Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167699

RESUMEN

Light and temperature are the two most variable environmental signals, which significantly regulate plant growth and development. Plants in the natural environment usually encounter warmer temperatures during the day and cooler temperatures at night, suggesting both light and temperature are closely linked signals. Due to global warming, it has become important to understand how light and temperature signaling pathways converge, and regulate plant development. This review outlines diverse mechanisms of light and temperature perception and downstream signaling, with an emphasis on their integration and interconnection. The recent research has highlighted the regulation of thermomorphogenesis by photoreceptors and their downstream light signaling proteins under different light conditions, and circadian clock components at warm temperatures. We have made an attempt to comprehensively describe these studies and demonstrate their connection with plant developmental responses. We have also explained how gene signaling pathways of light and thermomorphogenesis, are interconnected with HSR-mediated thermotolerance, which reveals new avenues to manipulate plants for climate resilience. In addition, the role of sugars as signaling molecules between light and temperature is also highlighted. Thus, we envisage that such detailed knowledge will enhance the understanding of how plants perceive light and temperature cues simultaneously and bring about responses that help in their adaptation.

2.
J Exp Bot ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877836

RESUMEN

Light serves as a pivotal environmental cue regulating various aspects of plant growth and development, including seed germination, seedling de-etiolation, and shade avoidance. Within this regulatory framework, the basic helix-loop-helix transcription factors known as PHYTOCHROME INTERACTING FACTORS (PIFs) play an essential role in orchestrating responses to light stimuli. Phytochromes, acting as red/far-red light receptors, initiate a cascade leading to the degradation of PIFs (except PIF7), thereby triggering transcriptional reprogramming to facilitate photomorphogenesis. Recent research has unveiled multiple post-translational modifications that regulate the abundance and/or activity of PIFs, including phosphorylation, dephosphorylation, ubiquitination, deubiquitination and SUMOylation. Moreover, intriguing findings indicate that PIFs can influence chromatin modifications. These include modulation of Histone 3 Lysine-9 acetylation (H3K9ac), as well as occupancy of histone variants such as H2A.Z (associated with gene repression) and H3.3 (associated with gene activation), thereby intricately regulating downstream gene expression in response to environmental cues. This review summarizes recent advances in understanding PIFs' role in regulating various signaling pathways with a major focus on photomorphogenesis.

3.
J Exp Bot ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38660968

RESUMEN

The exogenous light cues and the phytohormone Abscisic acid (ABA) regulate several aspects of plant growth and development. In recent years, the role of the crosstalk between the light and ABA signaling pathways in regulating different physiological processes has become increasingly evident. This includes the regulation of germination and early seedling development, control of stomatal development and conductance, growth and development of roots, buds, branches, and regulation of flowering. Light and ABA signaling cascades have various convergence points at both DNA and protein levels. The molecular crosstalk involves several light signaling factors like HY5, COP1, PIFs and BBXs that integrate with ABA signaling components like the PYL receptors and ABI5. Especially, ABI5 and PIF4 promoters serve as key "hotspots" for the integration of these two pathways. Plants acquired both light and ABA signaling pathways before they colonized land almost 500 million years ago. In this review, we discuss the recent advances in the interplay of light and ABA signaling regulating plant development and provide an overview of the evolution of these two pathways.

4.
Sensors (Basel) ; 24(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38610483

RESUMEN

Relative radiometric normalization (RRN) is a critical pre-processing step that enables accurate comparisons of multitemporal remote-sensing (RS) images through unsupervised change detection. Although existing RRN methods generally have promising results in most cases, their effectiveness depends on specific conditions, especially in scenarios with land cover/land use (LULC) in image pairs in different locations. These methods often overlook these complexities, potentially introducing biases to RRN results, mainly because of the use of spatially aligned pseudo-invariant features (PIFs) for modeling. To address this, we introduce a location-independent RRN (LIRRN) method in this study that can automatically identify non-spatially matched PIFs based on brightness characteristics. Additionally, as a fast and coregistration-free model, LIRRN complements keypoint-based RRN for more accurate results in applications where coregistration is crucial. The LIRRN process starts with segmenting reference and subject images into dark, gray, and bright zones using the multi-Otsu threshold technique. PIFs are then efficiently extracted from each zone using nearest-distance-based image content matching without any spatial constraints. These PIFs construct a linear model during subject-image calibration on a band-by-band basis. The performance evaluation involved tests on five registered/unregistered bitemporal satellite images, comparing results from three conventional methods: histogram matching (HM), blockwise KAZE, and keypoint-based RRN algorithms. Experimental results consistently demonstrated LIRRN's superior performance, particularly in handling unregistered datasets. LIRRN also exhibited faster execution times than blockwise KAZE and keypoint-based approaches while yielding results comparable to those of HM in estimating normalization coefficients. Combining LIRRN and keypoint-based RRN models resulted in even more accurate and reliable results, albeit with a slight lengthening of the computational time. To investigate and further develop LIRRN, its code, and some sample datasets are available at link in Data Availability Statement.

5.
J Integr Plant Biol ; 66(5): 973-985, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38391049

RESUMEN

Starch is a major storage carbohydrate in plants and is critical in crop yield and quality. Starch synthesis is intricately regulated by internal metabolic processes and external environmental cues; however, the precise molecular mechanisms governing this process remain largely unknown. In this study, we revealed that high red to far-red (high R:FR) light significantly induces the synthesis of leaf starch and the expression of synthesis-related genes, whereas low R:FR light suppress these processes. Arabidopsis phytochrome B (phyB), the primary R and FR photoreceptor, was identified as a critical positive regulator in this process. Downstream of phyB, basic leucine zipper transcription factor ELONGATED HYPOCOTYL5 (HY5) was found to enhance starch synthesis, whereas the basic helix-loop-helix transcription factors PHYTOCHROME INTERACTING FACTORs (PIF3, PIF4, and PIF5) inhibit starch synthesis in Arabidopsis leaves. Notably, HY5 and PIFs directly compete for binding to a shared G-box cis-element in the promoter region of genes encoding starch synthases GBSS, SS3, and SS4, which leads to antagonistic regulation of their expression and, consequently, starch synthesis. Our findings highlight the vital role of phyB in enhancing starch synthesis by stabilizing HY5 and facilitating PIFs degradation under high R:FR light conditions. Conversely, under low R:FR light, PIFs predominantly inhibit starch synthesis. This study provides insight into the physiological and molecular functions of phyB and its downstream transcription factors HY5 and PIFs in starch synthesis regulation, shedding light on the regulatory mechanism by which plants synchronize dynamic light signals with metabolic cues to module starch synthesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Fitocromo B , Almidón , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Fototransducción , Fitocromo B/metabolismo , Fitocromo B/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/efectos de la radiación , Almidón/metabolismo , Almidón/biosíntesis
6.
Plant Cell Environ ; 47(6): 2058-2073, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38404129

RESUMEN

Plants adjust their growth and development in response to changing light caused by canopy shade. The molecular mechanisms underlying shade avoidance responses have been widely studied in Arabidopsis and annual crop species, yet the shade avoidance signalling in woody perennial trees remains poorly understood. Here, we first showed that PtophyB1/2 photoreceptors serve conserved roles in attenuating the shade avoidance syndrome (SAS) in poplars. Next, we conducted a systematic identification and characterization of eight PtoPIF genes in Populus tomentosa. Knocking out different PtoPIFs led to attenuated shade responses to varying extents, whereas overexpression of PtoPIFs, particularly PtoPIF3.1 and PtoPIF3.2, led to constitutive SAS phenotypes under normal light and enhanced SAS responses under simulated shade. Notably, our results revealed that distinct from Arabidopsis PIF4 and PIF5, which are major regulators of SAS, the Populus homologues PtoPIF4.1 and PtoPIF4.2 seem to play a minor role in controlling shade responses. Moreover, we showed that PtoPIF3.1/3.2 could directly activate the expression of the auxin biosynthetic gene PtoYUC8 in response to shade, suggesting a conserved PIF-YUC-auxin pathway in modulating SAS in tree. Overall, our study provides insights into shared and divergent functions of PtoPIF members in regulating various aspects of the SAS in Populus.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Fitocromo , Proteínas de Plantas , Populus , Populus/genética , Populus/efectos de la radiación , Populus/metabolismo , Populus/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitocromo/metabolismo , Fitocromo/genética , Luz , Ácidos Indolacéticos/metabolismo , Plantas Modificadas Genéticamente , Árboles/fisiología , Árboles/genética , Árboles/metabolismo
7.
Plant Mol Biol ; 114(1): 1, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177976

RESUMEN

Phytochrome-interacting factors (PIFs) belong to a subfamily of the basic helix-loop-helix (bHLH) family of transcription factors, which serve as a "hub" for development and growth of plants. They have the capability to regulate the expression of many downstream genes, integrate multiple signaling pathways, and act as a signaling center within the cell. In rice (Oryza sativa), the PIF family genes, known as OsPILs, play a crucial part in many different aspects. OsPILs play a crucial role in regulating various aspects of photomorphogenesis, skotomorphogenesis, plant growth, and development in rice. These vital processes include chlorophyll synthesis, plant gravitropism, plant height, flowering, and response to abiotic stress factors such as low temperature, drought, and high salt. Additionally, OsPILs are involved in controlling several important agronomic traits in rice. Some OsPILs members coordinate with each other to function. This review summarizes and prospects the latest research progress on the biological functions of OsPILs transcription factors and provides a reference for further exploring the functions and mechanism of OsPILs.


Asunto(s)
Oryza , Fitocromo , Fitocromo/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
New Phytol ; 240(6): 2191-2196, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37715490

RESUMEN

Leaves are the main photosynthetic organs in plants, and their anatomy is optimized for light interception and gas exchange. Although each species has a characteristic leaf anatomy, which depends on the genotype, leaves also show a large degree of developmental plasticity. Light and temperature regulate leaf development from primordia differentiation to late stages of blade expansion. While the molecular mechanisms of light and temperature signaling have been mostly studied in seedlings, in the latest years, research has focused on leaf development. Here, I will describe the latest work carried out in the environmental regulation of Arabidopsis leaf development, comparing signaling mechanisms between leaves and seedlings, highlighting the new discoveries, and pointing out the most exciting open questions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Temperatura , Hojas de la Planta/fisiología , Plantones , Morfogénesis , Regulación de la Expresión Génica de las Plantas
10.
New Phytol ; 240(3): 1097-1115, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37606175

RESUMEN

Light signals are perceived by photoreceptors, triggering the contrasting developmental transition in dark-germinated seedlings. Phytochrome-interacting factors (PIFs) are key regulators of this transition. Despite their prominent functions in transcriptional activation, little is known about PIFs' roles in transcriptional repression. Here, we provide evidence that histone acetylation is involved in regulating phytochrome-PIFs signaling in Arabidopsis. The histone deacetylase HDA19 interacts and forms a complex with PIF1 and PIF3 and the Mediator subunit MED25. The med25/hda19 double mutant mimics and enhances the phenotype of pif1/pif3 in both light and darkness. HDA19 and MED25 are recruited by PIF1/PIF3 to the target loci to reduce histone acetylation and chromatin accessibility, providing a mechanism for PIF1/PIF3-mediated transcriptional repression. Furthermore, MED25 forms liquid-like condensates, which can compartmentalize PIF1/PIF3 and HDA19 in vitro and in vivo, and the number of MED25 puncta increases in darkness. Collectively, our study establishes a mechanism wherein PIF1/PIF3 interact with HDA19 and MED25 to mediate transcriptional repression in the phytochrome signaling pathway and suggests that condensate formation with Mediator may explain the distinct and specific transcriptional activity of PIF proteins.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Luz , Fitocromo/genética , Fitocromo/metabolismo , Transducción de Señal
11.
Plant Cell Physiol ; 64(10): 1139-1145, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37384577

RESUMEN

FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and its homolog FAR-RED-IMPAIRED RESPONSE1 (FAR1) are transcription factors derived from transposases essential for phytochrome A-mediated light signaling. In addition to their essential role in light signaling, FHY3 and FAR1 also play diverse regulatory roles in plant growth and development, including clock entrainment, seed dormancy and germination, senescence, chloroplast formation, branching, flowering and meristem development. Notably, accumulating evidence indicates that the emerging role of FHY3 and FAR1 in environmental stress signaling has begun to be revealed. In this review, we summarize these recent findings in the context of FHY3 and FAR1 as integrators of light and other developmental and stressful signals. We also discuss the antagonistic action of FHY3/FAR1 and Phytochrome Interating Factors (PIFs) in various cross-talks between light, hormone and environmental cues.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Fitocromo/metabolismo , Germinación , Regulación de la Expresión Génica de las Plantas , Proteínas Nucleares/metabolismo
12.
New Phytol ; 239(4): 1190-1202, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37282777

RESUMEN

Shade tolerance is an ecological concept used in a wide range of disciplines, from plant physiology to landscaping or gardening. It refers to the strategy of some plants to persist and even thrive in environments with low light levels because of the shade produced by the vegetation proximity (e.g. in the understory). Shade tolerance influences the organization, structure, functioning, and dynamics of plant communities. However, little is known about its molecular and genetic basis. By contrast, there is a good understanding on how plants deal with the proximity of other plants, a divergent strategy used by most crops to respond to vegetation proximity. While generally shade-avoiding species strongly elongate in response to the proximity of other plants, shade-tolerant species do not. Here we review the molecular mechanisms that control the regulation of hypocotyl elongation in shade-avoiding species as a reference framework to understand shade tolerance. Comparative studies indicate that shade tolerance is implemented by components also known to regulate hypocotyl elongation in shade-avoiding species. These components, however, show differential molecular properties that explain how, in response to the same stimulus, shade-avoiding species elongate while shade-tolerant ones do not.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Luz , Hipocótilo/metabolismo , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/metabolismo
13.
Int J Mol Sci ; 24(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37240046

RESUMEN

The purple tomato variety 'Indigo Rose' (InR) is favored due to its bright appearance, abundant anthocyanins and outstanding antioxidant capacity. SlHY5 is associated with anthocyanin biosynthesis in 'Indigo Rose' plants. However, residual anthocyanins still present in Slhy5 seedlings and fruit peel indicated there was an anthocyanin induction pathway that is independent of HY5 in plants. The molecular mechanism of anthocyanins formation in 'Indigo Rose' and Slhy5 mutants is unclear. In this study, we performed omics analysis to clarify the regulatory network underlying anthocyanin biosynthesis in seedling and fruit peel of 'Indigo Rose' and Slhy5 mutant. Results showed that the total amount of anthocyanins in both seedling and fruit of InR was significantly higher than those in the Slhy5 mutant, and most genes associated with anthocyanin biosynthesis exhibited higher expression levels in InR, suggesting that SlHY5 play pivotal roles in flavonoid biosynthesis both in tomato seedlings and fruit. Yeast two-hybrid (Y2H) results revealed that SlBBX24 physically interacts with SlAN2-like and SlAN2, while SlWRKY44 could interact with SlAN11 protein. Unexpectedly, both SlPIF1 and SlPIF3 were found to interact with SlBBX24, SlAN1 and SlJAF13 by yeast two-hybrid assay. Suppression of SlBBX24 by virus-induced gene silencing (VIGS) retarded the purple coloration of the fruit peel, indicating an important role of SlBBX24 in the regulation of anthocyanin accumulation. These results deepen the understanding of purple color formation in tomato seedlings and fruits in an HY5-dependent or independent manner via excavating the genes involved in anthocyanin biosynthesis based on omics analysis.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Antocianinas/metabolismo , Plantones/genética , Plantones/metabolismo , Frutas/genética , Frutas/metabolismo , Carmin de Índigo/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36835500

RESUMEN

Phytochrome-interacting factors (PIFs) are essential for plant growth, development, and defense responses. However, research on the PIFs in sweet potato has been insufficient to date. In this study, we identified PIF genes in the cultivated hexaploid sweet potato (Ipomoea batatas) and its two wild relatives, Ipomoea triloba, and Ipomoea trifida. Phylogenetic analysis revealed that IbPIFs could be divided into four groups, showing the closest relationship with tomato and potato. Subsequently, the PIFs protein properties, chromosome location, gene structure, and protein interaction network were systematically analyzed. RNA-Seq and qRT-PCR analyses showed that IbPIFs were mainly expressed in stem, as well as had different gene expression patterns in response to various stresses. Among them, the expression of IbPIF3.1 was strongly induced by salt, drought, H2O2, cold, heat, Fusarium oxysporum f. sp. batatas (Fob), and stem nematodes, indicating that IbPIF3.1 might play an important role in response to abiotic and biotic stresses in sweet potato. Further research revealed that overexpression of IbPIF3.1 significantly enhanced drought and Fusarium wilt tolerance in transgenic tobacco plants. This study provides new insights for understanding PIF-mediated stress responses and lays a foundation for future investigation of sweet potato PIFs.


Asunto(s)
Fusarium , Ipomoea batatas , Ipomoea , Fitocromo , Ipomoea batatas/metabolismo , Fusarium/metabolismo , Filogenia , Fitocromo/metabolismo , Sequías , Peróxido de Hidrógeno/metabolismo , Ipomoea/genética , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
17.
Plant J ; 114(1): 110-123, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36710626

RESUMEN

As sessile organisms, plants encounter dynamic and challenging environments daily, including abiotic/biotic stresses. The regulation of carbon and nitrogen allocations for the synthesis of plant proteins, carbohydrates, and lipids is fundamental for plant growth and adaption to its surroundings. Light, one of the essential environmental signals, exerts a substantial impact on plant metabolism and resource partitioning (i.e., starch). However, it is not fully understood how light signaling affects carbohydrate production and allocation in plant growth and development. An orphan gene unique to Arabidopsis thaliana, named QUA-QUINE STARCH (QQS) is involved in the metabolic processes for partitioning of carbon and nitrogen among proteins and carbohydrates, thus influencing leaf, seed composition, and plant defense in Arabidopsis. In this study, we show that PHYTOCHROME-INTERACTING bHLH TRANSCRIPTION FACTORS (PIFs), including PIF4, are required to suppress QQS during the period at dawn, thus preventing overconsumption of starch reserves. QQS expression is significantly de-repressed in pif4 and pifQ, while repressed by overexpression of PIF4, suggesting that PIF4 and its close homologs (PIF1, PIF3, and PIF5) act as negative regulators of QQS expression. In addition, we show that the evening complex, including ELF3 is required for active expression of QQS, thus playing a positive role in starch catabolism during night-time. Furthermore, QQS is epigenetically suppressed by DNA methylation machinery, whereas histone H3 K4 methyltransferases (e.g., ATX1, ATX2, and ATXR7) and H3 acetyltransferases (e.g., HAC1 and HAC5) are involved in the expression of QQS. This study demonstrates that PIF light signaling factors help plants utilize optimal amounts of starch during the night and prevent overconsumption of starch before its biosynthesis during the upcoming day.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fitocromo/metabolismo , Almidón/metabolismo , Carbono/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Nitrógeno/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Arseniato Reductasas/genética , Arseniato Reductasas/metabolismo
18.
J Virol ; 96(14): e0080622, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35862697

RESUMEN

Baculoviruses initiate oral infection in the highly alkaline midgut of insects via a group of envelope proteins called per os infectivity factors (PIFs). To date, no high-resolution structural information has been reported for any PIF. Here, we present the crystal structure of the PIF5 ectodomain (PIF5e) from Autographa californica multiple nucleopolyhedrovirus (AcMNPV) at a 2.2-Å resolution. It revealed an open cavity between the N-terminal E1 domain and the C-terminal E2 domain and a cysteine-rich region with three pairs of disulfide bonds in the E2 domain. Multiple conserved intramolecular interactions within PIF5 are essential for maintaining its tertiary structure. Two conserved arginines (Arg8 and Arg74) play critical roles in E1-E2 interactions, and mutagenesis analysis supported their crucial role in oral infection. Importantly, the reduction in the oral infectivity of the Arg8, Arg74, or cysteine mutant viruses was related to the proteolytic cleavage of PIF5 by the endogenous protease embedded in occlusion bodies during alkaline treatment. This suggested that the structural stability of PIF5 under physiological conditions in the insect midgut is critical for baculoviral oral infectivity. IMPORTANCEPer os infection mediated by PIFs is the highly complex mechanism by which baculoviruses initiate infection in insects. Previous studies revealed that multiple PIF proteins form a large PIF complex on the envelope of virions, while PIF5 functions independently of the PIF complex. Here, we report the crystal structure of AcMNPV PIF5e, which, to our knowledge, is the first atomic structure reported for a PIF protein. The structure revealed the precise locations of three previously proposed disulfide bonds and other conserved intramolecular interactions, which are important for the structural stability of PIF5 and are also essential for oral infectivity. These findings advance our understanding of the molecular mechanism of baculovirus oral infection under alkaline conditions.


Asunto(s)
Nucleopoliedrovirus , Proteínas del Envoltorio Viral , Animales , Cisteína/química , Disulfuros/química , Insectos , Nucleopoliedrovirus/química , Nucleopoliedrovirus/genética , Conformación Proteica , Spodoptera , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética
19.
Int J Mol Sci ; 23(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35269904

RESUMEN

As sessile organisms, plants constantly face challenges from the external environment. In order to meet these challenges and survive, plants have evolved a set of sophisticated adaptation strategies, including changes in leaf morphology and epidermal cell development. These developmental patterns are regulated by both light and hormonal signaling pathways. However, our mechanistic understanding of the role of these signaling pathways in regulating plant response to environmental stress is still very limited. By applying single-cell RNA-Seq, we determined the expression pattern of PHYTOCHROME INTERACTING FACTOR (PIF) 1, PIF3, PIF4, and PIF5 genes in leaf epidermal pavement cells (PCs) and guard cells (GCs). PCs and GCs are very sensitive to environmental stress, and our previous research suggests that these PIFs may be involved in regulating the development of PCs, GCs, and leaf morphology under environmental stress. Growth analysis showed that pif1/3/4/5 quadruple mutant maintained tolerance to drought and salt stress, and the length to width ratio of leaves and petiole length under normal growth conditions were similar to those of wild-type (WT) plants under drought and salt treatment. Analysis of the developmental patterns of PCs and GCs, and whole leaf morphology, further confirmed that these PIFs may be involved in mediating the development of epidermal cells under drought and salt stress, likely by regulating the expression of MUTE and TOO MANY MOUTHS (TMM) genes. These results provide new insights into the molecular mechanism of plant adaptation to adverse growth environments.


Asunto(s)
Proteínas de Arabidopsis , Sequías , Proteínas de Arabidopsis/genética , Epidermis/metabolismo , Regulación de la Expresión Génica de las Plantas , RNA-Seq , Estrés Salino , Estrés Fisiológico/genética
20.
Stress Biol ; 2(1): 35, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37676326

RESUMEN

Plants have to cope with the surrounding changing environmental stimuli to optimize their physiological and developmental response throughout their entire life cycle. Light and temperature are two critical environmental cues that fluctuate greatly during day-night cycles and seasonal changes. These two external signals coordinately control the plant growth and development. Distinct spectrum of light signals are perceived by a group of wavelength-specific photoreceptors in plants. PIFs and COP1-HY5 are two predominant signaling hubs that control the expression of a large number of light-responsive genes and subsequent light-mediated development in plants. In parallel, plants also transmit low or warm temperature signals to these two regulatory modules that precisely modulate the responsiveness of low or warm temperatures. The core component of circadian clock ELF3 integrates signals from light and warm temperatures to regulate physiological and developmental processes in plants. In this review, we summarize and discuss recent advances and progresses on PIFs-, COP1-HY5- and ELF3-mediated light, low or warm temperature signaling, and highlight emerging insights regarding the interactions between light and low or warm temperature signal transduction pathways in the control of plant growth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA