Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.732
Filtrar
1.
Front Genet ; 15: 1330682, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966007

RESUMEN

Background: Intracerebral hemorrhage (ICH) is a severe form of stroke with high mortality and limited treatment options. While traditional risk factors like hypertension have been well-studied, the role of emotional states as acute triggers for ICH remains unclear. This study employs Mendelian Randomization (MR) to investigate the causal relationship between emotional traits of worry and anxiety and the incidence of ICH. Methods: We used a two-sample MR approach, leveraging summary-level data from genome-wide association studies (GWAS) for emotional traits and ICH. The primary analysis was conducted using the Inverse-Variance Weighted (IVW) method, supplemented by multiple sensitivity analyses including Maximum Likelihood and MR PRESSO methods. Results: Our MR analysis revealed a robust and significant causal relationship between the emotional trait "Worrier/anxious feelings" and ICH, supported by 195 instrumental variables (SNPs). The odds ratio (OR) was 2.98 (95% CI: 1.16, 7.61) with a p-value of 0.0229. Sensitivity analyses corroborated these findings, enhancing the reliability of our results. In contrast, other emotional traits such as "Nervous feelings" and "Sensitivity/hurt feelings" did not show significant associations, reinforcing the specificity of our primary finding. Conclusion: Our study provides compelling evidence for a causal relationship between the emotional traits of worry and anxiety and the incidence of ICH, offering a new dimension in our understanding of this devastating condition and paving the way for more nuanced risk stratification and preventive strategies.

2.
Front Immunol ; 15: 1352789, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966639

RESUMEN

Introduction: Extracellular ATP (eATP) released from damaged cells activates the P2X7 receptor (P2X7R) ion channel on the surface of surrounding cells, resulting in calcium influx, potassium efflux and inflammasome activation. Inherited changes in the P2X7R gene (P2RX7) influence eATP induced responses. Single nucleotide polymorphisms (SNPs) of P2RX7 influence both function and signaling of the receptor, that in addition to ion flux includes pathogen control and immunity. Methods: Subjects (n = 105) were admitted to the ICU at the University Hospital Ulm, Germany between June 2018 and August 2019. Of these, subjects with a diagnosis of sepsis (n = 75), were also diagnosed with septic shock (n = 24), and/or pneumonia (n = 42). Subjects with pneumonia (n = 43) included those without sepsis (n = 1), sepsis without shock (n = 29) and pneumonia with septic shock (n = 13). Out of the 75 sepsis/septic shock patients, 33 patients were not diagnosed with pneumonia. Controls (n = 30) were recruited to the study from trauma patients and surgical patients without sepsis, septic shock, or pneumonia. SNP frequencies were determined for 16 P2RX7 SNPs known to affect P2X7R function, and association studies were performed between frequencies of these SNPs in sepsis, septic shock, and pneumonia compared to controls. Results: The loss-of-function (LOF) SNP rs17525809 (T253C) was found more frequently in patients with septic shock, and non-septic trauma patients when compared to sepsis. The LOF SNP rs2230911 (C1096G) was found to be more frequent in patients with sepsis and septic shock than in non-septic trauma patients. The frequencies of these SNPs were even higher in sepsis and septic patients with pneumonia. The current study also confirmed a previous study by our group that showed a five SNP combination that included the GOF SNPs rs208294 (C489T) and rs2230912 (Q460R) that was designated #21211 was associated with increased odds of survival in severe sepsis. Discussion: The results found an association between expression of LOF P2RX7 SNPs and presentation to the ICU with sepsis, and septic shock compared to control ICU patients. Furthermore, frequencies of LOF SNPs were found to be higher in sepsis patients with pneumonia compared to those without pneumonia. In addition, a five SNP GOF combination was associated with increased odds of survival in severe sepsis. These results suggest that P2RX7 is required to control infection in pneumonia and that inheritance of LOF variants increases the risk of sepsis when associated with pneumonia. This study confirms that P2RX7 genotyping in pneumonia may identify patients at risk of developing sepsis. The study also identifies P2X7R as a target in sepsis associated with an excessive immune response in subjects with GOF SNP combinations.


Asunto(s)
Neumonía , Polimorfismo de Nucleótido Simple , Receptores Purinérgicos P2X7 , Sepsis , Choque Séptico , Humanos , Receptores Purinérgicos P2X7/genética , Masculino , Femenino , Choque Séptico/genética , Choque Séptico/mortalidad , Choque Séptico/inmunología , Persona de Mediana Edad , Neumonía/genética , Neumonía/mortalidad , Anciano , Sepsis/genética , Sepsis/mortalidad , Predisposición Genética a la Enfermedad , Adenosina Trifosfato/metabolismo , Adulto , Anciano de 80 o más Años
3.
Acta Cardiol ; : 1-7, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973431

RESUMEN

BACKGROUND: In the present study, we evaluated whether DEFB1 gene polymorphisms are associated with the presence of coronary artery disease (CAD). METHODS: Two rs11362 A/G, and rs1800972 C/G gene polymorphisms of DEFB1 gene were genotyped by 5'exonuclease TaqMan assays in 219 patients with CAD and 522 control individuals. RESULTS: The distribution of rs1800972 C/G polymorphisms was similar in patients with CAD and healthy controls. Nonetheless, under the co-dominant, dominant, recessive, and additive models, the AA genotype of the rs11362 A/G polymorphism was associated with the risk of developing CAD (OR = 1.89 pCCo-Dom = 0.041, OR = 1.46, pCDom = 0.034, OR = 1.69, pCRes = 0.039, and OR = 1.37, pCAdd = 0.012, respectively). In addition, the linkage disequilibrium showed that the 'AG' haplotype was associated with an increased risk of developing CAD (OR = 1.23, p = 0.042). According, with the Genotype-Tissue Expression (GTEx) consortium data, the rs11362 AA genotype is associated with a low mRNA expression of the ß-defensin-1 in tissues, such as artery aorta, artery coronary, heart left ventricle, and heart atrial appendage (p < 0.001). CONCLUSION: This study demonstrates that rs11362 A/G polymorphism of the DEFB1 gene is involved in the risk of developing CAD, and with a low RNA expression of the ß-defensin-1 in heart tissue.

4.
Skin Res Technol ; 30(7): e13841, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38965791

RESUMEN

BACKGROUND: Growing evidence has shown that atopic dermatitis (AD) may decrease lung cancer (LC) risk. However, the causality between the two diseases is inconsistent and controversial. Therefore, we explored the causal relationship between AD and different histological subtypes of LC by using the Mendelian randomization (MR) method. MATERIALS AND METHODS: We conducted the MR study based on summary statistics from the genome-wide association studies (GWAS) of AD (10,788 cases and 30,047 controls) and LC (29,266 cases and 56,450 controls). Instrumental variables (IVs) were obtained after removing SNPs associated with potential confounders. We employed inverse-variance weighted (IVW), MR-Egger, and weighted median methods to pool estimates, and performed a comprehensive sensitivity analysis. RESULTS: The results of the IVW method suggested that AD may decrease the risk of developing lung adenocarcinoma (LUAD) (OR = 0.91, 95% CI: 0.85-0.97, P = 0.007). Moreover, no causality was identified between AD and overall LC (OR = 0.96, 95% CI: 0.91-1.01, P = 0.101), lung squamous cell carcinoma (LUSC) (OR = 1.04, 95% CI: 0.96-1.036, P = 0.324), and small cell lung carcinoma (SCLC) (OR = 0.95, 95% CI: 0.82-1.10, P = 0.512). A comprehensive sensitivity test showed the robustness of our results. CONCLUSION: The present study indicates that AD may decrease the risk of LUAD in the European population, which needs additional investigations to identify the potential molecular mechanisms.


Asunto(s)
Dermatitis Atópica , Estudio de Asociación del Genoma Completo , Neoplasias Pulmonares , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Humanos , Dermatitis Atópica/genética , Dermatitis Atópica/epidemiología , Neoplasias Pulmonares/genética , Factores de Riesgo , Predisposición Genética a la Enfermedad/genética , Causalidad
5.
Cancer Innov ; 3(4): e110, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38948246

RESUMEN

Background: The rate at which the anticancer drug paclitaxel is cleared from the body markedly impacts its dosage and chemotherapy effectiveness. Importantly, paclitaxel clearance varies among individuals, primarily because of genetic polymorphisms. This metabolic variability arises from a nonlinear process that is influenced by multiple single nucleotide polymorphisms (SNPs). Conventional bioinformatics methods struggle to accurately analyze this complex process and, currently, there is no established efficient algorithm for investigating SNP interactions. Methods: We developed a novel machine-learning approach called GEP-CSIs data mining algorithm. This algorithm, an advanced version of GEP, uses linear algebra computations to handle discrete variables. The GEP-CSI algorithm calculates a fitness function score based on paclitaxel clearance data and genetic polymorphisms in patients with nonsmall cell lung cancer. The data were divided into a primary set and a validation set for the analysis. Results: We identified and validated 1184 three-SNP combinations that had the highest fitness function values. Notably, SERPINA1, ATF3 and EGF were found to indirectly influence paclitaxel clearance by coordinating the activity of genes previously reported to be significant in paclitaxel clearance. Particularly intriguing was the discovery of a combination of three SNPs in genes FLT1, EGF and MUC16. These SNPs-related proteins were confirmed to interact with each other in the protein-protein interaction network, which formed the basis for further exploration of their functional roles and mechanisms. Conclusion: We successfully developed an effective deep-learning algorithm tailored for the nuanced mining of SNP interactions, leveraging data on paclitaxel clearance and individual genetic polymorphisms.

6.
J Clin Neurol ; 20(4): 439-449, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38951977

RESUMEN

BACKGROUND AND PURPOSE: Migraine is a condition that is often observed to run in families, but its complex genetic background remains unclear. This study aimed to identify the genetic factors influencing migraines and their potential association with the family medical history. METHODS: We performed a comprehensive genome-wide association study of a cohort of 1,561 outpatients with migraine and 473 individuals without migraine in Taiwan, including Han Chinese individuals with or without a family history of migraine. By analyzing the detailed headache history of the patients and their relatives we aimed to isolate potential genetic markers associated with migraine while considering factors such as sex, episodic vs. chronic migraine, and the presence of aura. RESULTS: We revealed novel genetic risk loci, including rs2287637 in DEAD-Box helicase 1 and long intergenic non-protein coding RNA 1804 and rs12055943 in engulfment and cell motility 1, that were correlated with the family history of migraine. We also found a genetic location downstream of mesoderm posterior BHLH transcription factor 2 associated with episodic migraine, whereas loci within the ubiquitin-specific peptidase 26 exonic region, dual specificity phosphatase 9 and pregnancy-upregulated non-ubiquitous CaM kinase intergenic regions, and poly (ADP-ribose) polymerase 1 and STUM were linked to chronic migraine. We additionally identified genetic regionsassociated with the presence or absence of aura. A locus between LINC02561 and urocortin 3 was predominantly observed in female patients. Moreover, three different single-nucleotide polymorphisms were associated with the family history of migraine in the control group. CONCLUSIONS: This study has identified new genetic locations associated with migraine and its family history in a Han Chinese population, reinforcing the genetic background of migraine. The findings point to potential candidate genes that should be investigated further.

7.
Front Genet ; 15: 1383333, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983268

RESUMEN

Purpose: Major depressive disorder (MDD) and venous thromboembolism (VTE) may be linked in observational studies. However, the causal association remains ambiguous. Therefore, this study investigates the causal associations between them. Methods: We performed a two-sample univariable and multivariable bidirectional Mendelian randomization (MR) analysis to evaluate the associations between MDD and VTE. The summary genetic associations of MDD statistics were obtained from the Psychiatric Genomics Consortium and UK Biobank. Information on VTE, deep vein thrombosis (DVT), and pulmonary embolism (PE) were obtained from the FinnGen Biobank. Inverse-variance weighting was used as the main analysis method. Other methods include weighted median, MR-Egger, Simple mode, and Weighted mode. Results: Univariable MR analysis revealed no significant associations between MDD and VTE risk (odds ratio (OR): 0.936, 95% confidence interval (CI): 0.736-1.190, p = 0.590); however, after adjusting the potential relevant polymorphisms of body mass index and education, the multivariable MR analysis showed suggestive evidence of association between them (OR: 1.163, 95% CI: 1.004-1.346, p = 0.044). Univariable MR analysis also revealed significant associations between MDD and PE risk (OR: 1.310, 95% CI: 1.073-1.598, p = 0.008), but the association between them was no longer significant in MVMR analysis (p = 0.072). We found no significant causal effects between MDD and DVT risk in univariable or multivariable MR analyses. There was also no clear evidence showing the causal effects between VTE, PE, or DVT and MDD risk. Conclusion: We provide suggestive genetic evidence to support the causal association between MDD and VTE risk. No causal associations were observed between VTE, PE, or DVT and MDD risk. Further validation of these associations and investigations of potential mechanisms are required.

8.
Front Genet ; 15: 1397352, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983269

RESUMEN

Genetics is a key factor that governs the susceptibility to oxidative stress. In the body, oxidative burden is regulated by the balance between the prooxidant genes that orchestrate processes that produce oxidant species, while the antioxidant genes aid those involved in scavenging these species. Together, the two components aid in maintaining the oxidative balance in the body. Genetic variations can influence the expression and activity of the encoded proteins which can then affect their efficiency in regulating redox processes, thereby increasing the risk of oxidative stress. This review studies single nucleotide polymorphisms (SNPs) that bear relevance to oxidative stress by exploring the variations in the prooxidant genes, such as XDH, CYBA, CYP1A1, PTGS2, NOS, and MAO and antioxidant genes including SOD, CAT, GPX, GSS, GLUL, GSR, GSTM1, GSTM5, GSTP1, TXN and HMOX1. Early identification of individuals at the increased risk of oxidative stress is possible from the assessment of sequence of these genes. Integrating genetic insights into oxidative stress management measures can pave the way for personalized medicine that tailors' healthcare approaches to individual genetic profiles. Effective genetic assessment along with routine quantification of biological markers can improve and monitor treatment strategies, enhancing mitigation approaches that maintain cellular health and promote longevity.

9.
Br J Haematol ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977031

RESUMEN

Iron-refractory iron deficiency anaemia (IRIDA) is a rare autosomal recessive disorder, distinguished by hypochromic microcytic anaemia, low transferrin levels and inappropriately elevated hepcidin (HEPC) levels. It is caused by mutations in TMPRSS6 gene. Systematic screening of 500 pregnant women with iron deficiency anaemia having moderate to severe microcytosis with no other causes of anaemia were enrolled to rule out oral iron refractoriness. It identified a final cohort of 10 (2.15% prevalence) individuals with IRIDA phenotype. Haematological and biochemical analysis revealed significant differences between iron responders and iron non-responders, with iron non-responders showing lower haemoglobin, red blood cell count, serum iron and serum ferritin levels, along with elevated HEPC (9.47 ± 2.75 ng/mL, p = 0.0009) and erythropoietin (4.58 ± 4.07 µ/mL, p = 0.0196) levels. Genetic sequencing of the TMPRSS6 gene in this final cohort identified 10 novel variants, including seven missense and three frame-shift mutations, with four missense variants showing high functional impact defining the IRIDA phenotype. Structural analysis revealed significant damage caused by two variants (p.L83R and p.S235R). This study provides valuable insights into IRIDA among pregnant women in the Indian subcontinent, unveiling its underlying causes of unresponsiveness, genetic mechanisms and prevalence. Furthermore, research collaboration is essential to validate these findings and develop effective treatments.

10.
Heliyon ; 10(13): e33754, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39040297

RESUMEN

Objectives: Acute Lymphoblastic Leukemia (ALL) is a multifactorial disease that results from the interaction between multiple genetic factors. ALL is characterized by uncontrolled production of hematopoietic precursor cells of the lymphoid progenitors within the bone marrow. The development of hematological malignancies has been associated with malignant-like cells that express low levels of immunogenic surface molecules, thus, facilitating their escape from cellular antineoplastic immune responses. This risk may be partly influenced by variations in polymorphic genes that control immune function and regulation. Toll-like receptors (TLRs) are well known pattern recognition receptors playing key role in innate immune response. Abnormal expression and dysregulation of TLRs will provide an opportunity for cancer cells to escape from the immune system and enhance their proliferation and angiogenesis. Toll-like receptor 2 (TLR2) play an essential role in innate immunity. Single nucleotide polymorphisms (SNPs) are present in a number of TLR genes and have been associated with various disorders. Methods: In this study, 265 subjects have been divided into two groups included 150 patients with ALL and115 healthy volunteers. All subjects were genotyped using TaqMan PCR techniques. In total, Five SNPs were statistically evaluated in the TLR2 (rs1898830 A/G, rs3804099 T/C, rs3804100 T/C, rs1339 T/C, and rs1337 C/G), which may influence the susceptibility of ALL. Minor allele frequency and genotype distribution were compared across the study groups, and the relative risk and differences between patients and controls were estimated. Moreover, the mRNA expression level was evaluated in patients with ALL and the matched healthy individuals by Real-Time Quantitative Reverse Transcription PCR (qRT-PCR). Results: TLR2 rs1898830 A/G; rs3804099 T/C; rs3804100 T/C; rs1339 T/C, were significantly decrease the risk in our population, overall and for certain subtypes and ALL samples exhibited significant increase in the mRNA levels of TLR2. Conclusions: This study shows that TLR2 could be an independent prognostic factor of ALL risks in the Saudi population. Suggesting that genetic variation in genes associated with an immune response may be important in the etiology of ALL. In addition, the results herein revealed that TLR2 overexpression is associated with ALL and has diverse biological significance in the context of the complex relationship between inflammation and cancer development. Therefore, these data could open further studies to explore the possible clinical relevance of TLRs as pathological markers for Leukemia and enhance the strategies regarding hematological malignancies prevention based on their gene expression.

11.
Heliyon ; 10(13): e33690, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39040314

RESUMEN

Objective: Previous studies have shown that apolipoprotein E (ApoE) gene polymorphisms have an impact on coronary artery disease(CAD). However, many studies have small sample sizes and different conclusions. The purpose was to retrospectively study the influence of ApoE gene polymorphisms on CAD. Methods: This study assessed the influence of different ApoE genotypes on coronary heart disease in patients who received coronary angiography and used multivariate logistic regression to assess the influence of different ApoE genotypes on CAD. Results: Patients with different ApoE genotypes had no obvious differences in the incidence of hypertension, diabetes or obesity(P > 0.05). Patients with ε2/ε2 had higher incidence of hypertriglyceridemia than patients with other ApoE genotypes, while patients with ε3/ε3 had a lower incidence of hypertriglyceridemia than those with ε3/ε4,ε4/ε4, ε2/ε3 and ε2/ε2(P < 0.05). Patients with ε3/ε4, ε4/ε4, ε3/ε3 and ε2/ε2 had no significant differences in the severity or incidence of CAD (P > 0.05). ε2/ε4 and ε2/ε3 reduced the risk of high LDL-C, and reduced the severity and incidence of coronary heart(P < 0.05). ε2/ε3 reduced risk of premature coronary artery disease(PCAD)(P < 0.05). ε2/ε3 reduced risk of CAD in patients age <45,age at 60-74 and age ≥74, while ε2/ε4 reduced risk of CAD in patients age ≥74(P < 0.05). Conclusion: Patients with ε3/ε4, ε4/ε4,ε3/ε3 and ε2/ε2 had no significant differences in the severity and occurrence of CAD. Compared to the isoform ε3 (ε3/ε3), isoform ε4 did not increased the severity and occurrence of CAD. Compared with ApoE other genotypes, ε2/ε3 and ε2/ε4 reduced the risk of high LDL-C and the severity and occurrence of CAD.

12.
Pharmaceutics ; 16(7)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39065614

RESUMEN

The human N-acetyltransferase 2 enzyme, encoded by the NAT2 gene, plays an important role in the metabolism of isoniazid, the main drug used to treat tuberculosis. The interindividual variation in the response of patients to drug treatment for tuberculosis may be responsible for the occurrence of unfavorable outcomes. The presence of polymorphisms in genes associated with the metabolism and transport of drugs, receptors, and therapeutic targets has been identified as a major determinant of this variability. The objective of this study was to identify the genetic profile of NAT2 in the study population. Using the obtained genomic DNA followed by PCR amplification and sequencing, the frequency of nine SNPs as well as alleles associated with slow (47.9%), intermediate (38.7%), and fast acetylation phenotypes (11.3%), in addition to those whose phenotype has not yet been characterized (2.1%), was estimated. The NAT2*5B allele was identified more frequently (31.3%). The description of SNPs in pharmacogenes and the establishment of their relationship with the pharmacokinetics of an individual offer an individualized approach that allows us to reduce the unfavorable outcomes of a therapy, ensure better adherence to treatment, prevent the emergence of MDR strains, reduce the cost of treatment, and improve the quality of patients' lives.

13.
Vavilovskii Zhurnal Genet Selektsii ; 28(3): 351-359, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38946890

RESUMEN

Single-nucleotide polymorphisms (SNPs) can serve as reliable markers in genetic engineering, selection, screening examinations, and other fields of science, medicine, and manufacturing. Whole-genome sequencing and genotyping by sequencing can detect SNPs with high specificity and identify novel variants. Nonetheless, in situations where the interest of researchers is individual specific loci, these methods become redundant, and their cost, the proportion of false positive and false negative results, and labor costs for sample preparation and analysis do not justify their use. Accordingly, accurate and rapid methods for genotyping individual alleles are still in demand, especially for verification of candidate polymorphisms in analyses of association with a given phenotype. One of these techniques is genotyping using TaqMan allele-specific probes (TaqMan dual labeled probes). The method consists of real-time PCR with a pair of primers and two oligonucleotide probes that are complementary to a sequence near a given locus in such a way that one probe is complementary to the wild-type allele, and the other to a mutant one. Advantages of this approach are its specificity, sensitivity, low cost, and quick results. It makes it possible to distinguish alleles in a genome with high accuracy without additional manipulations with DNA samples or PCR products; hence the popularity of this method in genetic association studies in molecular genetics and medicine. Due to advancements in technologies for the synthesis of oligonucleotides and improvements in techniques for designing primers and probes, we can expect expansion of the possibilities of this approach in terms of the diagnosis of hereditary diseases. In this article, we discuss in detail basic principles of the method, the processes that influence the result of genotyping, criteria for selecting optimal primers and probes, and the use of locked nucleic acid modifications in oligonucleotides as well as provide a protocol for the selection of primers and probes and for PCR by means of rs11121704 as an example. We hope that the presented protocol will allow research groups to independently design their own effective assays for testing for polymorphisms of interest.

14.
Genome Biol ; 25(1): 184, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978133

RESUMEN

BACKGROUND: Although disease-causal genetic variants have been found within silencer sequences, we still lack a comprehensive analysis of the association of silencers with diseases. Here, we profiled GWAS variants in 2.8 million candidate silencers across 97 human samples derived from a diverse panel of tissues and developmental time points, using deep learning models. RESULTS: We show that candidate silencers exhibit strong enrichment in disease-associated variants, and several diseases display a much stronger association with silencer variants than enhancer variants. Close to 52% of candidate silencers cluster, forming silencer-rich loci, and, in the loci of Parkinson's-disease-hallmark genes TRIM31 and MAL, the associated SNPs densely populate clustered candidate silencers rather than enhancers displaying an overall twofold enrichment in silencers versus enhancers. The disruption of apoptosis in neuronal cells is associated with both schizophrenia and bipolar disorder and can largely be attributed to variants within candidate silencers. Our model permits a mechanistic explanation of causative SNP effects by identifying altered binding of tissue-specific repressors and activators, validated with a 70% of directional concordance using SNP-SELEX. Narrowing the focus of the analysis to individual silencer variants, experimental data confirms the role of the rs62055708 SNP in Parkinson's disease, rs2535629 in schizophrenia, and rs6207121 in type 1 diabetes. CONCLUSIONS: In summary, our results indicate that advances in deep learning models for the discovery of disease-causal variants within candidate silencers effectively "double" the number of functionally characterized GWAS variants. This provides a basis for explaining mechanisms of action and designing novel diagnostics and therapeutics.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Humanos , Enfermedad de Parkinson/genética , Predisposición Genética a la Enfermedad , Aprendizaje Profundo , Esquizofrenia/genética , Elementos Silenciadores Transcripcionales/genética
15.
Diabetes Metab Res Rev ; 40(5): e3834, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38961642

RESUMEN

AIMS: We recently reported that genetic variability in the TKT gene encoding transketolase, a key enzyme in the pentose phosphate pathway, is associated with measures of diabetic sensorimotor polyneuropathy (DSPN) in recent-onset diabetes. Here, we aimed to substantiate these findings in a population-based KORA F4 study. MATERIALS AND METHODS: In this cross-sectional study, we assessed seven single nucleotide polymorphisms (SNPs) in the transketolase gene in 952 participants from the KORA F4 study with normal glucose tolerance (NGT; n = 394), prediabetes (n = 411), and type 2 diabetes (n = 147). DSPN was defined by the examination part of the Michigan Neuropathy Screening Instrument (MNSI) using the original MNSI > 2 cut-off and two alternative versions extended by touch/pressure perception (TPP) (MNSI > 3) and by TPP plus cold perception (MNSI > 4). RESULTS: After adjustment for sex, age, BMI, and HbA1c, in type 2 diabetes participants, four out of seven transketolase SNPs were associated with DSPN for all three MNSI versions (all p ≤ 0.004). The odds ratios of these associations increased with extending the MNSI score, for example, OR (95% CI) for SNP rs62255988 with MNSI > 2: 1.99 (1.16-3.41), MNSI > 3: 2.27 (1.26-4.09), and MNSI > 4: 4.78 (2.22-10.26); SNP rs9284890 with MNSI > 2: 2.43 (1.42-4.16), MNSI > 3: 3.46 (1.82-6.59), and MNSI > 4: 4.75 (2.15-10.51). In contrast, no associations were found between transketolase SNPs and the three MNSI versions in the NGT and prediabetes groups. CONCLUSIONS: The link of genetic variation in transketolase enzyme to diabetic polyneuropathy corroborated at the population level strengthens the concept suggesting an important role of pathways metabolising glycolytic intermediates in the evolution of diabetic polyneuropathy.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Polimorfismo de Nucleótido Simple , Transcetolasa , Humanos , Transcetolasa/genética , Femenino , Masculino , Neuropatías Diabéticas/genética , Neuropatías Diabéticas/epidemiología , Neuropatías Diabéticas/etiología , Persona de Mediana Edad , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicaciones , Estudios Transversales , Anciano , Predisposición Genética a la Enfermedad , Estado Prediabético/genética , Estado Prediabético/complicaciones , Pronóstico , Adulto , Estudios de Seguimiento
16.
Cancers (Basel) ; 16(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39061149

RESUMEN

AIM: The aim of this study was to determine associations of TRAF2 (rs867186), TAB2 (rs237025), IKBKB (rs13278372) gene polymorphisms and TRAF2, TAB2, IKBKB protein levels with clinical and morphological features of pituitary adenomas (PAs). METHODS: This case-control study included 459 individuals divided into two groups: a control group (n = 320) and a group of individuals with PAs (n = 139). DNA from peripheral blood leukocytes was isolated using salt precipitation and column method. Real-time PCR was used for TRAF2 (rs867186), TAB2 (rs237025), and IKBKB (rs13278372) SNP genotyping, and TRAF2, TAB2, IKBKB protein concentration measurements were performed by immunoenzymatic analysis tests using a commercial ELISA kit according to the manufacturer's recommendations. The labeling index Ki-67 was determined by immunohistochemical analysis using a monoclonal antibody (clone SP6; Spring Bioscience Corporation). Statistical data analysis was performed using the programs "IMB SPSS Statistics 29.0". RESULTS: We found significant differences in TRAF2 (rs867186) genotypes (AA, AG, GG) between groups: 79.1%, 17.3%, 3.6% vs. 55.3%, 20.9%, 23.8% (p < 0.001). The G allele was less frequent in the PA group than in controls (12.2% vs. 34.2%, p < 0.001). The AG and GG genotypes reduced PA occurrence by 1.74-fold and 9.43-fold, respectively, compared to AA (p < 0.001). In the dominant model, GG and AG genotypes reduced PA odds by 3.07-fold, while in the recessive model, the GG genotype reduced PA odds by 8.33-fold (p < 0.001). Each G allele decreased PA odds by 2.49-fold in the additive model (p < 0.001). Microadenomas had significant genotype differences compared to controls: 81.3%, 18.8%, 0.0% vs. 55.3%, 20.9%, 23.8% (p < 0.001), with the G allele being less frequent (9.4% vs. 34.2%, p < 0.001). In macroadenomas, genotype differences were 78%, 16.5%, 5.5% vs. 55.3%, 20.9%, 23.8% (p < 0.001), and the G allele was less common (13.7% vs. 34.2%, p < 0.001). The dominant model showed that GG and AG genotypes reduced microadenoma odds by 3.5-fold (p = 0.001), and each G allele reduced microadenoma odds by 3.1-fold (p < 0.001). For macroadenomas, the GG genotype reduced odds by 6.1-fold in the codominant model (p < 0.001) and by 2.9-fold in GG and AG genotypes combined compared to AA (p < 0.001). The recessive model indicated the GG genotype reduced macroadenoma odds by 5.3-fold (p < 0.001), and each G allele reduced odds by 2.2-fold in the additive model (p < 0.001). CONCLUSIONS: The TRAF2 (rs867186) G allele and GG genotype are significantly associated with reduced odds of pituitary adenomas, including both microadenomas and macroadenomas, compared to the AA genotype. These findings suggest a protective role of the G allele against the occurrence of these tumors.

17.
Antioxidants (Basel) ; 13(7)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39061907

RESUMEN

BACKGROUND: Nitric oxide synthase (NOS) is an enzyme that catalyzes the formation of nitric oxide (NO), the altered production of which is characteristic of diabetic nephropathy. NOS exists in three isoforms: NOS1, NOS2, and NOS3. Moreover, there are reports about the potential role of NOS3 polymorphisms in the development of diabetes complications. The aim of this study was to assess the role of selected NOS polymorphisms-rs3782218 (NOS1), rs1137933 (NOS2), rs1799983, rs2070744, and rs61722009 (NOS3)-in the risk of developing diabetic nephropathy and in the likelihood of renal replacement therapy. METHODS: The studied polymorphisms were analyzed in a group of 232 patients divided into three groups. Four polymorphisms (rs3782218, rs1137933, rs1799983, rs2070744) were genotyped using the PCR-RFLP, while the rs61722009 polymorphism was genotyped using the PCR. RESULTS: The C/C genotype and the C allele of the rs3782218 polymorphism (NOS1) were associated with an increased risk of developing diabetic nephropathy and an increased likelihood of renal replacement therapy. In turn, the G allele of the rs1137933 polymorphism (NOS2) reduces the likelihood of renal replacement therapy. CONCLUSIONS: The specific genotypes or alleles of the rs3782218 (NOS1) and rs1137933 (NOS2) polymorphisms seem to be potential risk factors for diabetic nephropathy and renal replacement therapy.

18.
Genes (Basel) ; 15(7)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39062696

RESUMEN

Epidemiological studies frequently classify groups based on phenotypes like self-reported skin color/race, which inaccurately represent genetic ancestry and may lead to misclassification, particularly among individuals of multiracial backgrounds. This study aimed to characterize both global and local genome-wide genetic ancestries and to assess their relationship with self-reported skin color/race in an admixed population of Sao Paulo city. We analyzed 226,346 single-nucleotide polymorphisms from 841 individuals participating in the population-based ISA-Nutrition study. Our findings confirmed the admixed nature of the population, demonstrating substantial European, significant Sub-Saharan African, and minor Native American ancestries, irrespective of skin color. A correlation was observed between global genetic ancestry and self-reported color-race, which was more evident in the extreme proportions of African and European ancestries. Individuals with higher African ancestry tended to identify as Black, those with higher European ancestry tended to identify as White, and individuals with higher Native American ancestry were more likely to self-identify as Mixed, a group with diverse ancestral compositions. However, at the individual level, this correlation was notably weak, and no deviations were observed for specific regions throughout the individual's genome. Our findings emphasize the significance of accurately defining and thoroughly analyzing race and ancestry, especially within admixed populations.


Asunto(s)
Polimorfismo de Nucleótido Simple , Autoinforme , Pigmentación de la Piel , Humanos , Brasil , Pigmentación de la Piel/genética , Masculino , Femenino , Adulto , Población Blanca/genética , Población Urbana , Población Negra/genética , Grupos Raciales/genética , Persona de Mediana Edad , Genética de Población
19.
Chin J Cancer Res ; 36(3): 298-305, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988482

RESUMEN

Objective: Nucleotide excision repair (NER) plays a vital role in maintaining genome stability, and the effect of NER gene polymorphisms on hepatoblastoma susceptibility is still under investigation. This study aimed to evaluate the relationship between NER gene polymorphisms and the risk of hepatoblastoma in Eastern Chinese Han children. Methods: In this five-center case-control study, we enrolled 966 subjects from East China (193 hepatoblastoma patients and 773 healthy controls). The TaqMan method was used to genotype 19 single nucleotide polymorphisms (SNPs) in NER pathway genes, including ERCC1, XPA, XPC, XPD, XPF, and XPG. Then, multivariate logistic regression analysis was performed, and odds ratios (ORs) and 95% confidence intervals (95% CIs) were utilized to assess the strength of associations. Results: Three SNPs were related to hepatoblastoma risk. XPC rs2229090 and XPD rs3810366 significantly contributed to hepatoblastoma risk according to the dominant model (adjusted OR=1.49, 95% CI=1.07-2.08, P=0.019; adjusted OR=1.66, 95% CI=1.12-2.45, P=0.012, respectively). However, XPD rs238406 conferred a significantly decreased risk of hepatoblastoma under the dominant model (adjusted OR=0.68, 95% CI=0.49-0.95; P=0.024). Stratified analysis demonstrated that these significant associations were more prominent in certain subgroups. Moreover, there was evidence of functional implications of these significant SNPs suggested by online expression quantitative trait loci (eQTLs) and splicing quantitative trait loci (sQTLs) analysis. Conclusions: In summary, NER pathway gene polymorphisms (XPC rs2229090, XPD rs3810366, and XPD rs238406) are significantly associated with hepatoblastoma risk, and further research is required to verify these findings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...