Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.452
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39225225

RESUMEN

Diet has emerged as a pivotal factor in the current time for diet-induced obesity (DIO). A diet overloaded with fats and carbohydrates and unhealthy dietary habits contribute to the development of DIO through several mechanisms. The prominent ones include the transition of normal gut microbiota to obese microbiota, under-expression of AMPK, and abnormally high levels of adipogenesis. DIO is the root of many diseases. The present review deals with various aspects of DIO and its target proteins that can be specifically used for its treatment. Also, the currently available treatment strategies have been explored. It was found that the expression of five proteins, namely, PPARγ, FTO, CDK4, 14-3-3 ζ protein, and Galectin-1, is upregulated in DIO. They can be used as potential targets for drug-designing studies. Thus, with these targets, the treatment strategy for DIO using natural bioactive compounds can be a safer alternative to medications and bariatric surgeries.

2.
Biomolecules ; 14(8)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39199386

RESUMEN

Several natural compounds have been found to act as PPARγ agonists, thus regulating numerous biological processes, including the metabolism of carbohydrates and lipids, cell proliferation and differentiation, angiogenesis, and inflammation. Recently, Cladosporols, secondary metabolites purified from the fungus Cladosporium tenuissimum, have been demonstrated to display an efficient ability to control cell proliferation in human colorectal and prostate cancer cells through a PPARγ-mediated modulation of gene expression. In addition, Cladosporols exhibited a strong anti-adipogenetic activity in 3T3-L1 murine preadipocytes, preventing their in vitro differentiation into mature adipocytes. These data interestingly point out that the interaction between Cladosporols and PPARγ, in the milieu of different cells or tissues, might generate a wide range of beneficial effects for the entire organism affected by diabetes, obesity, inflammation, and cancer. This review explores the molecular mechanisms by which the Cladosporol/PPARγ complex may simultaneously interfere with a dysregulated lipid metabolism and cancer promotion and progression, highlighting the potential therapeutic benefits of Cladosporols for human health.


Asunto(s)
PPAR gamma , PPAR gamma/metabolismo , Humanos , Animales , Metabolismo de los Lípidos , Ratones , Proliferación Celular/efectos de los fármacos , Células 3T3-L1
3.
Int J Mol Sci ; 25(16)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39201373

RESUMEN

Low or insufficient testosterone levels caused by caponization promote fat deposition in animals. However, the molecular mechanism of fat deposition in caponized animals remains unclear. This study aimed to investigate the metabolomics and transcriptomic profiles of adipose tissues and study the effect of testosterone and leptin on the proliferation of adipocytes. We observed a significant enlargement in the areas of adipocytes in the abdominal fat tissues in capon, as well as increased luciferase activity of the serum leptin and a sharp decrease in the serum testosterone in caponized gander. Metabolomics and transcriptomic results revealed differentially expressed genes and differentially expressed metabolites with enhanced PARR signal pathway. The mRNA levels of peroxisome proliferators-activated receptor γ, fatty acid synthase, and suppressor of cytokine signaling 3 in goose primary pre-adipocytes were significantly upregulated with high leptin treatment and decreased significantly with increasing testosterone dose. Hence, reduced testosterone and increased leptin levels after caponization possibly promoted adipocytes proliferation and abdominal fat deposition by altering the expression of PPAR pathway related genes in caponized ganders. This study provides a new direction for the mechanism through which testosterone regulates the biological function of leptin and fat deposition in male animals.


Asunto(s)
Adipogénesis , Leptina , Transducción de Señal , Testosterona , Animales , Leptina/metabolismo , Testosterona/farmacología , Testosterona/metabolismo , Adipogénesis/efectos de los fármacos , Masculino , Transducción de Señal/efectos de los fármacos , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos , Gansos/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Receptores Activados del Proliferador del Peroxisoma/genética , Proliferación Celular/efectos de los fármacos , Tejido Adiposo/metabolismo , Tejido Adiposo/efectos de los fármacos , PPAR gamma/metabolismo , PPAR gamma/genética , Orquiectomía
4.
Mol Biol Rep ; 51(1): 945, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39215798

RESUMEN

Neurodegenerative diseases are characterized by progressive memory impairment and cognitive decline. This review aims to unravel the molecular mechanisms involved in the enhancement of memory function and mitigation of memory impairment through the activation of PPARγ agonists in neurodegenerative diseases. The findings suggest that PPARγ agonists modulate various molecular pathways involved in memory formation and maintenance. Activation of PPARγ enhances synaptic plasticity, promotes neuroprotection, suppresses neuroinflammation, attenuates oxidative stress, and regulates amyloid-beta metabolism. The comprehensive understanding of these molecular mechanisms would facilitate the development of novel therapeutic approaches targeting PPARγ to improve memory function and ultimately to alleviate the burden of neurodegenerative diseases. Further research, including clinical trials, is warranted to explore the efficacy, safety, and optimal use of specific PPARγ agonists as potential therapeutic agents in the treatment of memory impairments associated with neurodegenerative diseases.


Asunto(s)
Trastornos de la Memoria , Enfermedades Neurodegenerativas , Estrés Oxidativo , PPAR gamma , Humanos , PPAR gamma/agonistas , PPAR gamma/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Animales , Estrés Oxidativo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Plasticidad Neuronal/efectos de los fármacos , Memoria/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo
5.
FEBS J ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136063

RESUMEN

Renal fibrosis is the common outcome of practically all progressive forms of chronic kidney disease (CKD), a significant societal health concern. Glutamate dehydrogenase (GDH) 1 is one of key enzymes in glutamine metabolism to catalyze the reversible conversion of glutamate to α-ketoglutarate and ammonia. However, its function in renal fibrosis has not yet been proven. In this study, GDH1 expression was significantly downregulated in kidney tissues of both children with kidney disease and animal models of CKD. In vivo, the use of R162 (a GDH1 inhibitor) significantly improved renal fibrosis, as indicated by Sirius red and Masson trichrome staining. These findings are consistent with the impaired expression of fibrosis indicators in kidneys from both the unilateral ureteral obstruction (UUO) and 5/6 nephrectomy (5/6 Nx) models. In vitro, silencing GDH1 or pretreatment with R162 inhibited the induction of fibrosis indicators in tissue kidney proximal tubular cells (TKPTS) treated with Transforming growth factor Beta 1 (TGF-ß1), whereas activating GDH1 worsened TGF-ß1's induction impact. Using RNA-sequence, luciferase reporter assays and Biacore analysis, we demonstrated that GDH1 interacts with Peroxisome proliferator-activated receptor gamma (PPARγ) and blocks its transcriptional activity, independent of the protein's expression. Additionally, R162 treatment boosted PPARγ transcriptional activity, and blocking of this signaling pathway reversed R162's protective effect. Finally, we discovered that R162 treatment or silencing GDH1 greatly lowered reactive oxygen species (ROS) and lipid accumulation. These findings concluded that suppressing GDH1 or R162 treatment could prevent renal fibrosis by augmenting PPARγ transcriptional activity to control lipid accumulation and redox balance.

6.
Elife ; 132024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158026

RESUMEN

Complementary structural biology approaches reveal how an agonist and a covalent inhibitor simultaneously bind to a nuclear receptor.


Asunto(s)
Receptores Citoplasmáticos y Nucleares , Humanos , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/metabolismo , Unión Proteica
7.
J Cereb Blood Flow Metab ; : 271678X241274681, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39161254

RESUMEN

Peroxisome proliferator-activated receptor-γ (PPARγ) plays a protective role against brain injury after stroke in mice. However, the relationship between PPARγ gene polymorphisms and the functional outcome of acute ischemic stroke (AIS) remains unknown. 8822 patients from The Third China National Stroke Registry (CNSR-III) after whole-genome sequencing, two functional single nucleotide polymorphisms(SNPs) in PPARγ, rs1801282 C > G and rs3856806 C > T, were further analysed. The primary outcome was neurological functional disability at three months. Of the 8822 patients, 968 (11.0%) and 3497 (39.6%) were carriers of rs1801282 and rs3856806, respectively. Carriers of rs3856806 showed reduced risks for three-month neurological functional disability (OR, 0.84; 95% CI, 0.73-0.98; p = 0.02) and reduced risks for higher infarct volume (OR 0.90, 95% CI, 0.81-0.99, p = 0.04). They also had a reduced risk of neurological functional disability only in case of lower baseline IL-6 levels (OR 0.64, 95% CI 0.48-0.84, Pinteraction = 0.01). Carriers of rs1801282 had a reduced risk for three-month neurological functional disability (OR 0.77, 95% CI, 0.61-0.99, p = 0.04). Our study suggested that PPARγ polymorphisms are associated with a reduced risk for neurological functional disability and higher infarct volume in AIS. Therefore, PPARγ can be a potential therapeutic target in AIS.

8.
FASEB J ; 38(16): e70002, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39162680

RESUMEN

Breast cancer is one of the threatening malignant tumors with the highest mortality and incidence rate over the world. There are a lot of breast cancer patients dying every year due to the lack of effective and safe therapeutic drugs. Therefore, it is highly necessary to develop more effective drugs to overcome breast cancer. As a glycoside derivative of apigenin, cosmosiin is characterized by low toxicity, high water solubility, and wide distribution in nature. Additionally, cosmosiin has been shown to perform anti-tumor effects in cervical cancer, hepatocellular carcinoma and melanoma. However, its pharmacological effects on breast cancer and its mechanisms are still unknown. In our study, the anti-breast cancer effect and mechanism of cosmosiin were investigated by using breast cancer models in vivo and in vitro. The results showed that cosmosiin inhibited the proliferation, migration, and adhesion of breast cancer cells in vitro and suppressed the growth of tumor in vivo through binding with AhR and inhibiting it, thus regulating the downstream CYP1A1/AMPK/mTOR and PPARγ/Wnt/ß-catenin signaling pathways. Collectively, our findings have made contribution to the development of novel drugs against breast cancer by targeting AhR and provided a new direction for the research in the field of anti-breast cancer therapy.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Citocromo P-450 CYP1A1 , PPAR gamma , Receptores de Hidrocarburo de Aril , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , PPAR gamma/metabolismo , Animales , Receptores de Hidrocarburo de Aril/metabolismo , Ratones , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/genética , Proliferación Celular/efectos de los fármacos , Ratones Desnudos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ratones Endogámicos BALB C , Movimiento Celular/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Vía de Señalización Wnt/efectos de los fármacos
9.
J Exp Clin Cancer Res ; 43(1): 227, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39148124

RESUMEN

BACKGROUND: The failure of proper recognition of the intricate nature of pathophysiology in colorectal cancer (CRC) has a substantial effect on the progress of developing novel medications and targeted therapy approaches. Imbalances in the processes of lipid oxidation and biosynthesis of fatty acids are significant risk factors for the development of CRC. Therapeutic intervention that specifically targets the peroxisome proliferator-activated receptor gamma (PPARγ) and its downstream response element, in response to lipid metabolism, has been found to promote the growth of tumors and has shown significant clinical advantages in cancer patients. METHODS: Clinical CRC samples and extensive in vitro and in vivo experiments were carried out to determine the role of ZDHHC6 and its downstream targets via a series of biochemical assays, molecular analysis approaches and lipid metabolomics assay, etc. RESULTS: To study the effect of ZDHHC6 on the progression of CRC and identify whether ZDHHC6 is a palmitoyltransferase that regulates fatty acid synthesis, which directly palmitoylates and stabilizes PPARγ, and this stabilization in turn activates the ACLY transcription-related metabolic pathway. In this study, we demonstrate that PPARγ undergoes palmitoylation in its DNA binding domain (DBD) section. This lipid-related modification enhances the stability of PPARγ protein by preventing its destabilization. As a result, palmitoylated PPARγ inhibits its degradation induced by the lysosome and facilitates its translocation into the nucleus. In addition, we have identified zinc finger-aspartate-histidine-cysteine 6 (ZDHHC6) as a crucial controller of fatty acid biosynthesis. ZDHHC6 directly interacts with and adds palmitoyl groups to stabilize PPARγ at the Cys-313 site within the DBD domain of PPARγ. Consequently, this palmitoylation leads to an increase in the expression of ATP citrate lyase (ACLY). Furthermore, our findings reveals that ZDHHC6 actively stimulates the production of fatty acids and plays a role in the development of colorectal cancer. However, we have observed a significant reduction in the cancer-causing effects when the expression of ZDHHC6 is inhibited in in vivo trials. Significantly, in CRC, there is a strong positive correlation between the high expression of ZDHHC6 and the expression of PPARγ. Moreover, this high expression of ZDHHC6 is connected with the severity of CRC and is indicative of a poor prognosis. CONCLUSIONS: We have discovered a mechanism in which lipid biosynthesis is controlled by ZDHHC6 and includes the signaling of PPARγ-ACLY in the advancement of CRC. This finding provides a justification for targeting lipid synthesis by blocking ZDHHC6 as a potential therapeutic approach.


Asunto(s)
Aciltransferasas , Neoplasias del Colon , Reprogramación Metabólica , PPAR gamma , Animales , Femenino , Humanos , Masculino , Ratones , Aciltransferasas/metabolismo , Aciltransferasas/genética , Carcinogénesis/genética , Carcinogénesis/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Neoplasias del Colon/genética , Metabolismo de los Lípidos/genética , Lipidómica/métodos , Reprogramación Metabólica/genética , PPAR gamma/metabolismo
10.
Heliyon ; 10(15): e35423, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170432

RESUMEN

Introduction: In prior reports, Jie-Du-Tong-Luo (JDTL) was reported to help control insulin secretion and blood glucose in patients with diabetes, while also protecting liver and pancreatic islet cells against injury caused by exposure to high glucose (HG) levels. This study was thus developed to assess the effects of JDTL on HG and palmitic acid (PA)-induced muscle injury and to explore the mechanistic basis for these effects. Methods: A model of muscle injury was established using mouse C2C12 myotubes treated with HG + PA. A proteomics approach was used to assess changes in protein levels following JDTL treatment, after which Western immunoblotting was employed to validate significantly affected pathways. Results: JDTL was able to protect against HG + PA-induced muscle cell injury in this experimental system, altering lipid metabolism and inflammatory activity in these injured C2C12 myotubes. Western blotting suggested that JDTL is capable of activating PI3K/Akt/PPARγ signaling to control lipid metabolism without any corresponding impact on the inflammatory NF-κB pathway. Conclusions: These data highlight the ability of JDTL to protect against HG + PA-induced injury to muscle cells, and suggest that the underlying basis for such efficacy is related to the PI3K/Akt/PPARγ pathway-mediated modulation of lipid metabolism.

11.
J Anim Sci ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39210246

RESUMEN

This study investigates the potential phytochemicals that modulate bovine peroxisome proliferator-activated receptor gamma (PPARγ) and the Mitogen-Activated Protein Kinase (MAPK) pathways to enhance milk fat production in dairy animals. Bovine PPARγ, a key member of nuclear hormone receptor superfamily, plays a vital role in regulating metabolic, cellular differentiation, apoptosis, and anti-inflammatory responses in livestock, while the MAPK pathway is contributory in cellular processes that impact milk fat synthesis. This approach involved an all-inclusive molecular docking analysis of 10,000 polyphenols to identify potential PPARγ ligands. From this extensive screening, top 10 compounds were selected that exhibited the highest binding affinities to bovine PPARγ. Particularly, Curcumin sulphate, Isoflavone and Quercetin emerged as the most promising candidates. These compounds demonstrated superior docking scores (-9.28 kcal/mol, -9.27 kcal/mol and -7.31 kcal/mol respectively) and lower RMSD values compared to the synthetic bovine PPARγ agonist, 2,4-Thiazolidinedione (-4.12 kcal/mol), indicating a strong potential for modulating the receptor. Molecular dynamics simulations (MDS) further affirmed the stability of these polyphenols-bovine PPARγ complexes, suggesting their effective and sustained interactions. These polyphenols, known as fatty acid synthase inhibitors, are suggested to influence lipid metabolism pathways crucial to milk fat production, possibly through the downregulation of the MAPK pathway. The screened compounds showed favorable pharmacokinetic profiles, including non-toxicity, carcinogenicity, and high gastrointestinal absorption, positioning them as viable candidates for enhancing dairy cattle health and milk production. These findings may open new possibilities for the use of phytochemicals as feed additives in dairy animals, suggesting a novel approach to improve milk fat synthesis through the dual modulation of bovine PPARγ and MAPK pathways.

12.
Int Immunopharmacol ; 140: 112822, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39096877

RESUMEN

Sepsis is a systemic inflammatory response syndrome caused by a dysregulated host response to infection. CD4+T cell reduction is crucial to sepsis-induced immunosuppression. Pyroptosis, a programmed necrosis, is concerned with lymphocytopenia. Peroxisome proliferator-activated receptor gamma (PPARγ) regulated by upstream mTOR, exerts anti-pyroptosis effects. To investigate the potential effects of mTOR-PPARγ on sepsis-induced CD4+T cell depletion and the underlying mechanisms, we observed mTOR activation and pyroptosis with PPARγ-Nrf suppression through cecal ligation and puncture (CLP) sepsis mouse model. Further mechanism research used genetically modified mice with T cell-specific knockout mTOR or Tuberous Sclerosis Complex1 (TSC1). It revealed that mTOR mediated CD4 + T cell pyroptosis in septic mice by negatively regulating the PPARγ-Nrf2 signaling pathway. Taken together, mTOR-PPARγ-Nrf2 signaling mediated the CD4+ T cell pyroptosis in sepsis, contributing to CD4+T cell depletion and immunosuppression.


Asunto(s)
Linfocitos T CD4-Positivos , Factor 2 Relacionado con NF-E2 , PPAR gamma , Piroptosis , Sepsis , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , PPAR gamma/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Sepsis/inmunología , Sepsis/metabolismo , Linfocitos T CD4-Positivos/inmunología , Serina-Treonina Quinasas TOR/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Masculino , Modelos Animales de Enfermedad , Humanos
13.
Eur J Med Chem ; 276: 116728, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39089002

RESUMEN

In consideration of several serious side effects induced by the classical AF-2 involved "lock" mechanism, recently disclosed PPARγ-Ser273 phosphorylation mode of action has become an alternative and mainstream mechanism for currently PPARγ-based drug discovery and development with an improved therapeutic index. In this study, by virtue of structure-based virtual high throughput screening (SB-VHTS), structurally chemical optimization by targeting the inhibition of the PPARγ-Ser273 phosphorylation as well as in vitro biological evaluation, which led to the final identification of a chrysin-based potential hit (YGT-31) as a novel selective PPARγ modulator with potent binding affinity and partial agonism. Further in vivo evaluation demonstrated that YGT-31 possessed potent glucose-lowering and relieved hepatic steatosis effects without involving the TZD-associated side effects. Mechanistically, YGT-31 presented such desired therapeutic index, mainly because it effectively inhibited the CDK5-mediated PPARγ-Ser273 phosphorylation, selectively elevated the level of insulin sensitivity-related Glut4 and adiponectin but decreased the expression of insulin-resistance-associated genes PTP1B and SOCS3 as well as inflammation-linked genes IL-6, IL-1ß and TNFα. Finally, the molecular docking study was also conducted to uncover an interesting hydrogen-bonding network of YGT-31 with PPARγ-Ser273 phosphorylation-related key residues Ser342 and Glu343, which not only gave a clear verification for our targeting modification but also provided a proof of concept for the abovementioned molecular mechanism.


Asunto(s)
Hígado Graso , Flavonoides , PPAR gamma , PPAR gamma/metabolismo , PPAR gamma/agonistas , Flavonoides/farmacología , Flavonoides/química , Flavonoides/síntesis química , Relación Estructura-Actividad , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Humanos , Estructura Molecular , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Animales , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/síntesis química , Simulación del Acoplamiento Molecular , Relación Dosis-Respuesta a Droga , Ratones , Masculino , Evaluación Preclínica de Medicamentos
14.
Artículo en Inglés | MEDLINE | ID: mdl-39179196

RESUMEN

BACKGROUND: The clinical manifestation of autism spectrum disorder (ASD) is linked to the disruption of fundamental neurodevelopmental pathways. Emerging evidences claim to have an upregulation of canonical Wnt/ß-catenin pathway while downregulation of PPARγ pathway in ASD. This study aims to investigate the therapeutic potential of pioglitazone, a PPARγ agonist, in rat model of ASD. The study further explores the possible role of PPARγ and Wnt/ß-catenin pathway and their interaction in ASD by using their modulators. MATERIAL AND METHODS: Pregnant female Wistar rats received 600 mg/kg of valproic acid (VPA) to induce autistic symptoms in pups. Pioglitazone (10 mg/kg) was used to evaluate neurobehaviors, relative mRNA expression of inflammatory (IL-1ß, IL-6, IL-10, TNF-α), apoptotic markers (Bcl-2, Bax, & Caspase-3) and histopathology (H&E, Nissl stain, Immunohistochemistry). Effect of pioglitazone was evaluated on Wnt pathway and 4 µg/kg dose of 6-BIO (Wnt modulator) was used to study the PPARγ pathway. RESULTS: ASD model was established in pups as indicated by core autistic symptoms, increased neuroinflammation, apoptosis and histopathological neurodegeneration in cerebellum, hippocampus and amygdala. Pioglitazone significantly attenuated these alterations in VPA-exposed rats. The expression study results indicated an increase in key transcription factor, ß-catenin in VPA-rats suggesting an upregulation of canonical Wnt pathway in them. Pioglitazone significantly downregulated the Wnt signaling by suppressing the expression of Wnt signaling-associated proteins. The inhibiting effect of Wnt pathway on PPARγ activity was indicated by downregulation of PPARγ-associated protein in VPA-exposed rats and those administered with 6-BIO. CONCLUSION: In the present study, upregulation of canonical Wnt/ß-catenin pathway was demonstrated in ASD rat model. Pioglitazone administration significantly ameliorated these symptoms potentially through its neuroprotective effect and its ability to downregulate the Wnt/ß-catenin pathway. The antagonism between the PPARγ and Wnt pathway offers a promising therapeutic approach for addressing ASD.

15.
Sci Total Environ ; 951: 175716, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39181253

RESUMEN

Perfluorooctane sulfonate (PFOS) and its precursor, perfluorooctane sulfonamide (PFOSA), are widespread in the environment. Evidence suggests a strong link between maternal exposure to PFOS/PFOSA and congenital heart diseases in the offspring, but the underlying mechanisms remain unclear. We hypothesized that PFOS and PFOSA induce cardiac defects through the peroxisome proliferator-activated receptor gamma (PPARγ) and aryl hydrocarbon receptor (AHR) pathways, respectively. In this study, we demonstrated that exposing zebrafish embryos to either PFOSA or PFOS caused cardiac malformations and dysfunction. Both PFOS and PFOSA induced reactive oxygen species (ROS) overproduction, mitochondrial damage, and apoptosis in zebrafish larvae hearts. Blockade of PPARγ through either pharmaceutical inhibition or genetic knockdown only attenuated the changes caused by PFOS, but not those elicited by PFOSA. Conversely, inhibition of AHR alleviated the adverse effects induced by PFOSA but not by PFOS. Both PFOSA and PFOS exhibited similar binding affinities to AHR using molecular docking techniques. The varying ability of PFOS and PFOSA to induce AHR activity in zebrafish embryonic hearts can be attributed to their different capabilities for activating PPARγ. In summary, our findings indicate that PFOS and PFOSA induce excessive ROS production in zebrafish larvae via the PPARγ and AHR pathways, respectively. This oxidative stress in turn causes mitochondrial damage and apoptosis, leading to cardiac defects.

16.
Sci Rep ; 14(1): 19876, 2024 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191875

RESUMEN

Frataxin (FXN) is required for iron-sulfur cluster biogenesis, and its loss causes the early-onset neurodegenerative disease Friedreich ataxia (FRDA). Loss of FXN is a susceptibility factor in the development of diabetes, a common metabolic complication after myocardial hypertrophy in patients with FRDA. The underlying mechanism of FXN deficient-induced hyperglycemia in FRDA is, however, poorly understood. In this study, we confirmed that the FXN deficiency mouse model YG8R develops insulin resistance in elder individuals by disturbing lipid metabolic homeostasis in adipose tissues. Evaluation of lipolysis, lipogenesis, and fatty acid ß-oxidation showed that lipolysis is most severely affected in white adipose tissues. Consistently, FXN deficiency significantly decreased expression of lipolytic genes encoding adipose triglyceride lipase (Atgl) and hormone-sensitive lipase (Hsl) resulting in adipocyte enlargement and inflammation. Lipolysis induction by fasting or cold exposure remarkably upregulated FXN expression, though FXN deficiency lessened the competency of lipolysis compared with the control or wild type mice. Moreover, we found that the impairment of lipolysis was present at a young age, a few months earlier than hyperglycemia and insulin resistance. Forskolin, an activator of lipolysis, or pioglitazone, an agonist of PPARγ, improved insulin sensitivity in FXN-deficient adipocytes or mice. We uncovered the interplay between FXN expression and lipolysis and found that impairment of lipolysis, particularly the white adipocytes, is an early event, likely, as a primary cause for insulin resistance in FRDA patients at later age.


Asunto(s)
Adipocitos Blancos , Modelos Animales de Enfermedad , Frataxina , Ataxia de Friedreich , Resistencia a la Insulina , Proteínas de Unión a Hierro , Lipólisis , Animales , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/genética , Ataxia de Friedreich/patología , Ratones , Proteínas de Unión a Hierro/metabolismo , Proteínas de Unión a Hierro/genética , Adipocitos Blancos/metabolismo , Adipocitos Blancos/patología , Masculino , Lipasa/metabolismo , Lipasa/genética , Humanos
17.
Chin Med ; 19(1): 113, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182119

RESUMEN

BACKGROUND: Studies have reported that polyphyllin I (PPI) had effective anti-tumor activity against hepatocellular carcinoma (HCC). However, the precise molecular mechanism of this action and the direct target remain unclear. The aim of this study was to discover the molecular targets and the exact mechanism of PPI in the treatment of HCC. METHODS: Various HCC cells and Zebrafish xenotransplantation models were used to examine the efficacy of PPI against HCC. A proteome microarray, surface plasmon resonance (SPR) analysis, small molecule transfection, and molecular docking were conducted to confirm the direct binding targets of PPI. Transcriptome and Western blotting were then used to determine the exact responding mechanism. Finally, the anticancer effect and its precise mechanism, as well as the safety of PPI, were verified using a mouse tumor xenograft study. RESULTS: The results demonstrated that PPI had significant anticancer activity against HCC in both in vitro studies of two cells and the zebrafish model. Notably, PPI selectively enhanced the action of the Zinc finger and BTB domain-containing 16 (ZBTB16) protein by directly binding to it. Furthermore, specific knockdown of ZBTB16 markedly attenuated PPI-dependent inhibition of HCC cell proliferation and migration caused by overexpression of the gene. The transcriptome and Western blotting also confirmed that the interaction between ZBTB16 and PPI also activated the PPARγ/RXRα pathway. Finally, the mouse experiments confirmed the efficacy and safety of PPI to treat HCC. CONCLUSIONS: Our results indicate that ZBTB16 is a promising drug target for HCC and that PPI as a potent ZBTB16 agonist has potential as a therapeutic agent against HCC by regulating the ZBTB16/PPARγ/RXRα signaling axis.

18.
Curr Res Toxicol ; 7: 100189, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188272

RESUMEN

Exposure to fine particulate matter (PM2.5) has been associated with the development and progression of renal disease. Peroxisome proliferator-activated receptor gamma (PPARγ), a key transcription factor involved in inflammation as well as lipid and glucose metabolism, helps maintain the integrity of tubular epithelial cells. However, the precise role of PPARγ in PM2.5-induced tubular injury remains unclear. In this study, we investigated the regulatory effects of PPARγ on PM2.5-induced ferroptotic stress and epithelial-mesenchymal transition (EMT) in tubular (HK-2) cells. We found that downregulation of PPARγ expression was correlated with EMT in PM2.5-exposed cells. Pretreatment with the PPARγ agonist 15d-PGJ2 protected the cells from EMT by reducing ferroptotic stress, whereas that with the PPARγ antagonist GW9662 promoted EMT. Furthermore, pretreatment with ferrostatin-1 (Fer-1) significantly prevented PM2.5-induced EMT and downregulation of PPARγ expression. Notably, overexpression of PPARγ blocked PM2.5-induced downregulation of E-cadherin and GPX4 expression and upregulation of α-SMA expression. This study highlights the complex associations of PPARγ with ferroptosis and EMT in PM2.5-exposed tubular cells. Our findings suggest that PPARγ activation confers protection against PM2.5-induced renal injury.

19.
Biochem Pharmacol ; 229: 116504, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39179118

RESUMEN

Hepatic encephalopathy (HE) is one of the most prevalent and severe hepatic and brain disorders in which escalation of the oxidative, inflammatory and apoptotic trajectories pathologically connects acute liver injury with neurological impairment. Mirabegron (Mira) is a beta3 adrenergic receptor agonist with proven antioxidant and anti-inflammatory activities. The current research pointed to exploring Mira's hepato-and neuroprotective impacts against thioacetamide (TAA)-induced HE in rats. Rats were distributed into three experimental groups: the normal control group, the TAA group, received TAA (200 mg/kg/day for three consecutive days) and the Mira-treated group received Mira (10 mg/kg/day; oral gavage) for 15 consecutive days and intoxicated with TAA from the 13th to the 15th day of the experimental period. Mira counteracted hyperammonemia, enhanced rats' locomotor capability and motor coordination. It attenuated hepatic/neurological injuries by its antioxidant, anti-apoptotic as well as anti-inflammatory potentials. Mira predominantly targeted cyclic adenosine monophosphate (cAMP)/phosphorylated extracellular signal-regulated kinase (p-Erk1/2)/peroxisome proliferator-activated receptor gamma (PPARγ) dependent pathways via downregulation of p S536-nuclear factor kappa B p65 (p S536 NF-κB p 65)/tumor necrosis alpha (TNF-α) axis. Meanwhile, it attenuated nuclear factor erythroid 2-related factor (Nrf2) depletion in parallel with restoring of the neuroprotective defensive pathway by upregulation of cerebral cAMP/PPAR-γ/p-ERK1/2 and p-CREB/BDNF/TrkB besides reduction of GFAP immunoreactivity. Mira showed anti-apoptotic activity through inhibition of Bax immunoreactivity and elevation of Bcl2. To summarize, Mira exhibited a hepato-and neuroprotective effect against TAA-induced HE in rats via shielding antioxidant defense and mitigation of the pathological inflammatory and apoptotic axis besides upregulation of neuroprotective signaling pathways.

20.
Mol Neurobiol ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105872

RESUMEN

Sevoflurane is one of the most commonly used general anesthetics for children and infants. Recent research indicates that repeated exposure to sevoflurane in neonates induces cognitive and fine motor deficits. Peroxisome proliferator-activated receptor-γ (PPARγ) agonists have garnered significant attention as potential therapies for a variety of neurological conditions. In this research, we evaluated whether pretreatment with rosiglitazone in neonatal mice could address myelination defects, cognitive impairment, and fine motor dysfunction via PPARγ. The mice were exposed to 3% sevoflurane for 2 h on postnatal days 6-8 (P6-P8). Behavioral tests were conducted from P29 to P34. Additionally, we evaluated morphological and functional changes related to myelin. Our results showed that rosiglitazone pretreatment significantly ameliorated the cognitive and fine motor impairments of repeated neonatal sevoflurane exposure. In addition, rosiglitazone pretreatment promoted oligodendrocyte precursor cells (OPCs) differentiation and myelination. This suggests that rosiglitazone may be used in clinical settings to enhance the security of neonatal sevoflurane exposure. Furthermore, PPARγ and fatty acid synthase (FASN) may be mediators for rosiglitazone, which alleviates myelination defects, cognitive impairment, and fine motor dysfunction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA