Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 364: 142867, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39019183

RESUMEN

Pesticides pose significant risks to both human health, such as cancer, neurological disorders, and endocrine disruption, and ecosystems, through the destruction of beneficial insects, contamination of soil and water, and impact on non-target species. In the face of escalating pesticide pollution, there is an urgent need for multifaceted approaches to address the issue. Bioremediation emerges as a potent tool in the environmental pollution mitigation arsenal. Ideally aiming for the complete decomposition of pesticides into harmless molecules, bioremediation encompasses diverse approaches - from bioabsorption, bioadsorption, and biotransformation using enzymes and nanoenzymes to comprehensive degradation facilitated by microorganisms such as bacteria, fungi, macro- and microalgae, or phytoremediation. Exploring nature's biodiversity offers a promising avenue to find solutions to this pressing human-induced problem. The acceleration of biodegradation necessitates identifying and developing efficient organisms, achieved through bioprospection and targeted modifications. Specific strategies to enhance process efficiency and throughput include optimizing biomass production, strategic inoculation in diverse environments, and employing bioreactor systems for processing heavily contaminated waters or soils. This comprehensive review presents various bioremediation approaches, emphasizing the importance of microorganisms' exploration and new technologies development, including current innovations and patents to effectively combat pesticide pollution. Furthermore, challenges regarding the effective implementation of these technologies are also addressed.


Asunto(s)
Biodegradación Ambiental , Plaguicidas , Plaguicidas/metabolismo , Bacterias/metabolismo , Contaminación Ambiental/prevención & control , Humanos , Contaminantes Ambientales/metabolismo , Hongos/metabolismo , Contaminantes del Suelo/metabolismo
2.
J Adv Res ; 13: 29-37, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30094080

RESUMEN

World population is expected to reach 9.7 billion by 2050, which makes a great challenge the achievement of food security. The use of urease inhibitors in agricultural practices has long been explored as one of the strategies to guarantee food supply in enough amounts. This is due to the fact that urea, one of the most used nitrogen (N) fertilizers worldwide, rapidly undergoes urease-driven hydrolysis on soil surface yielding up to 70% N losses to environment. This review provides with a compilation of what has been done since 2005 with respect to the search for good urease inhibitors of agricultural interests. The potential of synthetic organic molecules, such as phosphoramidates, hydroquinone, quinones, (di)substituted thioureas, benzothiazoles, coumarin and phenolic aldehyde derivatives, and vanadium-hydrazine complexes, together with B, Cu, S, Zn, ammonium thiosulfate, silver nanoparticles, and oxidized charcoal as urease inhibitors was presented from experiments with purified jack bean urease, different soils and/or plant-soil systems. The ability of some urease inhibitors to mitigate formation of greenhouse gases is also discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA