental mortality increased by 0.70% for each 10 µg/m3 increase in PM2.5 when O3 levels were high, compared to 0.12% at low O3 levels. The effect of O3 on total nonaccidental mortality at high PM2.5 levels (1.26%) was also significantly higher than that at low PM2.5 levels (0.59%). Similar patterns were observed for cardiovascular or respiratory diseases. The relative excess risk of interaction and synergy index of PM2.5 and O3 on nonaccidental mortality were 0.69% and 1.31 with statistical significance, respectively. Nonaccidental deaths attributable to short-term exposure of PM2.5 or O3 when considering modification of the other pollutant were 28% and 31% higher than those without considering modification, respectively. Our results found synergistic effects of short-term coexposure to PM2.5 and O3 on mortality and suggested underestimations of attributable risks without considering their synergistic effects.


Asunto(s)
Contaminantes Atmosféricos , Ciudades , Ozono , Material Particulado , China/epidemiología , Humanos , Contaminantes Atmosféricos/toxicidad , Exposición a Riesgos Ambientales , Mortalidad
19.
Sci Total Environ ; 948: 174796, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032743

RESUMEN

End-stage kidney disease (ESKD) poses a high burden on patients and health systems. While numerous studies indicate an association between air pollution and chronic kidney disease, studies on ESKD are rare. We investigated the association of long-term exposure to nitrogen dioxide (NO2), fine particulate matter (PM2.5), black carbon (BC) and ozone (O3) with ESKD incidence in two large population-based European cohorts. We followed individuals in the Austrian Vorarlberg Health Monitoring and Promotion Program (VHM&PP) and the Italian Rome Longitudinal Study (RoLS) using dialysis and kidney transplant registries. Long-term exposure to pollutants was estimated at the home address using Europe-wide land use regression models at 100x100m scale. Hazard ratios (HR) were determined from Cox-proportional hazard models adjusted for individual and neighbourhood level confounders. We observed 501 events among 136,823 individuals in VHM&PP (mean age 42.1 years; crude incidence rate (IR) 0.14 per 1000 person-years) and 3231 events among 1,939,461 individuals in RoLS (mean age 52.4 years; IR 0.22 per 1000 person-years). In VHM&PP, there was no evidence of an association between PM2.5 or O3 and ESKD. There were elevated HRs but with large confidence intervals for BC (HR 1.17 [95 % confidence interval (CI): 0.98, 1.39] for 0.5*10-5/m), and for NO2 (HR 1.14 [95%CI: 0.96, 1.35] for 10 µg/m3). In RoLS, ESKD was associated with PM2.5 (HR 1.37 [95 % CI: 1.06, 1.76] for an increase of 5 µg/m3), while there was no evidence of association with BC, NO2, or O3 exposure. Our study suggests an association of air pollution with ESKD incidence, which differed between the two cohorts and may possibly be influenced by respective air pollution mixtures.

20.
Aesthetic Plast Surg ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987315

RESUMEN

BACKGROUND: Ozone is often used as an additive therapy for skin conditions like infectious diseases, wound healing, diabetic foot, and pressure ulcers. The viability of the nasal skin has crucial importance in revision rhinoplasty cases. The study investigates the potential benefits of medical ozone therapy in healing the nasal skin in multiple-operated cases. METHODS: The study retrospectively examined 523 revision rhinoplasty patients operated by the first author from January 2017 to January 2024. Patients consenting to ozone therapy received 3 major autohemotherapy sessions post-surgery. Patients were divided into 2 groups: those with compromised nasal skin (infection, poor vascular supply) and those with normal healing. Age, gender, smoking, diabetes, previous surgeries, grafting materials, and techniques were considered. RESULTS: Of the 523 patients, 12 (2.3%) experienced major skin complications like infection and necrosis, while 511 (97.7%) had no or minor issues, such as discoloration. In total, 301 patients accepted and received ozone therapy. Of the patients without major complications, 299 (58.3%) received ozone therapy, while 212 (41.7%) did not. Among the 12 with major complications, two (16.7%) received ozone therapy, and the remaining 10 (83.3%) did not. Ozone therapy recipients showed statistically fewer skin problems (p<0.05). Costal cartilage as tip and septal extension graft was linked to skin issues (p<0.05). No major adverse effects from ozone therapy were noted. CONCLUSIONS: Our findings indicate that ozone therapy may be a safe and potentially effective option for patients undergoing revision rhinoplasty, especially those with compromised nasal skin. It appears to aid in skin healing and regeneration, possibly through enhancing oxygen delivery and modulation of the immune response. Ozone therapy is a promising adjunct treatment for managing skin complications in revision rhinoplasty patients. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...