Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Toxicol Chem ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189750

RESUMEN

Amid global concern regarding the health and environmental impacts of per- and polyfluoroalkyl substances (PFAS), there is an urgent need to develop and implement alternative products without PFAS. Consequently, PFAS-free firefighting foams used for fire suppression have been developed for use in military and residential settings. To facilitate the selection of lower-risk PFAS-free foams, the present study focused on the chronic toxicity of seven PFAS-free and one PFAS-containing foam to six aquatic species. Target species included two cladocerans, Daphnia magna and Ceriodaphnia dubia; the chironomid Chironomus dilutus; the mysid Americamysis bahia; and two fish species, Pimephales promelas and Cyprinodon variegatus, with endpoints including growth, development, reproduction, and survival. To facilitate comparison and product toxicity rankings, effective concentrations (20%, 50%) and no- and lowest-observed-effect concentrations (NOECs and LOECs, respectively) were calculated. Effective concentrations, NOECs, and LOECs varied by over an order of magnitude among foams and species, with several of the PFAS-free formulations ranked as highly toxic based on US Environmental Protection Agency alternatives assessment hazard criteria. Overall, the PFAS-free foams were found to exhibit either similar or greater toxicity compared to the PFAS-containing reference foam across several species and endpoints. Nonmonotonic and hormetic dose responses were observed in D. magna for several of the tested foams, with increased reproduction and growth at intermediate exposures. Generally, tested foam toxicity rankings were consistent with a related acute toxicity study using the same species and formulations, and other research using soil invertebrates. Combined with related efforts for other taxa including mammals, birds, and plants, the present research will facilitate the selection of appropriate PFAS-free firefighting foams that minimize harm to the environment. Environ Toxicol Chem 2024;00:1-19. © 2024 SETAC.

2.
Environ Toxicol Chem ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923620

RESUMEN

Perfluoroalkyl sulfonamides (FASAs) and other FASA-based per- and polyfluoroalkyl substances (PFASs) can transform into recalcitrant perfluoroalkyl sulfonates in vivo. We conducted high-resolution mass spectrometry suspect screening of urine and tissues (kidney and liver) from mice dosed with an electrochemically fluorinated aqueous film-forming foam (AFFF) to better understand the biological fate of AFFF-associated precursors. The B6C3F1 mice were dosed at five levels (0, 0.05, 0.5, 1, and 5 mg kg-1 day-1) based on perfluorooctane sulfonate and perfluorooctanoate content of the AFFF mixture. Dosing continued for 10 days followed by a 6-day depuration. Total oxidizable precursor assay of the AFFF suggested significant contributions from precursors with three to six perfluorinated carbons. We identified C4 to C6 FASAs and N-glucuronidated FASAs (FASA-N-glus) excreted in urine collected throughout dosing and depuration. Based on normalized relative abundance, FASA-N-glus accounted for up to 33% of the total excreted FASAs in mouse urine, highlighting the importance of phase II metabolic conjugation as a route of excretion. High-resolution mass spectrometry screening of liver and kidney tissue revealed accumulation of longer-chain (C7 and C8) FASAs not detected in urine. Chain-length-dependent conjugation of FASAs was also observed by incubating FASAs with mouse liver S9 fractions. Shorter-chain (C4) FASAs conjugated to a much greater extent over a 120-min incubation than longer-chain (C8) FASAs. Overall, this study highlights the significance of N-glucuronidation as an excretion mechanism for short-chain FASAs and suggests that monitoring urine for FASA-N-glus could contribute to a better understanding of PFAS exposure, as FASAs and their conjugates are often overlooked by traditional biomonitoring studies. Environ Toxicol Chem 2024;00:1-11. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

3.
Environ Toxicol Chem ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38450772

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) represent a large group of contaminants of concern based on their widespread use, environmental persistence, and potential toxicity. Many traditional models for estimating toxicity, bioaccumulation, and other toxicological properties are not well suited for PFAS. Consequently, there is a need to generate hazard information for PFAS in an efficient and cost-effective manner. In the present study, Daphnia magna were exposed to multiple concentrations of 22 different PFAS for 24 h in a 96-well plate format. Following exposure, whole-body RNA was extracted and extracts, each representing five exposed individuals, were subjected to RNA sequencing. Following analytical measurements to verify PFAS exposure concentrations and quality control on processed cDNA libraries for sequencing, concentration-response modeling was applied to the data sets for 18 of the tested compounds, and the concentration at which a concerted molecular response occurred (transcriptomic point of departure; tPOD) was calculated. The tPODs, based on measured concentrations of PFAS, generally ranged from 0.03 to 0.58 µM (9.9-350 µg/L; interquartile range). In most cases, these concentrations were two orders of magnitude lower than similarly calculated tPODs for human cell lines exposed to PFAS. They were also lower than apical effect concentrations reported for seven PFAS for which some crustacean or invertebrate toxicity data were available, although there were a few exceptions. Despite being lower than most other available hazard benchmarks, D. magna tPODs were, on average, four orders of magnitude greater than the maximum aqueous concentrations of PFAS measured in Great Lakes tributaries. Overall, this high-throughput transcriptomics assay with D. magna holds promise as a component of a tiered hazard evaluation strategy employing new approach methodologies. Environ Toxicol Chem 2024;00:1-16. © 2024 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

4.
Environ Toxicol Chem ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38415853

RESUMEN

Traditional toxicity testing has been unable to keep pace with the introduction of new chemicals into commerce. Consequently, there are limited or no toxicity data for many chemicals to which fish and wildlife may be exposed. Per- and polyfluoroalkyl substances (PFAS) are emblematic of this issue in that ecological hazards of most PFAS remain uncharacterized. The present study employed a high-throughput assay to identify the concentration at which 20 PFAS, with diverse properties, elicited a concerted gene expression response (termed a transcriptomics-based point of departure [tPOD]) in larval fathead minnows (Pimephales promelas; 5-6 days postfertilization) exposed for 24 h. Based on a reduced transcriptome approach that measured whole-body expression of 1832 genes, the median tPOD for the 20 PFAS tested was 10 µM. Longer-chain carboxylic acids (12-13 C-F); an eight-C-F dialcohol, N-alkyl sulfonamide; and telomer sulfonic acid were among the most potent PFAS, eliciting gene expression responses at concentrations <1 µM. With a few exceptions, larval fathead minnow tPODs were concordant with those based on whole-transcriptome response in human cell lines. However, larval fathead minnow tPODs were often greater than those for Daphnia magna exposed to the same PFAS. The tPODs overlapped concentrations at which other sublethal effects have been reported in fish (available for 10 PFAS). Nonetheless, fathead minnow tPODs were orders of magnitude higher than aqueous PFAS concentrations detected in tributaries of the North American Great Lakes, suggesting a substantial margin of safety. Overall, results broadly support the use of a fathead minnow larval transcriptomics assay to derive screening-level potency estimates for use in ecological risk-based prioritization. Environ Toxicol Chem 2024;00:1-16. © 2024 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

5.
Environ Toxicol Chem ; 43(1): 7-18, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37850740

RESUMEN

Zebrafish (Danio rerio) are among the aquatic species most sensitive to perfluorooctane sulfonate (PFOS). Environmental regulatory agencies and researchers use effect benchmarks from laboratory zebrafish PFOS toxicity studies in PFOS-spiked water to calculate PFOS aquatic life criteria. Threshold values as low as 0.7 µg/L (identified in an early, limited scope study) have been used in criteria derivation and site-specific aquatic ecological risk assessments. The present study reviews PFOS effects benchmarks for lethality, growth, and reproduction endpoints from more than 20 zebrafish toxicity studies, including a recent multigenerational study conducted by the United States Army Corps of Engineers Engineer Research & Development Center. Our review of 12 key studies examining long-term, chronic exposures (including multigenerational exposures of 300 days or more) indicated that 0.7 µg/L should not be used as a conservative screening threshold given that effects could not be repeated at this concentration by the recent enhanced multigenerational study. Based on this finding and multiple chronic sublethal studies on PFOS in zebrafish, chronic effects on lethality, growth, and reproduction occur at concentrations two orders of magnitude higher than 0.7 µg/L. Overall, the present review indicates a no-effect screening level of 31 µg/L and a low-effect screening level of 96 µg/L should be used to develop PFOS aquatic life criteria and to inform site-specific ecological risk assessments that are charged with evaluating risks to freshwater fish. Environ Toxicol Chem 2024;43:7-18. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Perciformes , Contaminantes Químicos del Agua , Animales , Pez Cebra , Ácidos Alcanesulfónicos/toxicidad , Reproducción , Fluorocarburos/toxicidad , Contaminantes Químicos del Agua/toxicidad
6.
Environ Toxicol Chem ; 42(7): 1463-1471, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37310141

RESUMEN

When performing basic and translational laboratory studies with aquatic organisms, particularly for bioaccumulation, toxicity, or biotransformation experiments, it is imperative to control the route and dose of exposure. Contamination of feed and the organisms prior to study could alter the results of an experiment. Furthermore, if organisms not exposed in the lab are used for quality assurance/quality control, then blank levels, method detection limits, and limits of quantitation can be affected. In an effort to determine the magnitude of this potential issue for exposure studies involving Pimephales promelas, we analyzed a suite of 24 per- and polyfluoroalkyl substances (PFAS) in four types of feed from three different companies and in organisms from five aquaculture facilities. Contamination with PFAS was found in all types of materials and organisms from all aquaculture farms. The most frequently detected PFAS in fish feed and aquaculture fathead minnows were perfluorocarboxylic acids and perfluorooctane sulfonate (PFOS). Concentrations of total and individual PFAS in feed ranged from nondetect to 76 ng/g and from nondetect to 60 ng/g, respectively. Fathead minnows were contaminated with PFOS and perfluorohexane sulfonate as well as several perflourocarboxylic acids. Concentrations of total and individual PFAS ranged from 1.4 to 351 ng/g and from nondetect to 328 ng/g, respectively. The PFOS measured in food was primarily the linear isomer, consistent with greater bioaccumulation of that isomer in organisms raised as fish food. Future studies are necessary to define the extent of PFAS contamination in aquatic culture facilities and aquaculture production operations. Environ Toxicol Chem 2023;42:1463-1471. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Ácidos Alcanesulfónicos , Cyprinidae , Fluorocarburos , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Ácidos Alcanesulfónicos/análisis , Cyprinidae/metabolismo , Acuicultura , Fluorocarburos/análisis
7.
Environ Toxicol Chem ; 42(6): 1190-1198, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37132581

RESUMEN

Although freshwater mussels are imperiled and identified as key conservation priorities, limited bioaccumulation information is available on these organisms for contaminants of emerging concern. In the present study we investigated the bioaccumulation of per- and polyfluoroalkyl substances (PFAS) in the model freshwater pond mussel Sagittunio subrostratus because mussels provide important ecosystem services and are important components of aquatic systems where PFAS occur. In the present study we selected four representative perfluorinated carboxylic acids and sulfonic acids, then determined the bioaccumulation kinetics of freshwater mussels in a controlled laboratory study. Because uptake (ku ) and elimination (ke ) rate constants and time to steady state are important parameters for food web bioaccumulation models, we derived bioaccumulation kinetic parameters following exposure to perfluorohexane sulfonic acid (PFHxS), perfluorooctane sulfonic acid (PFOS), and perfluorodecanoic acid (PFDA) at 10 µg/L and perfluoroundecanoic acid (PFUnDA) at 1 µg/L during a 14-day uptake period followed by a 7-day elimination period. Kinetic and ratio-based bioaccumulation factors (BAFs) were subsequently calculated, for example ratio-based BAFs for mussel at day 7 were determined for PFHxS (0.24 ± 0.08 L/kg), PFOS (7.73 ± 1.23 L/kg), PFDA (4.80 ± 1.21 L/kg), and PFUnDA (84.0 ± 14.4 L/kg). We generally observed that, for these four model PFAS, freshwater mussels have relatively low BAF values compared with other aquatic invertebrates and fish. Environ Toxicol Chem 2023;42:1190-1198. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Asunto(s)
Ácidos Alcanesulfónicos , Bivalvos , Fluorocarburos , Animales , Cinética , Bioacumulación , Ecosistema , Agua Dulce , Fluorocarburos/análisis
8.
Int J Circumpolar Health ; 78(1): 1642090, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31339476

RESUMEN

The objective of this study was to identify geographic, dietary, and other predictors for childhood exposure to perfluoroalkyl substances (PFASs), polychlorinated biphenyls (PCBs), and methylmercury in Greenlandic children. The study includes cross-sectional data from 367 Greenlandic children aged 7 to 12 years examined during 2012-2015. A parent or guardian participated in a structured interview, and a blood sample from the child was analysed for PFASs, PCBs and total mercury. Predictors for the environmental exposures were identified using linear regression. Area of residence was found to have the strongest explanatory power, accounting for 24% to 68% of the variance in the serum concentrations. Information about diet was available for two-thirds of the children, and among these, consumption of traditional Greenlandic food accounted for 2% to 10% of the variance in the biomarker concentrations. Models including all predictors associated with at least one of the environmental chemicals explained 19% to 54% of the total variance. In conclusion, area is a likely proxy for a traditional marine diet, and together area and diet constitute the most important predictors of exposure to methylmercury, PCBs and PFASs among Greenlandic children.


Asunto(s)
Dieta/estadística & datos numéricos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Niño , Dieta/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Ambientales/efectos adversos , Contaminantes Ambientales/sangre , Femenino , Fluorocarburos/efectos adversos , Fluorocarburos/sangre , Geografía , Groenlandia/epidemiología , Humanos , Masculino , Compuestos de Metilmercurio/efectos adversos , Compuestos de Metilmercurio/sangre , Bifenilos Policlorados/efectos adversos , Bifenilos Policlorados/sangre
9.
Environ Int ; 119: 212-219, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29980044

RESUMEN

BACKGROUND: Toxicological studies highlight the potential neurotoxicity of perfluoroalkyl substances (PFAS) during fetal development. However, few epidemiological studies have examined the impact of childhood PFAS on neurodevelopment. METHODS: We employed data from 208 children in the Health Outcomes and Measures of the Environment Study, a birth cohort (Cincinnati, OH), to examine associations of six serum PFAS concentrations measured at 3 and 8 years with executive function assessed at 8 years using the validated parent-completed Behavior Rating Inventory of Executive Function survey. We used multiple informant models to identify susceptible windows of neurotoxicity to PFAS and executive function. We investigated trajectories of PFAS concentrations and whether sex modified these associations. RESULTS: Each ln-increase in perfluorononanoate (PFNA) at 8 years was associated with a 3.4-point increase (95% CI 0.4, 6.3) in metacognition score, indicating poorer function. Children with PFNA above the median at 8 years had poorer global executive functioning compared to children with concentrations consistently below median levels (ß = 6.5, 95% CI 0.2, 12.9). Higher concurrent PFNA was associated with poorer behavior regulation among males, while associations among females were null (pPFNA×sex = 0.018). Children with higher concurrent perfluorooctanoate (PFOA) had increased odds of being at risk of having clinical impairments in metacognition (OR = 3.18, 95% CI 1.17, 8.60). There were no associations between perfluorooctane sulfonate and perfluorohexane sulfonate and executive function. CONCLUSIONS: PFNA and PFOA at 8 years, but not 3 years, may be related to poorer executive function at 8 years. Results need to be confirmed in cohort studies with larger sample sizes.


Asunto(s)
Exposición a Riesgos Ambientales , Función Ejecutiva/fisiología , Fluorocarburos/análisis , Niño , Estudios de Cohortes , Exposición a Riesgos Ambientales/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Femenino , Humanos , Masculino , Ohio/epidemiología
10.
J Immunotoxicol ; 15(1): 41-52, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29514525

RESUMEN

Poly- and perfluoroalkyl substances (PFAS) are chemically and thermally stable, hydrophobic, lipophobic compounds used in stain repellants and water and oil surfactants, and associated with immunosuppression and peroxisome proliferator activity. Perfluoro-n-decanoic acid (PFDA, (CF3(CF2)8COOH), a fluorinated straight chain fatty acid compound, is reported to induce thymic atrophy and reversible bone marrow hypocellularity in rodent models. The objective of this study was to assess potential immunotoxicity of PFDA, due to its structural similarity to other immunosuppressive PFASs. Female Harlan Sprague-Dawley rats were exposed to 0-2.0 mg PFDA/kg by oral gavage daily for 28 d. Female B6C3F1/N mice were exposed once/week to 0-5.0 mg PFDA/kg by gavage for 4 weeks. Animals were evaluated for effects on immune cell populations in spleen and bone marrow, and innate, humoral-, and cell-mediated immunity. Mice were also evaluated for resistance to Influenza virus. Treatment-related hepatocyte necrosis and hepatomegaly were observed in rats treated with 0.5 mg PFDA/kg/d. In mice, hepatomegaly (26-89%) was observed following exposure to ≥0.625 mg PFDA/kg/week, while splenic atrophy (20%) was observed at 5.0 mg PFDA/kg/week. At 5.0 mg PFDA/kg/week, total spleen cells, and Ig + and NK + cells were decreased (17.6-27%). At ≥ 1.25 mg PFDA/kg/week the numbers of splenic CD3+, CD4+, CD8+, and Mac3+ cells were decreased (10.5-39%). No changes were observed in leukocyte subpopulations in PFDA-exposed rats. Phagocytosis by fixed-tissue macrophages was decreased in liver (specific activity, 24-39%) at ≥0.25 mg PFDA/kg/d in rats. PFDA-induced effects on humoral- and cell-mediated immunity, host resistance, and bone marrow progenitor cells were limited. These data suggest that exposure to PFDA may induce adverse effects in rat liver in a manner consistent with the PFAS class, and may also alter the balance of immune cell populations in lymphoid tissues in mice.


Asunto(s)
Ácidos Decanoicos/efectos adversos , Fluorocarburos/efectos adversos , Hepatocitos/patología , Hígado/patología , Infecciones por Orthomyxoviridae/inmunología , Orthomyxoviridae/fisiología , Bazo/patología , Administración Oral , Animales , Células Cultivadas , Femenino , Humanos , Terapia de Inmunosupresión , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Necrosis , Fagocitosis , Ratas , Ratas Sprague-Dawley , Tensoactivos/efectos adversos
11.
Environ Toxicol Chem ; 36(11): 3138-3147, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28628233

RESUMEN

In 2011, poly- and perfluoroalkyl substances (PFASs) were analyzed in surface water and fish fillet samples taken from Pool 2 of the Upper Mississippi River, a 33-mile stretch inclusive of the Minneapolis/St. Paul, Minnesota (USA) metropolitan area. Approximately 100 each of bluegill, freshwater drum, smallmouth bass, and white bass were sampled within the study area. Surface water samples were also collected from each of the 10 sampling reaches established for the study. Water and fillet samples were analyzed for perfluorinated carboxylic acids (C4-C12), perfluorinated sulfonic acids (C4, C6, and C8), and perfluorooctane sulfonamide. Perfluorooctane sulfonate (PFOS) was observed with the greatest frequency in fish fillets and ranged from 3.0 to 760 ng/g wet weight. Mean (geometric) PFOS concentrations in bluegill, freshwater drum, smallmouth bass, and white bass were 20, 28, 29, and 58 ng/g wet weight, respectively. When compared with fish data collected in 2009, a significant reduction (p < 0.05) in PFOS concentrations was noted. This finding was confirmed based on data from studies conducted in 2012 and 2013. Overall, between 2009 and 2013, PFOS concentrations decreased by 65, 76, and 50% for bluegill, freshwater drum, and white bass, respectively (44% decrease for smallmouth bass from 2009 to 2012). These declines in fish PFOS concentrations are consistent with ongoing efforts to effectively control sources of PFASs to the Mississippi River. Environ Toxicol Chem 2017;36:3138-3147. © 2017 SETAC.


Asunto(s)
Ácidos Alcanesulfónicos/análisis , Ácidos Carboxílicos/análisis , Peces/metabolismo , Fluorocarburos/análisis , Ríos/química , Sulfonamidas/análisis , Ácidos Sulfónicos/análisis , Contaminantes Químicos del Agua/análisis , Animales , Monitoreo del Ambiente , Minnesota , Factores de Tiempo
12.
Environ Sci Pollut Res Int ; 24(10): 9194-9201, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28220384

RESUMEN

Severe perfluoroalkyl substance (PFAS) contaminations have been observed in both surface water and groundwater in the vicinity of Fuxin, China, over the past years, attributing to the fast-growing fluorochemical industries locally. However, little is known about the overall daily intake of PFAS contaminations by Fuxin residents recently. In the present study, ten target PFAS analytes in the blood serum samples collected from 100 non-occupationally exposed healthy residents in Fuxin, with an average age of 47.6 years, together with 14 drinking water samples obtained from the public water system (PWS) of Fuxin were analyzed via high-performance liquid chromotography-tandem mass spectrometry (HPLC-MS/MS). As the dominant PFAS contaminant, the serum concentrations of perfluorooctanoic acid (PFOA) in Fuxin residents ranged between <0.05 and 160 ng/mL, with a median concentration of 9.4 ng/mL, which was higher than those reported previously for Fuxin and other areas worldwide. In drinking water samples, PFOA had a median value of 8.5 ng/L, ranging from 7.7 to 8.8 ng/L. Based upon the simplified one-compartment pharmacokinetic model, the total daily intake of PFOA for individuals residing in Fuxin ranged from 0.30 to 1.76 ng/kg bw/day, with a median of 0.79 ng/kg bw/day; furthermore, daily consumption of drinking water from the PWS in Fuxin appeared to contribute 35% of overall PFOA burden in local residents, which was approximately 3-fold higher compared to that estimated for Fuxin residents in 2009.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Caprilatos , China , Agua Potable/química , Humanos , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua
13.
Food Chem Toxicol ; 100: 24-33, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27939831

RESUMEN

Perfluorononanoic acid (PFNA) is a perfluoroalkyl substance (PFAS) that is structurally related to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Whereas PFOA and PFOS are known immunotoxicants, PFNA is less well characterized. Our previous study showed that PFNA has immunomodulatory effects on leukocyte populations and immune function. The present studies sought to determine whether, and to what degree, the immune system recovered 28 days after PFNA exposure. None of the parameters measured had fully recovered. A few parameters had partially recovered, including decreased spleen size and the decreased ratio of the CD4+/CD8+ double-positive population in thymus. The majority of effects of PFNA remained unchanged 28 days after exposure, including decreased proportion of intact thymocytes (as determined by FSC vs SSC), alterations in the ratios of immune cell populations in spleen and the CD4+, CD8+ and double-negative populations in thymus. Notably, PFNA markedly increased the TNFα response to LPS in vivo, and no recovery was evident 28 days after exposure. The effect of PFNA on CD4+ T cells, CD8+ T cells and CD19+ cells was more pronounced in females. The current study demonstrates that a single high dose exposure to PFNA (e.g. as might occur accidentally in an occupational setting) has long-lasting effects on the immune system.


Asunto(s)
Fluorocarburos/farmacología , Sistema Inmunológico/efectos de los fármacos , Sistema Inmunológico/inmunología , Tamaño de los Órganos/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Ensayo de Inmunoadsorción Enzimática , Ácidos Grasos , Femenino , Citometría de Flujo , Fluorocarburos/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Bazo/efectos de los fármacos , Timocitos/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA