Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 476
Filtrar
1.
Plant J ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222478

RESUMEN

Plant hormones are chemical signals governing almost every aspect of a plant's life cycle and responses to environmental cues. They are enmeshed within complex signaling networks that can only be deciphered by using broad-scale analytical methods to capture information about several plant hormone classes simultaneously. Methods used for this purpose are all based on reversed-phase (RP) liquid chromatography and mass spectrometric detection. Hydrophilic interaction chromatography (HILIC) is an alternative chromatographic method that performs well in analyses of biological samples. We therefore developed and validated a HILIC method for broad-scale plant hormone analysis including a rapid sample preparation procedure; moreover, derivatization or fractionation is not required. The method enables plant hormone screening focused on polar and moderately polar analytes including cytokinins, auxins, jasmonates, abscisic acid and its metabolites, salicylates, indoleamines (melatonin), and 1-aminocyclopropane-1-carboxylic acid (ACC), for a total of 45 analytes. Importantly, the major pitfalls of ACC analysis have been addressed. Furthermore, HILIC provides orthogonal selectivity to conventional RP methods and displays greater sensitivity, resulting in lower limits of quantification. However, it is less robust, so procedures to increase its reproducibility were established. The method's potential is demonstrated in a case study by employing an approach combining hormonal analysis with phenomics to examine responses of three Arabidopsis ecotypes toward three abiotic stress treatments: salinity, low nutrient availability, and their combination. The case study showcases the value of the simultaneous determination of several plant hormone classes coupled with phenomics data when unraveling processes involving complex cross-talk under diverse plant-environment interactions.

2.
J Environ Manage ; 367: 121979, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39088904

RESUMEN

Cadmium (Cd) is readily absorbed by tobacco and accumulates in the human body through smoke inhalation, posing threat to human health. While there have been many studies on the negative impact of cadmium in tobacco on human health, the specific adaptive mechanism of tobacco roots to cadmium stress is not well understood. In order to comprehensively investigate the effects of Cd stress on the root system of tobacco, the combination of transcriptomic, biochemical, and physiological methods was utilized. In this study, tobacco growth was significantly inhibited by 50 µM of Cd, which was mainly attributed to the destruction of root cellular structure. By comparing the transcriptome between CK and Cd treatment, there were 3232 up-regulated deferentially expressed genes (DEGs) and 3278 down-regulated DEGs. The obvious differential expression of genes related to the nitrogen metabolism, metal transporters and the transcription factors families. In order to mitigate the harmful effects of Cd, the root system enhances Cd accumulation in the cell wall, thereby reducing the Cd content in the cytoplasm. This result may be mediated by plant hormones and transcription factor (TF). Correlational statistical analysis revealed significant negative correlations between IAA and GA with cadmium accumulation, indicated by correlation coefficients of -0.91 and -0.93, respectively. Conversely, ABA exhibited a positive correlation with a coefficient of 0.96. In addition, it was anticipated that 3 WRKY TFs would lead to a reduction in Cd accumulation. Our research provides a theoretical basis for the systematic study of the specific physiological processes of plant roots under Cd stress.


Asunto(s)
Cadmio , Reguladores del Crecimiento de las Plantas , Factores de Transcripción , Transcriptoma , Cadmio/toxicidad , Cadmio/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Transcriptoma/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Nicotiana/genética , Nicotiana/efectos de los fármacos , Estrés Fisiológico , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
3.
J Exp Bot ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133104

RESUMEN

Cytokinins, a class of phytohormones, play crucial roles in regulating plant growth and stress responses through finely tuned feedback loops involving metabolic and signaling cascades. Cytokinin metabolism modulates the abundance of these biologically active molecules. Over the past 25 years, studies have identified key genes involved in cytokinin biosynthesis and inactivation pathways. Nevertheless, several gaps remain in our understanding, particularly regarding the movement of intermediate metabolites between subcellular compartments and the discrepancy between the product of adenosine phosphate-isopentenyltransferase (IPT) and the substrate preferences of subsequent reactions. In addition, recent gene discoveries related to lonely guy (LOG)-independent pathways suggest a spatial extension of cytokinin biosynthesis into the apoplast. Other intriguing issues remain to be addressed, i.e., elucidating the synthetic pathway for cis-zeatin and unraveling the molecular mechanisms governing selective substrate use by the cytokinin biosynthetic enzyme tumor morphology root (Tmr) derived from the phytopathogen Agrobacterium tumefaciens during crown gall formation. Further studies are needed to reveal a fully comprehensive picture of cytokinin metabolism.

4.
BMC Plant Biol ; 24(1): 819, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215284

RESUMEN

BACKGROUND: Salt stress is a major abiotic factor that affects the distribution and growth of plants. Asparagus officinalis is primarily resistant to salt stress and is suitable for cultivation in saline-alkali soil. RESULTS: The study integrated the morphology, physiological indexes, and transcriptome of A. officinalis exposed to different levels of NaCl, with the aim of understanding its biological processes under salt stress. The findings indicated that exposure to salt stress led to decreases in the height and weight of A. officinalis plants. Additionally, the levels of POD and SOD, as well as the amounts of MDA, proline, and soluble sugars, showed an increase, whereas the chlorophyll content decreased. Analysis of the transcriptome revealed that 6,203 genes that showed differential expression at different salt-stress levels. Various TFs, including FAR1, MYB, NAC, and bHLH, exhibited differential expression under salt stress. KEGG analysis showed that the DEGs were primarily associated with the plant hormone signal transduction and lignin biosynthesis pathways. CONCLUSION: These discoveries provide a solid foundation for an in-depth exploration of the pivotal genes, including Aux/IAA, TCH4, COMT, and POD, among others, as well as the pathways involved in asparagus's salt stress responses. Consequently, they have significant implications for the future analysis of the molecular mechanisms underlying asparagus's response to salt stress.


Asunto(s)
Asparagus , Perfilación de la Expresión Génica , Estrés Salino , Asparagus/genética , Asparagus/efectos de los fármacos , Estrés Salino/genética , Transcriptoma , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas
5.
Plants (Basel) ; 13(16)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39204669

RESUMEN

Increased UV-B radiation due to ozone depletion adversely affects plants. This study focused on the metabolite dynamics of Rhododendron chrysanthum Pall. (R. chrysanthum) and the role of ABA in mitigating UV-B stress. Chlorophyll fluorescence metrics indicated that both JA and ABA increased UV-B resistance; however, the effect of JA was not as strong as that of ABA. Metabolomic analysis using UPLC-MS/MS (ultra-performance liquid chromatography and tandem mass spectrometry) revealed significant fluctuations in metabolites under UV-B and ABA application. UV-B decreased amino acids and increased phenolics, suggesting antioxidant defense activation. ABA treatment upregulated lipids and phenolic acids, highlighting its protective role. Multivariate analysis showed distinct metabolic clusters and pathways responding to UV-B and ABA, which impacted amino acid metabolism and hormone signal transduction. Exogenous ABA negatively regulated the JA signaling pathway in UV-B-exposed R. chrysanthum, as shown by KEGG enrichment. This study deepens understanding of plant stress-tolerance mechanisms and has implications for enhancing plant stress tolerance through metabolic and hormonal interventions.

6.
Biosensors (Basel) ; 14(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39194607

RESUMEN

Plants have evolved intricate signaling pathways, which operate as networks governed by feedback to deal with stressors. Nevertheless, the sophisticated molecular mechanisms underlying these routes still need to be comprehended, and experimental validation poses significant challenges and expenses. Consequently, computational hypothesis evaluation gains prominence in understanding plant signaling dynamics. Biosensors are genetically modified to emit light when exposed to a particular hormone, such as abscisic acid (ABA), enabling quantification. We developed computational models to simulate the relationship between ABA concentrations and bioluminescent sensors utilizing the Hill equation and ordinary differential equations (ODEs), aiding better hypothesis development regarding plant signaling. Based on simulation results, the luminescence intensity was recorded for a concentration of 47.646 RLUs for 1.5 µmol, given the specified parameters and model assumptions. This method enhances our understanding of plant signaling pathways at the cellular level, offering significant benefits to the scientific community in a cost-effective manner. The alignment of these computational predictions with experimental results emphasizes the robustness of our approach, providing a cost-effective means to validate mathematical models empirically. The research intended to correlate the bioluminescence of biosensors with plant signaling and its mathematical models for quantified detection of specific plant hormone ABA.


Asunto(s)
Ácido Abscísico , Técnicas Biosensibles , Modelos Teóricos , Transducción de Señal , Ácido Abscísico/metabolismo , Luminiscencia , Plantas/metabolismo , Mediciones Luminiscentes , Reguladores del Crecimiento de las Plantas/metabolismo
7.
Front Plant Sci ; 15: 1367121, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086912

RESUMEN

Introduction: The research on plant leaf morphology is of great significance for understanding the development and evolution of plant organ morphology. As a relict plant, the G. biloba leaf morphology typically exhibits bifoliate and peltate forms. However, throughout its long evolutionary history, Ginkgo leaves have undergone diverse changes. Methods: This study focuses on the distinct "trumpet" leaves and normal fan-shaped leaves of G. biloba for analysis of their phenotypes, photosynthetic activity, anatomical observations, as well as transcriptomic and metabolomic analyses. Results: The results showed that trumpet-shaped G. biloba leaves have fewer cells, significant morphological differences between dorsal and abaxial epidermal cells, leading to a significantly lower net photosynthetic rate. Additionally, this study found that endogenous plant hormones such as GA, auxin, and JA as well as metabolites such as flavonoids and phenolic acids play roles in the formation of trumpet-shaped G. biloba leaves. Moreover, the experiments revealed the regulatory mechanisms of various key biological processes and gene expressions in the trumpet-shaped leaves of G. biloba. Discussion: Differences in the dorsal and abdominal cells of G. biloba leaves can cause the leaf to curl, thus reducing the overall photosynthetic efficiency of the leaves. However, the morphology of plant leaves is determined during the primordia leaf stage. In the early stages of leaf development, the shoot apical meristem (SAM) determines the developmental morphology of dicotyledonous plant leaves. This process involves the activity of multiple gene families and small RNAs. The establishment of leaf morphology is complexly regulated by various endogenous hormones, including the effect of auxin on cell walls. Additionally, changes in intracellular ion concentrations, such as fluctuations in Ca2+ concentration, also affect cell wall rigidity, thereby influencing leaf growth morphology.

8.
Front Microbiol ; 15: 1385992, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952443

RESUMEN

Introduction: Weeds are significant factors that detrimentally affect crop health and hinder optimal herbage yield. Rhizosphere microorganisms play crucial roles in plant growth, development, and nutrient uptake. Therefore, research focusing on weed control through the lens of microorganisms has emerged as a prominent area of study. The oil-producing fungus Mortierella, which is known for its numerous agricultural benefits, has garnered significant attention in recent years. Methods: In this study, we conducted inoculation experiments in a controlled artificial culture climate chamber to investigate the effects of differential hormones and differentially expressed genes in the stems and leaves of Digitaria sanguinalis using Liquid Chromatography Tandem Mass Spectrometry and RNA-seq techniques, respectively. Additionally, Pearson's correlation analysis was used to establish correlations between differential hormones and growth indicators of Digitaria sanguinalis. Results and discussion: The results demonstrated that inoculation with Mortierella sp. MXBP304 effectively suppressed aboveground biomass and plant height in Digitaria sanguinalis. Furthermore, there was significant upregulation and downregulation in the expression of genes involved in the synthesis and metabolism of phenylalanine and L-phenylalanine. Conversely, the expression of genes related to tryptophan, L-tryptophan, and indole was significantly downregulated. The addition of Mortierella sp. MXBP304 can influence the gene expression associated with phenylalanine and tryptophan synthesis and metabolism during Digitaria sanguinalis growth, subsequently reducing the relative contents of phenylalanine and tryptophan, thereby directly inhibiting Digitaria sanguinalis growth.

9.
Tree Physiol ; 44(8)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-38976033

RESUMEN

Mangroves perform a crucial ecological role along the tropical and subtropical coastal intertidal zone where salinity fluctuation occurs frequently. However, the differential responses of mangrove plant at the combined transcriptome and metabolome level to variable salinity are not well documented. In this study, we used Avicennia marina (Forssk.) Vierh., a pioneer species of mangrove wetlands and one of the most salt-tolerant mangroves, to investigate the differential salt tolerance mechanisms under low and high salinity using inductively coupled plasma-mass spectrometry, transcriptomic and metabolomic analysis. The results showed that HAK8 was up-regulated and transported K+ into the roots under low salinity. However, under high salinity, AKT1 and NHX2 were strongly induced, which indicated the transport of K+ and Na+ compartmentalization to maintain ion homeostasis. In addition, A. marina tolerates low salinity by up-regulating ABA signaling pathway and accumulating more mannitol, unsaturated fatty acids, amino acids' and L-ascorbic acid in the roots. Under high salinity, A. marina undergoes a more drastic metabolic network rearrangement in the roots, such as more L-ascorbic acid and oxiglutatione were up-regulated, while carbohydrates, lipids and amino acids were down-regulated in the roots, and, finally, glycolysis and TCA cycle were promoted to provide more energy to improve salt tolerance. Our findings suggest that the major salt tolerance traits in A. marina can be attributed to complex regulatory and signaling mechanisms, and show significant differences between low and high salinity.


Asunto(s)
Avicennia , Metaboloma , Raíces de Plantas , Salinidad , Tolerancia a la Sal , Plantas Tolerantes a la Sal , Transcriptoma , Avicennia/genética , Avicennia/fisiología , Avicennia/metabolismo , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/metabolismo , Plantas Tolerantes a la Sal/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Tolerancia a la Sal/genética , Regulación de la Expresión Génica de las Plantas
10.
Food Chem (Oxf) ; 9: 100209, 2024 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38973987

RESUMEN

This study conducted a combined transcriptomics and metabolomics analysis in premature and mature developmental stages of Gardenia jasminoides Ellis fruits to identify the molecular mechanisms of pigment synthesis. The transcriptomics data produced high-quality clean data amounting to 46.98 gigabytes, exhibiting a mapping ratio of 86.36% to 91.43%. Transcriptomics analysis successfully identified about 3,914 differentially expressed genes which are associated with pivotal biological processes, including photosynthesis, chlorophyll, biosynthetic processes, and protein-chromophore linkage pathways. Functional diversity was clarified by the Clusters of Orthologous Groups (COG) classification, which focused mainly on pigment synthesis functions. Pathways analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) revealed critical pathways affecting pigment development. Metabolomics studies were carried out utilizing Ultra Performance Liquid Chromatography and mass spectrometry (UPLC-MS). About 480 metabolites were detected via metabolomics investigation, the majority of that were significantly involved in pigment synthesis. Cluster and pathway analyses revealed the importance of pathways such as plant secondary metabolite biosynthesis, biosynthesis of phenylpropanoids and plant hormone signal transduction in pigment synthesis. Current research advances our comprehension of the underlying mechanisms at the molecular level governing pigment synthesis in gardenia fruits, furnishing valuable insights for subsequent investigations.

11.
Free Radic Biol Med ; 222: 371-385, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38901500

RESUMEN

Increasing the seed germination potential and seedling growth rates play a pivotal role in increasing overall crop productivity. Seed germination and early vegetative (seedling) growth are critical developmental stages in plants. High-power microwave (HPM) technology has facilitated both the emergence of novel applications and improvements to existing in agriculture. The implications of pulsed HPM on agriculture remain unexplored. In this study, we have investigated the effects of pulsed HPM exposure on barley germination and seedling growth, elucidating the plausible underlying mechanisms. Barley seeds underwent direct HPM irradiation, with 60 pulses by 2.04 mJ/pulse, across three distinct irradiation settings: dry, submerged in deionized (DI) water, and submerged in DI water one day before exposure. Seed germination significantly increased in all HPM-treated groups, where the HPM-dry group exhibited a notable increase, with a 2.48-fold rise at day 2 and a 1.9-fold increment at day 3. Similarly, all HPM-treated groups displayed significant enhancements in water uptake, and seedling growth (weight and length), as well as elevated levels of chlorophyll, carotenoids, and total soluble protein content. The obtained results indicate that when comparing three irradiation setting, HPM-dry showed the most promising effects. Condition HPM seed treatment increases the level of reactive species within the barley seedlings, thereby modulating plant biochemistry, physiology, and different cellular signaling cascades via induced enzymatic activities. Notably, the markers associated with plant growth are upregulated and growth inhibitory markers are downregulated post-HPM exposure. Under optimal HPM-dry treatment, auxin (IAA) levels increased threefold, while ABA levels decreased by up to 65 %. These molecular findings illuminate the intricate regulatory mechanisms governing phenotypic changes in barley seedlings subjected to HPM treatment. The results of this study might play a key role to understand molecular mechanisms after pulsed-HPM irradiation of seeds, contributing significantly to address the global need of sustainable crop yield.


Asunto(s)
Germinación , Homeostasis , Hordeum , Microondas , Oxidación-Reducción , Reguladores del Crecimiento de las Plantas , Plantones , Semillas , Hordeum/crecimiento & desarrollo , Hordeum/efectos de la radiación , Hordeum/metabolismo , Hordeum/genética , Germinación/efectos de la radiación , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación , Plantones/metabolismo , Semillas/crecimiento & desarrollo , Semillas/efectos de la radiación , Semillas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Homeostasis/efectos de la radiación , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Clorofila/metabolismo
12.
Biosci Biotechnol Biochem ; 88(9): 1007-1018, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-38849314

RESUMEN

To understand the fertilization effects of liquid fertilizer (LF) produced by aerobic microbial processing of cattle urine, we investigated the influence of LF on growth and shoot genetic responses of the model plant Arabidopsis thaliana. LF significantly enhanced both shoot and root growth under aseptic conditions. Although filtrate from ultrafiltration (molecular weight cutoff: 10 000) also promoted shoot growth and root elongation, the concentrate only promoted root growth. Multiple growth-promoting factors were therefore associated with the growth promotion. Transcriptome analysis of shoots following LF addition identified 353 upregulated and 512 downregulated genes. According to gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses, signal transduction of a phytohormone cytokinin was influenced by LF addition. Cytochrome P450 induction triggered the related signal transitions, and would introduce the growth promotion for shoot. Primary auxin responses and abscisic acid signaling responses were also observed in the presence of LF. Ethylene signaling seemed to be insensitive.


Asunto(s)
Arabidopsis , Fertilizantes , Reguladores del Crecimiento de las Plantas , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Animales , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Bovinos , Orina/química , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Transducción de Señal , Citocininas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/efectos de los fármacos , Ácido Abscísico/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/orina , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Etilenos/metabolismo
13.
Plant Physiol Biochem ; 213: 108832, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38896915

RESUMEN

Coronatine, an analog of Jasmonic acid (JA), has been shown to enhance crop tolerance to abiotic stresses, including chilling stress. However, the underlying molecular mechanism remains largely unknown. In this study, we investigated the effect of Coronatine on cotton seedlings under low temperature using transcriptomic and metabolomics analysis. Twelve cDNA libraries from cotton seedlings were constructed, and pairwise comparisons revealed a total of 48,322 differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified the involvement of these unigenes in various metabolic pathways, including Starch and sucrose metabolism, Sesquiterpenoid and triterpenoid biosynthesis, Phenylpropanoid biosynthesis, alpha-Linolenic acid metabolism, ABC transporters, and Plant hormone signal transduction. Additionally, substantial accumulations of jasmonates (JAs), abscisic acid and major cell wall metabolites were observed. Transcriptome analysis revealed differential expression of regulatory genes, and qRT-PCR analysis confirmed the expression patterns of 9 selected genes. Co-expression analysis showed that the JA-responsive genes might form a network module with ABA biosynthesis genes or cell wall biosynthesis genes, suggesting the existence of a COR-JA-cellulose and COR-JA-ABA-cellulose regulatory pathway in cotton seedlings. Collectively, our findings uncover new insights into the molecular basis of coronatine--associated cold tolerance in cotton seedlings.


Asunto(s)
Aminoácidos , Frío , Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Gossypium , Indenos , Oxilipinas , Plantones , Gossypium/genética , Gossypium/metabolismo , Gossypium/efectos de los fármacos , Plantones/genética , Plantones/efectos de los fármacos , Plantones/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Aminoácidos/metabolismo , Indenos/farmacología , Indenos/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacología , Ciclopentanos/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Perfilación de la Expresión Génica , Transcriptoma , Respuesta al Choque por Frío/genética
14.
Plant Cell Environ ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923433

RESUMEN

Powdery mildew is a serious fungal disease in protected melon cultivation that affects the growth, development and production of melon plants. Previous studies have shown that red light can improve oriental melon seedlings resistance to powdery mildew. Here, after inoculation with Podosphaera xanthii, an obligate fungal pathogen eliciting powdery mildew, we found that red light pretreatment increased ethylene production and this improved the resistance of melon seedlings to powdery mildew, and the ethylene biosynthesis gene CmACS10 played an important role in this process. By analysing the CmACS10 promoter, screening yeast one-hybrid library, it was found that CmERF27 positively regulated the expression of CmACS10, increased powdery mildew resistance and interacted with PHYTOCHROME INTERACTING FACTOR8 (CmPIF8) at the protein level to participate in the regulation of ethylene biosynthesis to respond to the red light-induced resistance to P. xanthii, Furthermore, CmPIF8 also directly targeted the promoter of CmACS10, negatively participated in this process. In summary, this study revealed the specific mechanism by which the CmPIF8-CmERF27-CmACS10 module regulates red light-induced ethylene biosynthesis to resist P. xanthii infection, elucidate the interaction between light and plant hormones under biological stress, provide a reference and genetic resources for breeding of disease-resistant melon plants.

15.
BMC Plant Biol ; 24(1): 575, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890577

RESUMEN

BACKGROUND: Salvia miltiorrhiza, a well-known traditional Chinese medicine, frequently suffers from replant diseases that adversely affect its quality and yield. To elucidate S. miltiorrhiza's metabolic adaptations to replant disease, we analyzed its metabolome and transcriptome, comparing normal and replant diseased plants for the first time. RESULTS: We identified 1,269 metabolites, 257 of which were differentially accumulated metabolites, and identified 217 differentially expressed genes. Integrated transcriptomic and metabolomic analyses revealed a significant up-regulation and co-expression of metabolites and genes associated with plant hormone signal transduction and flavonoid biosynthesis pathways in replant diseases. Within plant hormone signal transduction pathway, plants afflicted with replant disease markedly accumulated indole-3-acetic acid and abscisic acid, correlating with high expression of their biosynthesis-related genes (SmAmidase, SmALDH, SmNCED, and SmAAOX3). Simultaneously, changes in hormone concentrations activated plant hormone signal transduction pathways. Moreover, under replant disease, metabolites in the local flavonoid metabolite biosynthetic pathway were significantly accumulated, consistent with the up-regulated gene (SmHTC1 and SmHTC2). The qRT-PCR analysis largely aligned with the transcriptomic results, confirming the trends in gene expression. Moreover, we identified 10 transcription factors co-expressed with differentially accumulated metabolites. CONCLUSIONS: Overall, we revealed the key genes and metabolites of S. miltiorrhiza under replant disease, establishing a robust foundation for future inquiries into the molecular responses to combat replant stress.


Asunto(s)
Perfilación de la Expresión Génica , Redes y Vías Metabólicas , Salvia miltiorrhiza , Transcriptoma , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Redes y Vías Metabólicas/genética , Metabolómica , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Metaboloma , Transducción de Señal/genética , Flavonoides/metabolismo
16.
Plants (Basel) ; 13(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38931069

RESUMEN

The holly Ilex dabieshanensis K. Yao & M. B. Deng, a tree endemic to the Dabieshan Mountains region in China, is a commonly used landscaping plant. Like other crops, its growth is affected by salt stress. The molecular mechanism underlying salt tolerance in holly is still unclear. In this study, we used NaCl treatment and RNA sequencing (RNA-seq) at different times to identify the salt stress response genes of holly. A total of 4775 differentially expressed genes (DEGs) were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the DEGs obtained at different salt treatment times (3, 6, 9, 12, and 24 h), as compared to control (ck, 0 h), showed that plant hormone signal transduction and carotenoid biosynthesis were highly enriched. The mechanism by which holly responds to salt stress involves many plant hormones, among which the accumulation of abscisic acid (ABA) and its signal transduction may play an important role. In addition, ion homeostasis, osmotic metabolism, accumulation of antioxidant enzymes and nonenzymatic antioxidant compounds, and transcription factors jointly regulate the physiological balance in holly, providing important guarantees for its growth and development under conditions of salt stress. These results lay the foundation for studying the molecular mechanisms of salt tolerance in holly and for the selection of salt-tolerant varieties.

17.
Chemosphere ; 362: 142604, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876329

RESUMEN

As global agriculture faces the pressing threat of salt stress, innovative solutions are imperative for sustainable agriculture. The remarkable potential of salicylic acid (SA) in enhancing plant resilience against environmental stressors has recently gained attention. However, the specific molecular mechanisms by which SA mitigates salt stress in Asarum sieboldii Miq., a valuable medicinal plant, remain poorly understood. Here, we evaluated the physiological and transcriptomic regulatory responses of A. sieboldii under salt stress (100 mM NaCl), both in the presence (1 mM SA) and absence of exogenous SA. The results highlighted that SA significantly alleviates salt stress, primarily through enhancing antioxidant activities as evidenced by increased superoxide dismutase, and peroxidase activities. Additionally, we observed an increment in chlorophyll (a and b), proline, total soluble sugar, and plant fresh weight, along with a decrease in malondialdehyde contents. Transcriptome analysis suggested consistency in the regulation of many differentially expressed genes and transcription factors (TFs); however, genes targets (GSTs, TIR1, and NPR1), and TFs (MYB, WRKY, TCP, and bHLH) possessed expressional uniqueness, and majority had significantly up-regulated trends in SA-coupled salt stress treatments. Further, bioinformatics and KEGG enrichment analysis indicated several SA-induced significantly enriched biological pathways. Specifically, plant hormone signal transduction was identified as being populated with key genes distinctive to auxin, cytokinin, ethylene, and salicylic acid signaling, suggesting their important role in salt stress alleviation. Inclusively, this report presents a comprehensive analysis encompassing gene targets, TFs, and biological pathways, and these insights may offer a valuable contribution to our knowledge of SA-mediated regulation and its crucial role in enhancing plant defense against diverse abiotic stressors.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ácido Salicílico , Estrés Salino , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo , Estrés Salino/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Perfilación de la Expresión Génica , Transcriptoma/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Clorofila/metabolismo , Antioxidantes/metabolismo
18.
Int J Mol Sci ; 25(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38928063

RESUMEN

In nature, plants have developed a series of resistance mechanisms to face various external stresses. As understanding of the molecular mechanisms underlying plant resistance continues to deepen, exploring endogenous resistance in plants has become a hot topic in this field. Despite the multitude of studies on plant-induced resistance, how plants respond to stress under natural conditions remains relatively unclear. To address this gap, we investigated Chinese pine (Pinus tabuliformis) using pine caterpillar (Dendrolimus tabulaeformis) under natural conditions. Healthy Chinese pine trees, approximately 10 years old, were selected for studying induced resistance in Huangtuliangzi Forestry, Pingquan City, Chengde City, Hebei Province, China. Pine needles were collected at 2 h and 8 h after feeding stimulation (FS) via 10 pine caterpillars and leaf clipping control (LCC), to simulate mechanical damage caused by insect chewing for the quantification of plant hormones and transcriptome and metabolome assays. The results show that the different modes of treatments significantly influence the contents of JA and SA in time following treatment. Three types of differentially accumulated metabolites (DAMs) were found to be involved in the initial response, namely phenolic acids, lipids, and flavonoids. Weighted gene co-expression network analysis indicated that 722 differentially expressed genes (DEGs) are positively related to feeding stimulation and the specific enriched pathways are plant hormone signal transduction and flavonoid biosynthesis, among others. Two TIFY transcription factors (PtTIFY54 and PtTIFY22) and a MYB transcription factor (PtMYB26) were found to be involved in the interaction between plant hormones, mainly in the context of JA signal transduction and flavonoid biosynthesis. The results of this study provide an insight into how JA activates, serving as a reference for understanding the molecular mechanisms of resistance formation in conifers responding to mandibulate insects.


Asunto(s)
Flavonoides , Pinus , Reguladores del Crecimiento de las Plantas , Transducción de Señal , Pinus/genética , Pinus/metabolismo , Pinus/parasitología , Animales , Reguladores del Crecimiento de las Plantas/metabolismo , Flavonoides/biosíntesis , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Larva/fisiología , Transcriptoma , Mariposas Nocturnas/fisiología , Mariposas Nocturnas/metabolismo , Vías Biosintéticas , Hojas de la Planta/metabolismo , Pueblos del Este de Asia
19.
BMC Plant Biol ; 24(1): 511, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38844870

RESUMEN

The invasion of Mikania micrantha by climbing and covering trees has rapidly caused the death of many shrubs and trees, seriously endangering forest biodiversity. In this study, M. micrantha seedlings were planted together with local tree species (Cryptocarya concinna) to simulate the process of M. micrantha climbing under the forest. We found that the upper part of the M. micrantha stem lost its support after climbing to the top of the tree, grew in a turning and creeping manner, and then grew branches rapidly to cover the tree canopy. Then, we simulated the branching process through turning treatment. We found that a large number of branches had been formed near the turning part of the M. micrantha stem (TP). Compared with the upper part of the main stem (UP), the contents of plant hormones (auxin, cytokinin, gibberellin), soluble sugars (sucrose, glucose, fructose) and trehalose-6-phosphate (T6P) were significantly accumulated at TP. Further combining the transcriptome data of different parts of the main stem under erect or turning treatment, a hypothetical regulation model to illustrate how M. micrantha can quickly cover trees was proposed based on the regulation of sugars and hormones on plant branching; that is, the lack of support after ascending the top of the tree led to turning growth of the main stem, and the enhancement of sugars and T6P levels in the TP may first drive the release of nearby dormant buds. Plant hormone accumulation may regulate the entrance of buds into sustained growth and maintain the elongation of branches together with sugars to successfully covering trees.


Asunto(s)
Especies Introducidas , Mikania , Árboles , Mikania/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo
20.
BMC Plant Biol ; 24(1): 551, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877392

RESUMEN

Alcea rosea L. is a traditional flower with a long cultivation history. It is extensively cultivated in China and is widely planted in green belt parks or used as cut flowers and potted ornamental because of its rich colors and flower shapes. Double-petal A. rosea flowers have a higher aesthetic value compared to single-petal flowers, a phenomenon determined by stamen petaloid. However, the underlying molecular mechanism of this phenomenon is still very unclear. In this study, an RNA-based comparative transcriptomic analysis was performed between the normal petal and stamen petaloid petal of A. rosea. A total of 3,212 differential expressed genes (DEGs), including 2,620 up-regulated DEGs and 592 down-regulated DEGs, were identified from 206,188 unigenes. Numerous DEGs associated with stamen petaloid were identified through GO and KEGG enrichment analysis. Notably, there were 63 DEGs involved in the plant hormone synthesis and signal transduction, including auxin, cytokinin, gibberellin, abscisic acid, ethylene, brassinosteroid, jasmonic acid, and salicylic acid signaling pathway and 56 key transcription factors (TFs), such as MADS-box, bHLH, GRAS, and HSF. The identification of these DEGs provides an important clue for studying the regulation pathway and mechanism of stamen petaloid formation in A. rosea and provides valuable information for molecular plant breeding.


Asunto(s)
Flores , Perfilación de la Expresión Génica , Flores/genética , Flores/crecimiento & desarrollo , Flores/anatomía & histología , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Reguladores del Crecimiento de las Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA