Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 350
Filtrar
1.
Front Pharmacol ; 15: 1412169, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39175545

RESUMEN

Aims: Chronic kidney disease (CKD) is a risk factor for the development of cardiovascular diseases, e.g., atherosclerosis and calcific aortic valve disease, leading inevitably to valve replacement surgery. CKD patients with bioprosthetic cardiovascular grafts, in turn, have a higher risk of premature graft degeneration. Peroxisome proliferator-activated receptor gamma (PPARγ) activation by pioglitazone has cardio-renal protective properties, and research using a heterotopic valve implantation model has shown anti-degenerative effects of PPARγ activation on bioprosthetic valved grafts (BVG) in rats. The present work aims to analyze a potential protective effect of pioglitazone treatment on BVG in an adenine-induced rat model of CKD. Methods and Results: BVG of Sprague Dawley rats were heterotopically implanted in Wistar rats in an infrarenal position for 4 and 8 weeks. Animals were distributed into three groups for each time point: 1) control group receiving standard chow, 2) CKD group receiving 0.25% adenine and 3) CKD + pioglitazone group (300 mg per kg of 0.25% adenine chow). BVG function was analyzed by echocardiography. Plasma analytes were determined and explanted grafts were analyzed by semi-quantitative real-time PCR, Western blot analysis, histology and immunohistology.PPARγ activation significantly reduced CKD-induced calcification of aortic and valvular segments of BVG by 44% and 53%, respectively. Pioglitazone treatment significantly also reduced CKD-induced intima hyperplasia by 60%. Plasma analysis revealed significantly attenuated potassium and phosphate levels after pioglitazone treatment. Moreover, PPARγ activation led to significantly decreased interleukin-6 gene expression (by 57%) in BVG compared to CKD animals. Pioglitazone treatment leads to functional improvement of BVG. Conclusion: This study broadens the understanding of the potential value of PPARγ activation in cardio-renal diseases and delineates pioglitazone treatment as a valuable option to prevent bioprosthetic graft failure in CKD. Further mechanistic studies, e.g., using small molecules activating PPARγ signaling pathways, are necessary for the evaluation of involved mechanisms. Additionally, the translation into pre-clinical studies using large animals is intended as the next research project.

2.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38931457

RESUMEN

Obesity has become a pandemic, as currently more than half a billion people worldwide are obese. The etiology of obesity is multifactorial, and combines a contribution of hereditary and behavioral factors, such as nutritional inadequacy, along with the influences of environment and reduced physical activity. Two types of adipose tissue widely known are white and brown. While white adipose tissue functions predominantly as a key energy storage, brown adipose tissue has a greater mass of mitochondria and expresses the uncoupling protein 1 (UCP1) gene, which allows thermogenesis and rapid catabolism. Even though white and brown adipocytes are of different origin, activation of the brown adipocyte differentiation program in white adipose tissue cells forces them to transdifferentiate into "beige" adipocytes, characterized by thermogenesis and intensive lipolysis. Nowadays, researchers in the field of small molecule medicinal chemistry and gene therapy are making efforts to develop new drugs that effectively overcome insulin resistance and counteract obesity. Here, we discuss various aspects of white-to-beige conversion, adipose tissue catabolic re-activation, and non-shivering thermogenesis.

3.
Curr Osteoporos Rep ; 22(3): 301-307, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38625510

RESUMEN

PURPOSE OF REVIEW: This review summarizes evidence on osteocyte support of extramedullary and bone marrow adipocyte development and discusses the role of endogenous osteocyte activities of nuclear receptors peroxisome proliferator-activated receptor gamma (PPARG) and alpha (PPARA) in this support. RECENT FINDINGS: PPARG and PPARA proteins, key regulators of glucose and fatty acid metabolism, are highly expressed in osteocytes. They play significant roles in the regulation of osteocyte secretome and osteocyte bioenergetics; both activities contributing to the levels of systemic energy metabolism in part through an effect on metabolic function of extramedullary and bone marrow adipocytes. The PPARs-controlled osteocyte endocrine/paracrine activities, including sclerostin expression, directly regulate adipocyte function, while the PPARs-controlled osteocyte fuel utilization and oxidative phosphorylation contribute to the skeletal demands for glucose and fatty acids, whose availability is under the control of adipocytes. Bone is an inherent element of systemic energy metabolism with PPAR nuclear receptors regulating osteocyte-adipocyte metabolic axes.


Asunto(s)
Adipocitos , Tejido Adiposo , Médula Ósea , Metabolismo Energético , Osteocitos , PPAR gamma , Osteocitos/metabolismo , Osteocitos/fisiología , Humanos , PPAR gamma/metabolismo , Médula Ósea/metabolismo , Tejido Adiposo/metabolismo , Adipocitos/metabolismo , Metabolismo Energético/fisiología , PPAR alfa/metabolismo , Animales
4.
J Transl Med ; 22(1): 363, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632591

RESUMEN

Interleukin-33 (IL-33), an emerging cytokine within the IL-1 family, assumes a pivotal function in the control of obesity. However, the specific mechanism of its regulation of obesity formation remains unclear. In this study, we found that the expression level of IL-33 increased in visceral adipose tissue in mice fed with a high-fat diet (HFD) compared with that in mice fed with a normal diet (ND). In vitro, we also found the expression level of IL-33 was upregulated during the adipogenesis of 3T3-L1 cells. Functional test results showed that knockdown of IL-33 in 3T3-L1 cells differentiation could promote the accumulation of lipid droplets, the content of triglyceride and the expression of adipogenic-related genes (i.e. PPAR-γ, C/EBPα, FABP4, LPL, Adipoq and CD36). In contrast, overexpression of IL-33 inhibits adipogenic differentiation. Meanwhile, the above tests were repeated after over-differentiation of 3T3-L1 cells induced by oleic acid, and the results showed that IL-33 played a more significant role in the regulation of adipogenesis. To explore the mechanism, transcriptome sequencing was performed and results showed that IL-33 regulated the PPAR signaling pathway in 3T3-L1 cells. Further, Western blot and confocal microscopy showed that the inhibition of IL-33 could promote PPAR-γ expression by inhibiting the Wnt/ß-catenin signal in 3T3-L1 cells. This study demonstrated that IL-33 was an important regulator of preadipocyte differentiation and inhibited adipogenesis by regulating the Wnt/ß-catenin/PPAR-γ signaling pathway, which provided a new insight for further research on IL-33 as a new intervention target for metabolic disorders.


Asunto(s)
Adipogénesis , Interleucina-33 , Vía de Señalización Wnt , Animales , Ratones , Adipocitos/metabolismo , Adipogénesis/genética , beta Catenina/metabolismo , Diferenciación Celular , Interleucina-33/metabolismo , Obesidad/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo
5.
Diabetes Metab J ; 48(4): 716-729, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38408883

RESUMEN

BACKGRUOUND: Diabetes-induced cardiac fibrosis is one of the main mechanisms of diabetic cardiomyopathy. As a common histone methyltransferase, enhancer of zeste homolog 2 (EZH2) has been implicated in fibrosis progression in multiple organs. However, the mechanism of EZH2 in diabetic myocardial fibrosis has not been clarified. METHODS: In the current study, rat and mouse diabetic model were established, the left ventricular function of rat and mouse were evaluated by echocardiography and the fibrosis of rat ventricle was evaluated by Masson staining. Primary rat ventricular fibroblasts were cultured and stimulated with high glucose (HG) in vitro. The expression of histone H3 lysine 27 (H3K27) trimethylation, EZH2, and myocardial fibrosis proteins were assayed. RESULTS: In STZ-induced diabetic ventricular tissues and HG-induced primary ventricular fibroblasts in vitro, H3K27 trimethylation was increased and the phosphorylation of EZH2 was reduced. Inhibition of EZH2 with GSK126 suppressed the activation, differentiation, and migration of cardiac fibroblasts as well as the overexpression of the fibrotic proteins induced by HG. Mechanical study demonstrated that HG reduced phosphorylation of EZH2 on Thr311 by inactivating AMP-activated protein kinase (AMPK), which transcriptionally inhibited peroxisome proliferator-activated receptor γ (PPAR-γ) expression to promote the fibroblasts activation and differentiation. CONCLUSION: Our data revealed an AMPK/EZH2/PPAR-γ signal pathway is involved in HG-induced cardiac fibrosis.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Proteína Potenciadora del Homólogo Zeste 2 , Fibrosis , Miocardio , PPAR gamma , Transducción de Señal , Animales , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , PPAR gamma/metabolismo , Ratones , Ratas , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/etiología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Masculino , Proteínas Quinasas Activadas por AMP/metabolismo , Miocardio/patología , Miocardio/metabolismo , Ratas Sprague-Dawley , Fibroblastos/metabolismo , Ratones Endogámicos C57BL , Células Cultivadas , Fosforilación
6.
Artículo en Inglés | MEDLINE | ID: mdl-38317461

RESUMEN

BACKGROUND: PPAR-γ is one of three members of the PPAR group of the nuclear receptor superfamily and plays an important regulatory role as a ligand-dependent transcription factor. OBJECTIVE: This study aimed to identify the top 100 most influential articles in the field of PPAR-γ. We hypothesized that a bibliometric and scientometric analysis of the PPAR-γ research field could render trends that provide researchers and funding agencies valuable insight into the history of the field, and potential future directions. METHODS: A literature search of publications was carried out using the Web of Science (WOS) and Scopus database based on specific subject words on September 11, 2023. Articles were listed in descending order of the number of citations. Statistical analysis was performed on the data of the top 100 cited articles in terms of year of publication, journal, research direction, institution, author, and country. Meanwhile, co-authorship networks and co-citation networks were constructed by using VOSviewer software, and keywords were analyzed for cooccurrence. RESULTS: A total of 9,456 articles regarding PPAR-γ were identified and analyzed based on the WOS database, and the top 100 cited articles in the field of PPAR-γ were ranked by citation. The most cited article was published in 1998, with 2,571 citations and a density of 102.80 citations/ year. Of the 100 articles, Harvard University was the institution with the highest number of articles published. Spiegelman, B. M. was the author with the highest number of articles published. Using the VOSviewer software, we found that the most used keywords were geneexpression, activated receptor-gamma, and adipocyte differentiation. PPAR-γ, one of the most widely studied transcription factors, is an important drug target for many diseases. Therefore, screening for small molecule compounds targeting PPAR-γ remains of great value. CONCLUSION: The present study identified the top 100 most influential articles in the field of PPAR-γ, which help global researchers to better understand research perspectives and develop future research directions of PPAR-γ.

7.
Mol Neurobiol ; 61(8): 5161-5193, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38170440

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a paralytic disease that damages the brain and spinal cord motor neurons. Several clinical and preclinical studies have found that methylmercury (MeHg+) causes ALS. In ALS, MeHg+-induced neurotoxicity manifests as oligodendrocyte destruction; myelin basic protein (MBP) deficiency leads to axonal death. ALS development has been connected to an increase in signal transducer and activator of transcription-3 (STAT-3), a mammalian target of rapamycin (mTOR), and a decrease in peroxisome proliferator-activated receptor (PPAR)-gamma. Guggulsterone (GST), a plant-derived chemical produced from Commiphorawhighitii resin, has been found to protect against ALS by modulating these signaling pathways. Vitamin D3 (VitD3) deficiency has been related to oligodendrocyte precursor cells (OPC) damage, demyelination, and white matter deterioration, which results in motor neuron death. As a result, the primary goal of this work was to investigate the therapeutic potential of GST by altering STAT-3, mTOR, and PPAR-gamma levels in a MeHg+-exposed experimental model of ALS in adult rats. The GST30 and 60 mg/kg oral treatments significantly improved the behavioral, motor, and cognitive dysfunctions and increased remyelination, as proven by the Luxol Fast Blue stain (LFB), and reduced neuroinflammation as measured by histological examinations. Furthermore, the co-administration of VitD3 exhibits moderate efficacy when administered in combination with GST60. Our results show that GST protects neurons by decreasing STAT-3 and mTOR levels while increasing PPAR-gamma protein levels in ALS rats.


Asunto(s)
Encéfalo , Compuestos de Metilmercurio , PPAR gamma , Pregnenodionas , Factor de Transcripción STAT3 , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Serina-Treonina Quinasas TOR/metabolismo , PPAR gamma/metabolismo , Factor de Transcripción STAT3/metabolismo , Compuestos de Metilmercurio/toxicidad , Masculino , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/metabolismo , Transducción de Señal/efectos de los fármacos , Ratas , Pregnenodionas/farmacología , Ratas Wistar
8.
Acta Cytol ; 68(1): 60-65, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38008063

RESUMEN

INTRODUCTION: Urine cytology is a common method for detection of urothelial carcinoma (UC), however, is not high sensitivity. Improvement of the accuracy of cytodiagnosis using immunocytostaining as an auxiliary method is needed. This study aimed to determine the cytodiagnostic usefulness of peroxisome proliferator-activated receptor-gamma (PPAR-γ) immunocytostaining in urine cytology for the detection of UCs, particularly low-grade urothelial carcinomas (LGUC). METHODS: PPAR-γ immunocytostaining was performed for 37 UC cases and 26 benign cases. Among the UC cases, 22 cases were of the papillary proliferation type, not including the mixed type comprising both papillary and flat growth. Fifteen LGUC cases of all papillary proliferation types were included. For comparison, the same samples were also immunocytostained for p53 and Ki-67. RESULTS: Of the UC cases, 25 of 37 were positive for PPAR-γ, while 24 of the 26 benign cases were PPAR-γ-negative. Regardless of histological grading, 13 of the 22 UC cases with papillary proliferation were PPAR-γ-positive. In particular, PPAR-γ immunocytostaining showed higher sensitivity for LGUC cases than that of the other biomarkers. Regarding LGUC specifically, 4 of 10 cases not identified by primary cytology were detected by PPAR-γ immunocytostaining. CONCLUSION: PPAR-γ immunocytostaining enhances the accuracy of urine cytodiagnosis. Furthermore, PPAR-γ is a more useful immunobiomarker in urine cytology than p53 and Ki-67, the commonly used immunobiomarkers for malignant cell detection.


Asunto(s)
Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/patología , Carcinoma de Células Transicionales/patología , Antígeno Ki-67 , PPAR gamma , Proteína p53 Supresora de Tumor , Citodiagnóstico/métodos , Orina
9.
Tianjin Medical Journal ; (12): 129-135, 2024.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1020984

RESUMEN

Objective To investigate the targeted differentiation ability of mouse bone marrow derived mesenchymal stem cells(BM-MSCs)and adipose-derived mesenchymal stem cells(AD-MSCs).Methods BM-MSCs and AD-MSCs were isolated and cultured from bone marrow of femur and white adipose tissue of groin of C57BL/6J mice respectively,and the two types of cells were induced by osteogenic,chondrogenic and adipogenic differentiation medium respectively.Alizarin red,alcian blue and oil red O staining were used to detect the differentiated degree of osteogenic,chondrogenic and lipogenic differentiation.Real-time fluorescence quantitative PCR(qPCR)was used to identify MSCs and detected expression levels of directed differentiation-related genes Runx2,Sp7(osteoblast),Sox9,Col2a1(chondroblast),Pparg and Cebpa(lipogenesis)to determine the directed differentiation ability of cells.Based on gene expression profiles of mouse and human BM-MSCs and AD-MSCs in GEO database GSE43804 and GSE122778,the differentially expressed genes and their enrichment signal pathways were analyzed.Results The cell morphology of BM-MSCs and AD-MSCs obtained by isolation and culture was different,and spindle-shaped morphology was more obvious in AD-MSCs.Both cells expressed CD29,CD44 and CD90,but did not express CD34 and CD45.AD-MSCs showed higher osteogenic and lipogenic differentiation than those of BM-MSCs after directed induction,while chondrogenic differentiation was lower in AD-MSCs than that of BM-MSCs(P<0.05).After directional induction,expression levels of Runx2,Pparg and Cebpa mRNA were higher in AD-MSCs than those in BM-MSCs,and Sox9 mRNA expression levels were lower than those in BM-MSCs(P<0.05).Highly expressed genes of AD-MSCs in mice and human were enriched in PPAR and WNT signaling pathways.Highly expressed genes of BM-MSCs were enriched in cartilage and bone developmental signaling pathways.Conclusion The osteogenic and adipogenic differentiation ability of mouse AD-MSCs is stronger than those of BM-MSCs,while the chondrogenic differentiation ability AD-MSCs is weaker than that of BM-MSCs.The activation status of PPAR,WNT,cartilages and skeletal system development signaling pathways plays an important regulatory role in determining the different directional differentiation potential of AD-MSCs and BM-MSCs.

10.
Rev. Assoc. Med. Bras. (1992, Impr.) ; 70(3): e20231000, 2024. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1558856

RESUMEN

SUMMARY OBJECTIVE: Obesity is an increasingly prevalent global health problem, which is generally caused by the increase in body fat mass above normal and observed in all societies. If the blood glucose level is higher than normal but not high enough to diagnose diabetes, this condition is defined as prediabetes. Adiponectin increases fatty acid oxidation and insulin sensitivity and is closely associated with obesity. One of the nuclear receptor superfamily member peroxisome proliferator-activated receptors is shown to have an important role in various metabolic reactions. This study aimed to investigate the serum levels of adiponectin and peroxisome proliferator-activated receptors-gamma parameters, which are closely related to adipose tissue, energy metabolism, and insulin sensitivity, in obese patients with and without prediabetes. METHODS: For this purpose, 52 obese patients with prediabetes, 48 obese patients with non-prediabetes, and 76 healthy individuals were included in this study. Serum adiponectin and peroxisome proliferator-activated receptors-γ levels were analyzed by ELISA. RESULTS: Serum adiponectin levels were significantly higher in obese patients with prediabetes (18.15±15.99) compared with the control group (15.17±15.67; p=0.42). No significant difference was observed in both adiponectin and peroxisome proliferator-activated receptors-γ levels in the obese patients with the non-prediabetes group compared with the control group. However, no significant difference was observed in the obese patients with prediabetes group and obese patients with non-prediabetes group. CONCLUSION: Our results suggest that adiponectin may serve as an indicator of prediabetes. This implies that examining adiponectin levels in individuals diagnosed with prediabetes may enhance our understanding of the metabolic processes closely linked to prediabetes and related conditions.

11.
J Tradit Chin Med ; 43(6): 1092-1102, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37946471

RESUMEN

OBJECTIVE: To evaluate the effects of Sanren Tang (SRT, ) on a high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) in mice and to investigate the hepatic transcriptome regulated by SRT. METHODS: The primary SRT components were identified using ultra-high-performance liquid chromatography-high-resolution accurate mass spectrometry. The SRT-induced pharmacological effects on HFD-induced NAFLD were evaluated in mice for 16 weeks. Obeticholic acid was used as a control drug. Body weight, food intake, and homeostatic model assessment for insulin resistance (HOMA-IR) index were analysed. Hepatic histological changes were observed in haematoxylin and eosin-stained sections and quantified using the NAFLD activity score (NAS). Serum alanine aminotransferase (ALT) and hepatic triglyceride (TG) levels were measured. Lipids in hepatocytes were visualised by Oil red staining. RNA-sequencing was performed to determine the transcriptome profile of the liver tissue. The differentially expressed genes were validated using real-time polymerase chain reaction and Western blotting. RESULTS: Four principal compounds were identified in the SRT: adenosine, amygdalin, luteoloside, and magnolol. SRT ameliorated hepatic histology and lipid deposition in the NAFLD mice, and decreased HOMA-IR, NAS and ALT, and hepatic TG levels. Hepatic transcriptome analysis revealed 232 HFD-regulated genes that were reversed by SRT simultaneously. Retinol metabolism, cytokine-cytokine receptor interaction, and peroxisome proliferator-activated receptor (PPAR) γ signalling were the top three SRT-regulated pathways in NAFLD. CONCLUSIONS: SRT significantly ameliorated HFD-induced NAFLD, which was correlated with the regulation of genes enriched in the retinol metabolism, cytokine-cytokine receptor interaction, and PPARγ signalling pathways.


Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/genética , Transcriptoma , Dieta Alta en Grasa/efectos adversos , Vitamina A/metabolismo , Vitamina A/farmacología , Hígado , Metabolismo de los Lípidos , Citocinas/metabolismo , Receptores de Citocinas/metabolismo , Ratones Endogámicos C57BL
12.
Pharmaceuticals (Basel) ; 16(11)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-38004396

RESUMEN

Worldwide, three-quarters of a million babies are born extremely preterm (<28 weeks gestation) with devastating outcomes: 20% die in the newborn period, a further 35% develop bronchopulmonary dysplasia (BPD), and 10% suffer from cerebral palsy. Pioglitazone, a Peroxisome Proliferator Activated Receptor Gamma (PPARγ) agonist, may reduce the incidence of BPD and improve neurodevelopment in extreme preterm babies. Pioglitazone exerts an anti-inflammatory action mediated through Nuclear Factor-kappa B repression. PPARγ signalling is underactive in preterm babies as adiponectin remains low during the neonatal period. In newborn animal models, pioglitazone has been shown to be protective against BPD, necrotising enterocolitis, and lipopolysaccharide-induced brain injury. Single Nucleotide Polymorphisms of PPARγ are associated with inhibited preterm brain development and impaired neurodevelopment. Pioglitazone was well tolerated by the foetus in reproductive toxicology experiments. Bladder cancer, bone fractures, and macular oedema, seen rarely in adults, may be avoided with a short treatment course. The other effects of pioglitazone, including improved glycaemic control and lipid metabolism, may provide added benefit in the context of prematurity. Currently, there is no formulation of pioglitazone suitable for administration to preterm babies. A liquid formulation of pioglitazone needs to be developed before clinical trials. The potential benefits are likely to outweigh any anticipated safety concerns.

13.
Cells ; 12(20)2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37887306

RESUMEN

Clinical studies revealed detrimental skeletal and vascular effects of the insulin sensitizer rosiglitazone. We have shown earlier that rosiglitazone accelerates osteoblast differentiation from human mesenchymal stem cells (hMSC) at the expense of increased oxidative stress and cell death. In calcifying human vascular cells, rosiglitazone stimulates pathological mineralization, an effect diminished by the antioxidant resveratrol. Here, we aimed to elucidate transcriptional networks underlying the rosiglitazone-enhanced mineralization phenotype. We performed genome-wide transcriptional profiling of osteogenic hMSCs treated with rosiglitazone for short-term periods of 1 up to 48 h during the first two days of differentiation, a phase that we show is sufficient for rosiglitazone stimulation of mineralization. Microarray-based mRNA expression analysis revealed 190 probes that were differently expressed in at least one condition compared to vehicle-treated control. This rosiglitazone gene signature contained well-known primary PPAR targets and was also endogenously regulated during osteogenic hMSC differentiation and osteoblast-like differentiation of vascular smooth muscle cells (VSMCs) into calcifying vascular cells (CVCs). Comparative analysis revealed rosiglitazone targets that were commonly enriched in osteoblasts and CVCs or specifically enriched in either osteoblasts or CVCs. Finally, we compared expression patterns of CVC-specific genes with patient expression data from carotid plaque versus intact adjacent tissue, and identified five rosiglitazone targets to be differentially regulated in CVCs and carotid plaque but not osteoblasts when compared to their non-mineralizing counterparts. These targets, i.e., PDK4, SDC4, SPRY4, TCF4 and DACT1, may specifically control extracellular matrix mineralization in vascular cells, and hence provide target candidates for further investigations to improve vascular health.


Asunto(s)
Calcinosis , Osteogénesis , Humanos , Rosiglitazona/farmacología , Diferenciación Celular , Perfilación de la Expresión Génica , Músculo Liso Vascular/metabolismo , Calcinosis/patología , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
14.
Cancers (Basel) ; 15(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37894275

RESUMEN

Melatonin displays antitumor activity in several types of malignancies; however, the best delivery route and the underlying mechanisms are still unclear. Alternative non-invasive delivery route based on transdermal administration of melatonin by cryopass-laser treatment demonstrated efficiency in reducing the progression of LNCaP prostate tumor cells xenografted into nude mice by impairing the biochemical pathways affecting redox balance. Here, we investigated the impact of transdermal melatonin on the tumor dimension, microenvironment structure, and SIRT1-modulated pathways. Two groups (vehicle cryopass-laser and melatonin cryopass-laser) were treated for 6 weeks (3 treatments per week), and the tumors collected were analyzed for hematoxylin eosin staining, sirius red, and SIRT1 modulated proteins such as PGC-1α, PPARγ, and NFkB. Melatonin in addition to simple laser treatment was able to boost the antitumor cancer activity impairing the tumor microenvironment, increasing the collagen structure around the tumor, and modulating the altered SIRT1 pathways. Transdermal application is effective, safe, and feasible in humans as well, and the significance of these findings necessitates further studies on the antitumor mechanisms exerted by melatonin.

15.
JHEP Rep ; 5(11): 100872, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37818230

RESUMEN

Background & Aims: Alcohol-related liver disease (ALD) is a global healthcare challenge with limited treatment options. 24-Norursodeoxycholic acid (NorUDCA) is a synthetic bile acid with anti-inflammatory properties in experimental and human cholestatic liver diseases. In the present study, we explored the efficacy of norUDCA in experimental ALD. Methods: NorUDCA was tested in a preventive and therapeutic setting in an experimental ALD model (Lieber-DeCarli diet enriched with ethanol). Liver disease was phenotypically evaluated using histology and biochemical methods, and anti-inflammatory properties and peroxisome proliferator-activated receptor gamma activation by norUDCA were evaluated in cellular model systems. Results: NorUDCA administration ameliorated ethanol-induced liver injury, reduced hepatocyte death, and reduced the expression of hepatic pro-inflammatory cytokines including tumour necrosis factor (Tnf), Il-1ß, Il-6, and Il-10. NorUDCA shifted hepatic macrophages towards an anti-inflammatory M2 phenotype. Further, norUDCA administration altered the composition of the intestinal microbiota, specifically increasing the abundance of Roseburia, Enterobacteriaceae, and Clostridum spp. In a therapeutic model, norUDCA also ameliorated ethanol-induced liver injury. Moreover, norUDCA suppressed lipopolysaccharide-induced IL-6 expression in human peripheral blood mononuclear cells and evoked peroxisome proliferator-activated receptor gamma activation. Conclusions: NorUDCA ameliorated experimental ALD, protected against hepatic inflammation, and affected gut microbial commensalism. NorUDCA could serve as a novel therapeutic agent in the future management of patients with ALD. Impact and implications: Alcohol-related liver disease is a global healthcare concern with limited treatment options. 24-Norursodeoxycholic acid (NorUDCA) is a modified bile acid, which was proven to be effective in human cholestatic liver diseases. In the present study, we found a protective effect of norUDCA in experimental alcoholic liver disease. For patients with ALD, norUDCA could be a potential new treatment option.

16.
Curr Issues Mol Biol ; 45(6): 4891-4907, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37367060

RESUMEN

TPDM6315 is an antipyretic Thai herbal recipe that contains several herbs with anti-inflammatory and anti-obesity activities. This study aimed to investigate the anti-inflammatory effects of TPDM6315 extracts in lipopolysaccharide (LPS)-induced RAW264.7 macrophages and TNF-α-induced 3T3-L1 adipocytes, and the effects of TPDM6315 extracts on lipid accumulation in 3T3-L1 adipocytes. The results showed that the TPDM6315 extracts reduced the nitric oxide production and downregulated the iNOS, IL-6, PGE2, and TNF-α genes regulating fever in LPS-stimulated RAW264.7 macrophages. The treatment of 3T3-L1 pre-adipocytes with TPDM6315 extracts during a differentiation to the adipocytes resulted in the decreasing of the cellular lipid accumulation in adipocytes. The ethanolic extract (10 µg/mL) increased the mRNA level of adiponectin (the anti-inflammatory adipokine) and upregulated the PPAR-γ in the TNF-α induced adipocytes. These findings provide evidence-based support for the traditional use of TPDM6315 as an anti-pyretic for fever originating from inflammation. The anti-obesity and anti-inflammatory actions of TPDM6315 in TNF-α induced adipocytes suggest that this herbal recipe could be useful for the treatment of metabolic syndrome disorders caused by obesity. Further investigations into the modes of action of TPDM6315 are needed for developing health products to prevent or regulate disorders resulting from inflammation.

17.
Arterioscler Thromb Vasc Biol ; 43(8): e303-e322, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37199156

RESUMEN

BACKGROUND: Numerous genome-wide association studies revealed that SNPs (single nucleotide polymorphisms) at the PHACTR1 (phosphatase and actin regulator 1) locus strongly correlate with coronary artery disease. However, the biological function of PHACTR1 remains poorly understood. Here, we identified the proatherosclerotic effect of endothelial PHACTR1, contrary to macrophage PHACTR1. METHODS: We generated global (Phactr1-/-) and endothelial cell (EC)-specific (Phactr1ECKO) Phactr1 KO (knockout) mice and crossed these mice with apolipoprotein E-deficient (Apoe-/-) mice. Atherosclerosis was induced by feeding the high-fat/high-cholesterol diet for 12 weeks or partially ligating carotid arteries combined with a 2-week high-fat/high-cholesterol diet. PHACTR1 localization was identified by immunostaining of overexpressed PHACTR1 in human umbilical vein ECs exposed to different types of flow. The molecular function of endothelial PHACTR1 was explored by RNA sequencing using EC-enriched mRNA from global or EC-specific Phactr1 KO mice. Endothelial activation was evaluated in human umbilical vein ECs transfected with siRNA targeting PHACTR1 and in Phactr1ECKO mice after partial carotid ligation. RESULTS: Global or EC-specific Phactr1 deficiency significantly inhibited atherosclerosis in regions of disturbed flow. PHACTR1 was enriched in ECs and located in the nucleus of disturbed flow areas but shuttled to cytoplasm under laminar flow in vitro. RNA sequencing showed that endothelial Phactr1 depletion affected vascular function, and PPARγ (peroxisome proliferator-activated receptor gamma) was the top transcription factor regulating differentially expressed genes. PHACTR1 functioned as a PPARγ transcriptional corepressor by binding to PPARγ through the corepressor motifs. PPARγ activation protects against atherosclerosis by inhibiting endothelial activation. Consistently, PHACTR1 deficiency remarkably reduced endothelial activation induced by disturbed flow in vivo and in vitro. PPARγ antagonist GW9662 abolished the protective effects of Phactr1 KO on EC activation and atherosclerosis in vivo. CONCLUSIONS: Our results identified endothelial PHACTR1 as a novel PPARγ corepressor to promote atherosclerosis in disturbed flow regions. Endothelial PHACTR1 is a potential therapeutic target for atherosclerosis treatment.


Asunto(s)
Aterosclerosis , PPAR gamma , Animales , Humanos , Ratones , Aterosclerosis/metabolismo , Colesterol , Estudio de Asociación del Genoma Completo , Ratones Noqueados , PPAR gamma/genética
18.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37111350

RESUMEN

Although the functional roles of M1 and M2 macrophages in the immune response and drug resistance are important, the expression and role of cytochrome P450s (CYPs) in these cells remain largely unknown. Differential expression of the 12 most common CYPs (CYP1A1, 1A2, 1B1, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 2J2, 3A4, and 3A5) were screened in THP-1-cell-derived M1 and M2 macrophages using reverse transcription PCR. CYP2C19 was highly expressed in THP-1-cell-derived M2 macrophages, but it was negligibly expressed in THP-1-cell-derived M1 macrophages at the mRNA and protein levels as analyzed by reverse transcription quantitative PCR and Western blot, respectively. CYP2C19 enzyme activity was also very high in THP-1-cell-derived M2 compared to M1 macrophages (> 99%, p < 0.01), which was verified using inhibitors of CYP2C19 activity. Endogenous levels of the CYP2C19 metabolites 11,12-epoxyeicosatrienoic acid (11,12-EET) and 14,15-EET were reduced by 40% and 50% in cells treated with the CYP2C19 inhibitor and by 50% and 60% in the culture medium, respectively. Both 11,12-EET and 14,15-EET were identified as PPARγ agonists in an in vitro assay. When THP-1-cell-derived M2 cells were treated with CYP2C19 inhibitors, 11,12- and 14,15-EETs were significantly reduced, and in parallel with the reduction of these CYP2C19 metabolites, the expression of M2 cell marker genes was also significantly decreased (p < 0.01). Therefore, it was suggested that CYP2C19 may contribute to M2 cell polarization by producing PPARγ agonists. Further studies are needed to understand the endogenous role of CYP2C19 in M2 macrophages with respect to immunologic function and cell polarization.

19.
Gut ; 72(9): 1758-1773, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37019619

RESUMEN

OBJECTIVE: Therapy-induced tumour microenvironment (TME) remodelling poses a major hurdle for cancer cure. As the majority of patients with hepatocellular carcinoma (HCC) exhibits primary or acquired resistance to antiprogrammed cell death (ligand)-1 (anti-PD-[L]1) therapies, we aimed to investigate the mechanisms underlying tumour adaptation to immune-checkpoint targeting. DESIGN: Two immunotherapy-resistant HCC models were generated by serial orthotopic implantation of HCC cells through anti-PD-L1-treated syngeneic, immunocompetent mice and interrogated by single-cell RNA sequencing (scRNA-seq), genomic and immune profiling. Key signalling pathway was investigated by lentiviral-mediated knockdown and pharmacological inhibition, and further verified by scRNA-seq analysis of HCC tumour biopsies from a phase II trial of pembrolizumab (NCT03419481). RESULTS: Anti-PD-L1-resistant tumours grew >10-fold larger than parental tumours in immunocompetent but not immunocompromised mice without overt genetic changes, which were accompanied by intratumoral accumulation of myeloid-derived suppressor cells (MDSC), cytotoxic to exhausted CD8+ T cell conversion and exclusion. Mechanistically, tumour cell-intrinsic upregulation of peroxisome proliferator-activated receptor-gamma (PPARγ) transcriptionally activated vascular endothelial growth factor-A (VEGF-A) production to drive MDSC expansion and CD8+ T cell dysfunction. A selective PPARγ antagonist triggered an immune suppressive-to-stimulatory TME conversion and resensitised tumours to anti-PD-L1 therapy in orthotopic and spontaneous HCC models. Importantly, 40% (6/15) of patients with HCC resistant to pembrolizumab exhibited tumorous PPARγ induction. Moreover, higher baseline PPARγ expression was associated with poorer survival of anti-PD-(L)1-treated patients in multiple cancer types. CONCLUSION: We uncover an adaptive transcriptional programme by which tumour cells evade immune-checkpoint targeting via PPARγ/VEGF-A-mediated TME immunosuppression, thus providing a strategy for counteracting immunotherapeutic resistance in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Carcinoma Hepatocelular/patología , Factor A de Crecimiento Endotelial Vascular , Neoplasias Hepáticas/patología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , PPAR gamma , Microambiente Tumoral , Antígeno B7-H1
20.
Front Pharmacol ; 14: 1112554, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36874030

RESUMEN

Dendrobium mixture (DM) is a patented Chinese herbal medicine indicated which has anti-inflammatory and improved glycolipid metabolism. However, its active ingredients, targets of action, and potential mechanisms are still uncertain. Here, we investigate the role of DM as a prospective modulator of protection against non-alcoholic fatty liver disease (NAFLD) induced by type 2 diabetes mellitus (T2DM) and illustrate the molecular mechanisms potentially involved. The network pharmacology and TMT-based quantitative protomics analysis were conducted to identify potential gene targets of the active ingredients in DM against NAFLD and T2DM. DM was administered to the mice of DM group for 4 weeks, and db/m mice (control group) and db/db mice (model group) were gavaged by normal saline. DM was also given to Sprague-Dawley (SD) rats, and the serum was subjected to the palmitic acid-induced HepG2 cells with abnormal lipid metabolism. The mechanism of DM protection against T2DM-NAFLD is to improve liver function and pathological morphology by promoting peroxisome proliferator-activated receptor γ (PPARγ) activation, lowering blood glucose, improving insulin resistance (IR), and reducing inflammatory factors. In db/db mice, DM reduced RBG, body weight, and serum lipids levels, and significantly alleviated histological damage of liver steatosis and inflammation. It upregulated the PPARγ corresponding to the prediction from the bioinformatics analysis. DM significantly reduced inflammation by activating PPARγ in both db/db mice and palmitic acid-induced HepG2 cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...