Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
J Virol ; : e0099524, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291960

RESUMEN

Epstein-Barr virus (EBV) co-infections with human papillomavirus (HPV) have been observed in oropharyngeal squamous cell carcinoma. Modeling EBV/HPV co-infection in organotypic epithelial raft cultures revealed that HPV16 E7 inhibited EBV productive replication through the facilitated degradation of the retinoblastoma protein pRb/p105. To further understand how pRb is required for EBV productive replication, we generated CRISPR-Cas9 pRb knockout (KO) normal oral keratinocytes (NOKs) in the context of wild-type and mutant K120E p53. EBV replication was examined in organotypic rafts as a physiological correlate for epithelial differentiation. In pRb KO rafts, EBV DNA copy number was statistically decreased compared to vector controls, regardless of p53 context. Loss of pRb did not affect EBV binding or internalization of calcium-treated NOKs or early infection of rafts. Rather, the block in EBV replication correlated with impaired immediate early gene expression. An EBV infection time course in rafts with mutant p53 demonstrated that pRb-positive basal cells were initially infected with delayed replication occurring in differentiated layers. Loss of pRb showed increased S-phase progression makers and elevated activator E2F activity in raft tissues. Complementation with a panel of pRb/E2F binding mutants showed that wild type or pRb∆685 mutant capable of E2F binding reduced S-phase marker gene expression, rescued EBV DNA replication, and restored BZLF1 expression in pRb KO rafts. However, pRb KO complemented with pRb661W mutant, unable to bind E2Fs, failed to rescue EBV replication in raft culture. These findings suggest that EBV productive replication in differentiated epithelium requires pRb inhibition of activator E2Fs to restrict S-phase progression.IMPORTANCEA subset of human papillomavirus (HPV)-positive oropharyngeal squamous cell carcinoma is co-positive for Epstein-Barr virus (EBV). Potential oncogenic viral interactions revealed that HPV16 E7 inhibited productive EBV replication within the differentiated epithelium. As E7 mediates the degradation of pRb, we aimed to establish how pRb is involved in EBV replication. In the context of differentiated epithelium using organotypic raft culture, we evaluated how the loss of pRb affects EBV lytic replication to better comprehend EBV contributions to carcinogenesis. In this study, ablation of pRb interfered with EBV replication at the level of immediate early gene expression. Loss of pRb increased activator E2Fs and associated S-phase gene expression throughout the differentiated epithelium. Complementation studies showed that wild type and pRb mutant capable of binding to E2F rescued EBV replication, while pRb mutant lacking E2F binding did not. Altogether, these studies support that in differentiated tissues, HPV16 E7-mediated degradation of pRb inhibits EBV replication through unregulated E2F activity.

2.
Virus Res ; 348: 199446, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39127239

RESUMEN

The Human papillomavirus (HPV) causes tumors in part by hijacking the host cell cycle and forcing uncontrolled cellular division. While there are >200 genotypes of HPV, 15 are classified as high-risk and have been shown to transform infected cells and contribute to tumor formation. The remaining low-risk genotypes are not considered oncogenic and result in benign skin lesions. In high-risk HPV, the oncoprotein E7 contributes to the dysregulation of cell cycle regulatory mechanisms. High-risk E7 is phosphorylated in cells at two conserved serine residues by Casein Kinase 2 (CK2) and this phosphorylation event increases binding affinity for cellular proteins such as the tumor suppressor retinoblastoma (pRb). While low-risk E7 possesses similar serine residues, it is phosphorylated to a lesser degree in cells and has decreased binding capabilities. When E7 binding affinity is decreased, it is less able to facilitate complex interactions between proteins and therefore has less capability to dysregulate the cell cycle. By comparing E7 protein sequences from both low- and high-risk HPV variants and using site-directed mutagenesis combined with NMR spectroscopy and cell-based assays, we demonstrate that the presence of two key nonpolar valine residues within the CK2 recognition sequence, present in low-risk E7, reduces serine phosphorylation efficiency relative to high-risk E7. This results in significant loss of the ability of E7 to degrade the retinoblastoma tumor suppressor protein, thus also reducing the ability of E7 to increase cellular proliferation and reduce senescence. This provides additional insight into the differential E7-mediated outcomes when cells are infected with high-risk verses low-risk HPV. Understanding these oncogenic differences may be important to developing targeted treatment options for HPV-induced cancers.


Asunto(s)
Proteínas E7 de Papillomavirus , Fosforilación , Proteínas E7 de Papillomavirus/metabolismo , Proteínas E7 de Papillomavirus/genética , Humanos , Quinasa de la Caseína II/metabolismo , Quinasa de la Caseína II/genética , Infecciones por Papillomavirus/virología , Infecciones por Papillomavirus/metabolismo , Infecciones por Papillomavirus/genética , Unión Proteica , Proteína de Retinoblastoma/metabolismo , Proteína de Retinoblastoma/genética , Papillomaviridae/genética , Papillomaviridae/metabolismo , Papillomaviridae/fisiología , Ciclo Celular , Mutagénesis Sitio-Dirigida
3.
J Environ Manage ; 368: 121945, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39142097

RESUMEN

Zero-valent iron (ZVI) applied to the remediation of contaminated groundwater (GW) in situ, especially using engineered permeable reactive barriers (PRBs), has been proven to be an effective reactive material. However, many of ZVI brands do not represent tailored reagents specifically regarding destroying pollutants in GW. Thus, their reactivity towards certain contaminants in GW may vary significantly in a wide range even with different production batches of the same ZVI brand. This issue has rarely been known and consequently not addressed to a higher extend so far. Therefore, this study implemented extensive, long-term column experiments followed by short-term batch experiments for chlorinated volatile organic compounds (cVOCs) degradation for developing a semi-empirical test methodology to thoroughly resolve this pivotal issue by achieving an improved quality assurance guidance regarding proper field-scale emplacement of different ZVI brands and their production batches. The results showed that during column experiments perchloroethylene (PCE) led to a significant degradation up to a certain period but sulfate-reducing microorganisms enhanced the dehalogenation and led approximately to 100 % PCE removal. However, the efficacy varied for different ZVI brands, i.e., Gotthart Maier (GM) and Sponge Iron (Responge®). Furthermore, it could be shown that it might even vary among different production batches of the same ZVI brand. It was also observed that evolution of sulfate-reducing microorganisms may improve the efficacy of PCE degradation vastly that occur at different intensities with different ZVI brands and their respective production batches over time. Further, comparing comprehensive long-term column (kobs = 0.0488 1/h) and short-term batch experiments (kobs = 0.07794 1/h) as well as refined kinetic analyses (kobs = 0.0424 1/h) clearly prove that an appropriate guidance protocol for successful full-scale in situ remediation is required for properly select the right ZVI brand and production batch before it is loaded to a PRB in the field.


Asunto(s)
Restauración y Remediación Ambiental , Agua Subterránea , Hierro , Contaminantes Químicos del Agua , Agua Subterránea/química , Hierro/química , Restauración y Remediación Ambiental/métodos , Compuestos Orgánicos Volátiles
4.
Pathol Res Pract ; 260: 155439, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38968667

RESUMEN

We present herein an extension to our recently developed and published method termed "Fractionation of Nodal Cell Suspension" (FNCS). The method enables efficient subcellular fractionation into nuclear (N) and cytosolic (C) compartments of extremely fibrous and problematic metastatic axillary lymph node (mALN) tissue, using the entire nodule. For the purpose of the present study, a case of invasive lobular breast cancer (BC) patient with pT2N3aMx status and defined primary tumor markers (ERα 8, PR-B 8, and HER2 score 0) was available. Initially, the mALN tissue of this patient was analyzed by immunohistochemistry (IHC), and a positive correlation of nodal ERα, PR-B and HER2 biomarkers to those of the primary tumor was obtained. Subsequently, the mALN was FNCS fractionated into N and C, and Western blot (WB) analysis demonstrated a single band for ERα, PR-B and nuclear loading control (HDAC1) in nuclear, but not in the cytosolic compartments, confirming the efficiency of our fractionation protocol. At the same time, HER2 bands were not observed in either compartment, in accordance with HER2 negativity determined by IHC in both primary tumor and mALN tissue. In conclusion, by confirming the nuclear expression of ERα and PR-B biomarkers in metastatic loci, we demonstrate the purity of the FNCS-generated compartments - the protocol that offers a reliable tool for further analysis of nuclear versus cytosolic content in downstream analysis of novel biomarkers in the whole mALN of BC patients.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Metástasis Linfática , Humanos , Neoplasias de la Mama/patología , Femenino , Metástasis Linfática/patología , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Ganglios Linfáticos/patología , Axila , Fraccionamiento Celular/métodos , Carcinoma Lobular/patología , Carcinoma Lobular/metabolismo , Carcinoma Lobular/secundario , Receptor alfa de Estrógeno/metabolismo , Persona de Mediana Edad , Receptor ErbB-2/metabolismo , Receptor ErbB-2/análisis , Inmunohistoquímica , Receptores de Progesterona/metabolismo , Receptores de Progesterona/análisis
5.
Med Mol Morphol ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39039188

RESUMEN

The current study aims to evaluate the levels of miR-34a, RASSF1A, and E-cadherin in relation to the levels of isoform B of progesterone receptor (PRB) in endometrioid carcinoma (EC) and atypical hyperplasia (AEH) and their association with clinicopathological parameters. 105 cases (35 EC, 35 AEH, and 35 control) were involved in this study. Cases of AEH received treatment, and other samples were obtained after 6 months to assess the response. E-cadherin and PRB were assessed by immunohistochemistry (IHC), RASSFA methylation by MSP-PCR, and its serum level by ELISA and miR-34a via quantitative PCR. The expressions of miR-34a, RASSF1A, E-cadherin, and PRB differ among the studied groups; all were higher in normal compared with AEH and EC, with a statistically significant difference. The higher PRB expression and decreased miR-34a and RASSF1A expression were associated with resistance to hormonal therapy in AEH. High PRB in EC is associated with lower RASSFA1, E-cadherin, and miR-34a. Decreased expressions of RASSF1A, miR-34a, and E-cadherin had a significant connection to advanced stages. Expression of PRB and miR-34a and serum levels of RASSF1A predict response to treatment in cases of AEH. High PRB and low E-cadherin expression are associated with progressive disease in EC.

6.
J Environ Sci (China) ; 145: 152-163, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38844316

RESUMEN

Groundwater contamination near landfills is commonly caused by leachate leakage, and permeable reactive barriers (PRBs) are widely used for groundwater remediation. However, the deactivation and blockage of the reactive medium in PRBs limit their long-term effectiveness. In the current study, a new methodology was proposed for the in situ regeneration of PRB to remediate leachate-contaminated groundwater. CO2 coupled with oxidants was applied for the dispersion and regeneration of the fillers; by injecting CO2 to disperse the fillers, the permeability of the PRB was increased and the oxidants could flow evenly into the PRB. The results indicate that the optimum filler proportion was zero-valent iron (ZVI)/zeolites/activated carbon (AC) = 3:8:10 and the optimum oxidant proportion was COD/Na2S2O8/H2O2/Fe2+ = 1:5:6:5; the oxidation system of Fe2+/H2O2/S2O82- has a high oxidation efficiency and persistence. The average regeneration rate of zeolites was 72.71%, and the average regeneration rate of AC was 68.40%; the permeability of PRB also increased. This technology is effective for the remediation of landfills in China that have large contaminated areas, an uneven pollutant concentration distribution, and a long pollution duration. The purification mode of long-term adsorption and short-time in situ oxidation can be applied to the remediation of long-term high-concentration organically polluted groundwater, where pollution sources are difficult to cut off.


Asunto(s)
Dióxido de Carbono , Restauración y Remediación Ambiental , Agua Subterránea , Contaminantes Químicos del Agua , Agua Subterránea/química , Contaminantes Químicos del Agua/análisis , Restauración y Remediación Ambiental/métodos , Dióxido de Carbono/análisis , Oxidantes/química , China , Oxidación-Reducción
7.
Environ Res ; 252(Pt 4): 119085, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38719067

RESUMEN

Electrokinetic-Permeable Reaction Barrier (EK-PRB) coupled remediation technology can effectively treat heavy metal-contaminated soil near coal mines. This study was conducted on cadmium (Cd), a widely present element in the soil of the mining area. To investigate the impact of the voltage gradient on the remediation effect of EK-PRB, the changes in current, power consumption, pH, and Cd concentration content during the macroscopic experiment were analyzed. A three-dimensional visualized kaolinite-heavy metal-water simulation system was constructed and combined with the Molecular Dynamics (MD) simulations to elucidate the migration mechanism and binding active sites of Cd on the kaolinite (001) crystalline surface at the microscopic scale. The results showed that the voltage gradient positively correlates with the current, power consumption, and Cd concentration during EK-PRB remediation, and the average removal efficiency increases non-linearly with increasing voltage gradient. Considering power consumption, average removal efficiency, and cost-effectiveness, the voltage range is between 1.5 and 3.0 V/cm, with 2.5 V/cm being the optimal value. The results of MD simulations and experiments correspond to each other. Cd2+ formed a highly stable adsorption structure in contrast to the Al-O sheet on the kaolinite (001) crystalline surface. The mean square displacement (MSD) curve of Cd2+ under the electric field exhibits anisotropy, the total diffusion coefficient DTotal increases and the Cd2+ migration rate accelerates. The electric field influences the microstructure of Cd2+ complexes. With the enhancement of the voltage gradient, the complexation between Cd2+ and water molecules is enhanced, and the interaction between Cd2+ and Cl- in solution is weakened.


Asunto(s)
Cadmio , Restauración y Remediación Ambiental , Simulación de Dinámica Molecular , Cadmio/química , Restauración y Remediación Ambiental/métodos , Contaminantes del Suelo/química , Caolín/química
8.
Biomed Pharmacother ; 172: 116281, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364736

RESUMEN

Progesterone (P4) is a crucial reproductive hormone that acts as a precursor for all other endogenous steroids. P4 modulates transcriptional activity during reproduction by binding to progesterone receptors (PR). However, the physiological role of P4 in the liver is understudied. P4-mediated lipid metabolism in the liver was investigated in this study, as P4 facilitates insulin resistance and influences energy metabolism. While exogenous lipids are mainly obtained from food, the liver synthesizes endogenous triglycerides and cholesterol from a carbohydrate diet. Hepatic de novo lipogenesis (DNL) is primarily determined by acetyl-CoA and its biosynthetic pathways, which involve fatty acid and cholesterol synthesis. While P4 increased the hepatic levels of sterol regulatory element-binding protein 1 C (SREBP-1 C), peroxisome proliferator-activated receptor-gamma (PPARγ), acetyl-CoA carboxylase (ACC), and CD36, co-treatment with the P4 receptor antagonist RU486 blocked these proteins and P4-mediated lipogenesis. RNA sequencing was used to assess the role of P4 in lipogenic events, such as fatty liver and fatty acid metabolism, lipoprotein signaling, and cholesterol metabolism. P4 induced hepatic DNL and lipid anabolism were confirmed in the liver of ovarian resection mice fed a high-fat diet or in pregnant mice. P4 increased lipogenesis directly in mice exposed to P4 and indirectly in fetuses exposed to maternal P4. The lipid balance between lipogenesis and lipolysis determines fat build-up and is linked to lipid metabolism dysfunction, which involves the breakdown and storage of fats for energy and the synthesis of structural and functional lipids. Therefore, P4 may impact the lipid metabolism and reproductive development during gestation.


Asunto(s)
Lipogénesis , Progesterona , Femenino , Embarazo , Animales , Ratones , Progesterona/farmacología , Hígado , Colesterol , Ácidos Grasos , Lípidos
9.
Biomed Rep ; 20(1): 15, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38124771

RESUMEN

The expression of a number of proteins plays a major role in predicting recurrent laryngeal squamous cell carcinoma (LSCC). Thus, the aim of the present study was to investigate the expression of 16 selected proteins as prognostic indicators for recurrent and non-recurrent LSCC. Samples from a total of 41 patients with LSCC were investigated by immunohistochemistry. Digital image analysis was performed, and various associated factors were calculated. Histoscore (H-score) and receiver operating characteristic curves were used to divide protein expression in high and low for predicting disease recurrence. Disease-free survival (DFS) curves, crude hazard ratios (HRs) and adjusted HRs were analyzed and compared. Significantly different H-scores were found between the recurrent and non-recurrent groups in terms of pRb and c-Met expression. pRb was expressed at high levels in recurrent LSCC, while c-Met was expressed at low levels. Patients with low pRb expression had a longer DFS than those with high pRb expression (log-rank χ2, 5.161; P=0.023). Patients with high c-Met expression had a longer DFS than those with low c-Met expression (log-rank χ2, 6.441; P=0.011). Moreover, patients with high pRb expression and low c-Met expression had the shortest DFS (log-rank χ2, 11.827; P=0.008). Differentiated histological factors had an impact on the risk of recurrence (Cox regression test; crude HR, 9.53; 95% confidence interval, 1.214-74.819; P=0.032). The present study demonstrated that the grading of differentiated squamous cell carcinoma, pRb and c-Met expression are the most useful prognostic factors for the prediction of recurrent LSCC. These might be further applied as potential markers for clinical use.

10.
Artículo en Inglés | MEDLINE | ID: mdl-37922032

RESUMEN

E6 and E7 human papillomavirus (HPV) oncoproteins play a significant role in the malignant transformation of infected cervical cancer cells via suppression of tumour suppressor pathways by targeting p53 and pRb, respectively. This study aimed to investigate the anticancer effects of Oroxylum indicum (OI) leaves' methanol extract on SiHa cervical cancer cells. Expression of apoptosis-related proteins (Bcl-2, caspase (cas)-3, and cas-9), viral oncoproteins (E6 and E7), and tumour suppressor proteins (p53 and pRb) were evaluated using western blot analysis before and after E6/E7 small interfering RNAs (siRNAs) transfection. In addition, the E6/E7 mRNA expression levels were assessed with real-time (RT)-PCR. The present study showed that the OI extract effectively hindered the proliferation of SiHa cells and instigated increments of cas-3 and cas-9 expressions but decreased the Bcl-2 expressions. The OI extract inhibited E6/E7 viral oncoproteins, leading to upregulation of p53 and pRb tumour suppressor genes in SiHa cells. Additionally, combinatorial treatment of OI extract and gossypin flavonoid induced restorations of p53 and pRb. Treatment with OI extract in siRNA-transfected cells also further suppressed E6/E7 expression levels and further upregulations of p53 and pRb proteins. In conclusion, OI extract treatment on siRNAs-transfected SiHa cells can additively and effectively block E6- and E7-dependent p53 and pRb degradations. All these data suggest that OI could be explored for its chemotherapeutic potential in cervical cancer cells with HPV-integrated genomes.

11.
J Contam Hydrol ; 258: 104236, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37660464

RESUMEN

We report on the potential of elevated groundwater temperatures and zero-valent iron permeable reactive barriers (ZVI PRBs), for example, through a combination with underground thermal energy storage (UTES), to achieve enhanced remediation of chlorinated hydrocarbon (CHC) contaminated groundwater. Building on earlier findings concerning deionized solutions, we created a database for mineralized groundwater based on temperature dependence of tetrachloroethylene (PCE) degradation using two popular ZVIs (i.e., Gotthart-Maier cast iron [GM] and ISPAT sponge iron [IS]) in column experiments at 25 °C-70 °C to establish a temperature-dependent ZVI PRB dimensioning approach. Scenario analysis revealed that a heated ZVI PRB system in a moderate temperature range up to 40 °C showed the greatest efficiency, with potential material savings of ~55% to 75%, compared to 10 °C, considering manageability and longevity. With a 25 °C-70 °C temperature increase, rate coefficients of PCE degradation increased from 0.4 ± 0.0 h-1 to 2.9 ± 2.2 h-1 (GM) and 0.1 ± 0.1 h-1 to 1.8 ± 0.0 h-1 (IS), while TCE rate coefficients increased from 0.6 ± 0.1 h-1 to 5.1 ± 3.9 h-1 at GM. Activation energies for PCE degradation yielded 32 kJ mol-1 (GM) and 56 kJ mol-1 (IS). Temperature-dependent anaerobic iron corrosion was key in regulating mineral precipitation and passivation of the iron surface as well as porosity reduction due to gas production.


Asunto(s)
Agua Subterránea , Hidrocarburos Clorados , Tetracloroetileno , Contaminantes Químicos del Agua , Temperatura , Hierro , Calor
12.
Infect Agent Cancer ; 18(1): 43, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37434200

RESUMEN

BACKGROUND: Laryngeal squamous cell carcinoma (LSCC) represents one of the principal tumors of the head and neck. Human papillomavirus (HPV) and Epstein-Barr virus (EBV) are considered risk factors for the development and the clinical prognosis of LSCC. High levels of p16INK4a are suggested as a surrogate marker of HPV or EBV infection in some head and neck tumors but in LSCC is still controversial. Furthermore, pRb expression may be considered an additional biomarker but it has not been clearly defined. This work aimed to compare the expression of pRb and p16INK4a as possible biomarkers in tumor tissues with and without infection by EBV or different genotypes of HPV from patients with LSCC. METHODS: Tumor samples from 103 patients with LSCC were previously investigated for the presence and genotypes of HPV using the INNO-LiPA line probe assay and for the infection of EBV by qPCR. p16 INK4a and pRb expression was assessed by immunohistochemistry. RESULTS: Of the 103 tumor samples, expression of p16INK4a was positive in 55 (53.4%) and of this, 32 (56.1%) were positive for HPV whereas 11 (39.3%) were EBV positive but both without a significantly difference (p > 0.05). pRb expression was positive in 78 (75.7%) and a higher frequency of this expression was observed in HPV negative samples (87.0%) (p = 0.021) and in high-risk HPV negative samples (85.2%) (p = 0.010). No difference was observed when comparing pRb expression and EBV infection status (p > 0.05). CONCLUSION: Our results support the suggestion that p16INK4a is not a reliable surrogate marker for identifying HPV or EBV infection in LSCC. On the other hand, most of our samples had pRb expression, which was more frequent in tumors without HPV, suggesting that pRb could indicate HPV negativity. However, more studies with a larger number of cases are required, including controls without LSCC and evaluating other molecular markers to determine the real role of p16INK4a and pRb in LSCC.

13.
PeerJ ; 11: e15570, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520249

RESUMEN

Objective: To observe the effects of high-risk human papillomavirus (HR-HPV) infection on P53, pRb, and survivin in lung adenocarcinoma (LUAD). Methods: The cancerous and cancer-adjacent tissues of 102 patients with LUAD from January 2020 to April 2022 were selected for the study. HR-HPV infection was detected by flow fluorescence method, and P53, pRb, and survivin protein expression was detected by immunohistochemical staining method. Statistical analysis was performed to determine the differences in the HR-HPV infection and the expression of P53, pRb, and survivin proteins between LUAD tissues and cancer-adjacent tissues; the correlation between HR-HPV infection and P53, pRb, and survivin protein expression in cancer tissues; and the correlation between HR-HPV infection and clinicopathological features of LUAD. Results: The infection rate of HR-HPV was higher in the LUAD tissues (28.43%) than in cancer-adjacent tissues (7.84%), and the difference was statistically significant (P < 0.05). The positive rates of P53 and survivin protein were higher in the LUAD group (33.33% and 67.16%, respectively) than in the cancer-adjacent group (3.92% and 11.73%, respectively), and the difference was statistically significant (P < 0.05). The positive rate of pRb protein was lower in the LUAD group (58.82%) than in the cancer-adjacent group (92.14%), and the difference was statistically significant (P < 0.05). The positive rates of P53 and survivin proteins were significantly higher in the HR-HPV LUAD group (58.62% and 86.21%, respectively) than in the non-HR-HPV LUAD group (41.38% and 67.12%, respectively), and the difference was statistically significant (P < 0.05). The expression rate of pRb protein was significantly lower in the HR-HPV LUAD group (37.93%) than in the non-HR-HPV LUAD group (67.12%), and the difference was statistically significant (P < 0.05). The expression of p53 and survivin protein was positively correlated with HR-HPV infection (r = 0.338 and 0.444, P < 0.05), whereas the expression of pRb protein was negatively correlated with HR-HPV infection (r =  - 0.268, P < 0.05). HR-HPV infection was not associated with gender, age, and smoking in patients with LUAD (P > 0.05). HR-HPV infection was associated with lymph node metastasis and clinical stage of LUAD (P < 0.05). Conclusions: HR-HPV infection was associated with lymph node metastasis and clinical stage of LUAD, which may be achieved by up-regulating p53 and survivin protein expression and down-regulating pRb protein expression.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Infecciones por Papillomavirus , Humanos , Survivin/metabolismo , Estudios Retrospectivos , Proteína p53 Supresora de Tumor/análisis , Infecciones por Papillomavirus/epidemiología , Virus del Papiloma Humano , Metástasis Linfática , Pronóstico , Adenocarcinoma/complicaciones , Adenocarcinoma del Pulmón/complicaciones , Neoplasias Pulmonares/complicaciones
14.
Cancers (Basel) ; 15(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37370742

RESUMEN

This systematic review and meta-analysis aims to evaluate the scientific evidence on the implications of retinoblastoma protein (pRb) alterations in oral cancer, in order to determine its prognostic and clinicopathological significance. PubMed, Embase, Web of Science, and Scopus were searched for studies published before February 2022, with no restrictions by publication date or language. The quality of the studies using the Quality in Prognosis Studies tool (QUIPS tool). Meta-analysis was conducted to achieve the proposed objectives, as well as heterogeneity, subgroup, meta-regression, and small study-effects analyses. Twenty studies that met the inclusion criteria (2451 patients) were systematically reviewed and meta-analyzed. Our results were significant for the association between the loss of pRb expression and a better overall survival (HR = 0.79, 95%CI = 0.64-0.98, p = 0.03), whereas no significant results were found for disease-free survival or clinico-pathological parameters (T/N status, clinical stage, histological grade). In conclusion, our evidence-based results demonstrate that loss of pRb function is a factor associated with improved survival in patients with OSCC. Research lines that should be developed in the future are highlighted.

15.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37108333

RESUMEN

Vaginal dysbiosis is characterized by a decrease in the relative abundance of Lactobacillus species in favor of other species. This condition facilitates infections by sexually transmitted pathogens including high risk (HR)-human papilloma viruses (HPVs) involved in the development of cervical cancer. Some vaginal dysbiosis bacteria contribute to the neoplastic progression by inducing chronic inflammation and directly activating molecular pathways involved in carcinogenesis. In this study, SiHa cells, an HPV-16-transformed epithelial cell line, were exposed to different representative vaginal microbial communities. The expression of the HPV oncogenes E6 and E7 and the production of relative oncoproteins was evaluated. The results showed that Lactobacillus crispatus and Lactobacillus gasseri modulated the basal expression of the E6 and E7 genes of SiHa cells and the production of the E6 and E7 oncoproteins. Vaginal dysbiosis bacteria had contrasting effects on E6/E7 gene expression and protein production. The expression of the E6 and E7 genes and the production of the relative oncoproteins was increased by strains of Gardnerella vaginalis and, to a lesser extent, by Megasphaera micronuciformis. In contrast, Prevotella bivia decreased the expression of oncogenes and the production of the E7 protein. A decreased amount of p53 and pRb was found in the cultures of SiHa cells with M. micronuciformis, and accordingly, in the same cultures, a higher percentage of cells progressed to the S-phase of the cell cycle compared to the untreated or Lactobacillus-stimulated cultures. These data confirm that L. crispatus represents the most protective component of the vaginal microbiota against neoplastic progression of HR-HPV infected cells, while M. micronuciformis and, to a lesser extent, G. vaginalis may directly interfere in the oncogenic process, inducing or maintaining the production of viral oncoproteins.


Asunto(s)
Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Disbiosis , Proteínas Represoras/genética , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Bacterias/metabolismo , Neoplasias del Cuello Uterino/genética
16.
Genes (Basel) ; 14(2)2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36833320

RESUMEN

The transcription factor E2F, the principal target of the tumor suppressor pRB, plays crucial roles in cell proliferation and tumor suppression. In almost all cancers, pRB function is disabled, and E2F activity is enhanced. To specifically target cancer cells, trials have been undertaken to suppress enhanced E2F activity to restrain cell proliferation or selectively kill cancer cells, utilizing enhanced E2F activity. However, these approaches may also impact normal growing cells, since growth stimulation also inactivates pRB and enhances E2F activity. E2F activated upon the loss of pRB control (deregulated E2F) activates tumor suppressor genes, which are not activated by E2F induced by growth stimulation, inducing cellular senescence or apoptosis to protect cells from tumorigenesis. Deregulated E2F activity is tolerated in cancer cells due to inactivation of the ARF-p53 pathway, thus representing a feature unique to cancer cells. Deregulated E2F activity, which activates tumor suppressor genes, is distinct from enhanced E2F activity, which activates growth-related genes, in that deregulated E2F activity does not depend on the heterodimeric partner DP. Indeed, the ARF promoter, which is specifically activated by deregulated E2F, showed higher cancer-cell specific activity, compared to the E2F1 promoter, which is also activated by E2F induced by growth stimulation. Thus, deregulated E2F activity is an attractive potential therapeutic tool to specifically target cancer cells.


Asunto(s)
Factor de Transcripción E2F1 , Neoplasias , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Factores de Transcripción E2F/metabolismo , Genes Supresores de Tumor , Apoptosis , Regiones Promotoras Genéticas , Neoplasias/genética
17.
J Environ Manage ; 331: 117242, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36630800

RESUMEN

In this study, numerical groundwater modelling software (GMS) was applied for a 2D transient state predictive (flow and contaminant fate and transport) conceptual model for heavy metal (Selenium in this research) contaminated groundwater, Imamzadeh-Jafar Aquifer, Kohgiluyeh and Boyer-Ahmad Province, Iran. The performances of permeable reactive barrier (PRB) in pollutant removal in the contaminated aquifers were studied by helping the MODFLOW-MT3DMS model. The spatiotemporal distribution of Selenium (Se) contaminant over the aquifer was illustrated using the calibrated flow and contaminant model. According to the findings, the downward movement of Se has resulted in an unsafe and undesirable water quality status in the Imamzadeh-Jafar aquifer, which is supported by field data. The sensitivity analysis of PRB layouts, geometric features, and reactant material characteristics was conducted in groundwater remediation. The numerical model results illustrated that the PRB thickness, ranging from 10 to 500 m, manifested the drop in Se concentration approximately from 40 to 46%. The results shed light on the hydraulic conductivity variations of reactant materials have effects less than 0.5% in Se removals. Furthermore, the decay rate variations in the ranges from 0.0001 to 0.01 d-1 could result in Se removal from 5 to 100%. According to studies, if the contaminant sources are prevented, in a) installation of PRB and b) not installation of PRB scenarios, the Imamzadeh-Jafar aquifer remediation will take 6 months and 84 months, respectively.


Asunto(s)
Agua Subterránea , Selenio , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Selenio/análisis , Modelos Teóricos , Irán
18.
Curr Res Neurobiol ; 4: 100074, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36699152

RESUMEN

Three decades following the introduction of the first Rb knockout (KO) mouse model, the role of this critical protein in regulating brain development during embryogenesis and beyond remains a major scientific interest. Rb is a tumor suppressor gene known as the master regulator of the G1/S checkpoint and control of cell cycle progression in stem and progenitor cells, but also their differentiated progeny. Here, we review the recent literature about the various Rb conditional Knockout (cKO) and inducible Knockout (iKO) models studied thus far, highlighting how findings should always be interpreted in light of the model and context under inquiry especially when studying the role of Rb in neuronal survival. There is indeed evidence of age-specific, cell type-specific and region-specific effects following Rb KO in the embryonic and the adult mouse brain. In terms of modeling neurodegenerative processes in human diseases, we discuss cell cycle re-entry (CCE) as a candidate mechanism underlying the increased vulnerability of Rb-deficient neurons to cell death. Notably, mouse models may limit the extent to which CCE due to Rb inactivation can mimic the pathological course of these disorders, such as Alzheimer's disease. These remarks ought to be considered in future research when studying the consequences of Rb inactivation on neuronal generation and survival in rodents and their corresponding clinical significance in humans.

19.
Cytotechnology ; 75(1): 49-62, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36713061

RESUMEN

The standard treatment for non-muscle-invasive bladder cancer is intravesical Bacillus Calmette-Guérin (BCG) therapy, which is considered the only intravesical therapy that reduces the risk of progression to muscle-invasive cancer. BCG unresponsiveness, in which intravesical BCG therapy is ineffective, has become a problem. It is thus important to evaluate the effectiveness of BCG treatment for patients as soon as possible in order to identify the optimal therapy. Urine cytology is a noninvasive, easy, and cost-effective method that has been used during BCG treatment, but primarily only to determine benign or malignant status; findings concerning the efficacy of BCG treatment based on urine cytology have not been reported. We investigated the relationship between BCG exposure and nuclear an important criterion in urine cytology, i.e., nuclear chromatin patterns. We used three types of cultured cells to evaluate nuclear chromatin patterns and the cell cycle, and we used T24 cells to evaluate the phosphorylation of retinoblastoma protein (pRb) in six-times of BCG exposures. The results revealed that after the second BCG exposure, (i) nuclear chromatin is distributed predominantly at the nuclear periphery and (ii) the dephosphorylation of threonine-821/826 in pRb occurs. This is the first report of a dynamic change in the nuclear chromatin pattern induced by exposure to BCG. Molecular findings also suggested a relationship between this phenomenon and cell-cycle proteins. Although these results are preliminary, they contribute to our understanding of the cytomorphological changes that occur with BCG exposure.

20.
Environ Sci Pollut Res Int ; 30(7): 19393-19409, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36239896

RESUMEN

Hydroxyapatite-coated quartz sands were synthesized by the sol-gel method and employed as a permeable reactive barrier (PRB) medium for the manganese contaminated aqueous solution treatment. The effects of composite particle size, initial concentration of manganese, and hydraulic load on the manganese removal in aqueous solution were investigated by column test. The Thomas and Yoon-Nelson dynamic models were used to reproduce the Mn(II) adsorption behavior observed in these column experiments. The scanning electron microscope (SEM) coupled with energy dispersive spectrometer (EDS), X-ray diffractometer (XRD), and X-ray photoelectron spectroscopy (XPS) were employed to investigate the Mn(II) removal mechanism. Results showed that the initial concentration of manganese had the greatest influence on Mn(II) removal when the initial concentration of manganese is 3 mg/L, the particle size is 0.15 ~ 0.3 mm, the hydraulic load is 5.5 m3/m2·d, and the adsorption capacity of the composites reached the maximum of 1.10 mg/g. The Thomas model fitted the breakthrough curves better. The maximum adsorption capacity of Mn(II) is 0.7546 mg/g. The adsorption mechanisms are mainly ion exchange and dissolution-precipitation. The results indicate that the hydroxyapatite-coated quartz sands could be an effective PRB media for the manganese-contaminated water treatment.


Asunto(s)
Manganeso , Contaminantes Químicos del Agua , Manganeso/química , Cuarzo , Arena , Contaminantes Químicos del Agua/química , Adsorción , Hidroxiapatitas , Concentración de Iones de Hidrógeno , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA