Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
1.
Glob Chang Biol ; 30(8): e17455, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39136122

RESUMEN

Declines in body size can be an advantageous physiological response to warming temperatures, or a result of physiological and nutritional stress. Either way, studies often assume that these climate-induced trait changes have important implications for fitness and demography. We leveraged almost three decades of capture-mark-recapture data of 51 bird species in Panama to examine if body size has changed through time, how sensitive body size is to changes in weather, and if body size impacts population demography. We evaluated two metrics of body size, structural size (wing length), and body condition (residual body mass). Over the study, wing length changed in varying directions for 88% of species (23 decrease, 22 increase), but the effects were weak, and change was only significant for two species. Conversely, body condition declined for 88% of species (45), effects were stronger, and that change was significant for 22% of species (11). This suggests that nutritional stress is likely the cause of changes in body size, not an adaptive response to warming. Precipitation metrics impacted body condition across three of our four feeding guilds, while wing length was only impacted by weather metrics for two guilds. This suggests that body condition is more sensitive to change in weather metrics compared to wing length. Lastly, we found that the impact of changes in body size on survival and recruitment was variable across species, but these relationships were in the opposite direction, ultimately resulting in no change in population growth for all but one species. Thus, while different stages (adult survival and recruitment) of populations may be impacted by body size, populations appear to be buffered from changes. The lack of an effect on population growth rate suggests that populations may be more resilient to changes in body size, with implications for population persistence under expected climate change.


Asunto(s)
Aves , Tamaño Corporal , Animales , Aves/fisiología , Aves/crecimiento & desarrollo , Panamá , Clima Tropical , Cambio Climático , Crecimiento Demográfico , Alas de Animales/anatomía & histología
2.
Sci Total Environ ; 947: 174378, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38960201

RESUMEN

Understanding the Amazon Rainforest's response to shifts in precipitation is paramount with regard to its sensitivity to climate change and deforestation. Studies using Dynamic Global Vegetation Models (DGVMs) typically only explore a range of socio-economically plausible pathways. In this study, we applied the state-of-the-art DGVM LPJmL to simulate the Amazon forest's response under idealized scenarios where precipitation is linearly decreased and subsequently increased between current levels and zero. Our results indicate a nonlinear but reversible relationship between vegetation Above Ground Biomass (AGB) and Mean Annual Precipitation (MAP), suggesting a threshold at a critical MAP value, below which vegetation biomass decline accelerates with decreasing MAP. We find that approaching this critical threshold is accompanied by critical slowing down, which can hence be expected to warn of accelerating biomass decline with decreasing rainfall. The critical precipitation threshold is lowest in the northwestern Amazon, whereas the eastern and southern regions may already be below their critical MAP thresholds. Overall, we identify the seasonality of precipitation and the potential evapotranspiration (PET) as the most important parameters determining the threshold value. While vegetation fires show little effect on the critical threshold and the biomass pattern in general, the ability of trees to adapt to water stress by investing in deep roots leads to increased biomass and a lower critical threshold in some areas in the eastern and southern Amazon where seasonality and PET are high. Our findings underscore the risk of Amazon forest degradation due to changes in the water cycle, and imply that regions that are currently characterized by higher water availability may exhibit heightened vulnerability to future drying.


Asunto(s)
Cambio Climático , Lluvia , Bosque Lluvioso , Estaciones del Año , Biomasa , Árboles , Brasil , Modelos Teóricos , Conservación de los Recursos Naturales
3.
Entropy (Basel) ; 26(7)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39056920

RESUMEN

We study the statistical interdependence between daily precipitation and daily extreme temperature for regions of Mexico (14 climatic stations, period 1960-2020) and Colombia (7 climatic stations, period 1973-2020) using linear (cross-correlation and coherence) and nonlinear (global phase synchronization index, mutual information, and cross-sample entropy) synchronization metrics. The information shared between these variables is relevant and exhibits changes when comparing regions with different climatic conditions. We show that precipitation and temperature records from La Mojana are characterized by high persistence, while data from Mexico City exhibit lower persistence (less memory). We find that the information exchange and the level of coupling between the precipitation and temperature are higher for the case of the La Mojana region (Colombia) compared to Mexico City (Mexico), revealing that regions where seasonal changes are almost null and with low temperature gradients (less local variability) tend to display higher synchrony compared to regions where seasonal changes are very pronounced. The interdependence characterization between precipitation and temperature represents a robust option to characterize and analyze the collective dynamics of the system, applicable in climate change studies, as well as in changes not easily identifiable in future scenarios.

4.
Sci Total Environ ; 949: 175038, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39059663

RESUMEN

Rice is one of the world's major food crops. Changes in major climatic factors such as temperature, rainfall, solar radiation and carbon dioxide (CO2) concentration have an important impact on rice growth and yield. However, many of the current studies that predict the impact of future climate change on rice yield are affected by uncertainties such as climate models, climate scenarios, model parameters and structure, and showing great differences. This study was based on the assessment results of the impact of climate change on rice in the future of 111 published literature, and comprehensively analyzed the impact and uncertainty of climate change on rice yield. This study utilized local polynomial (Loess) regression analysis to investigate the impact of changes in mean temperature, minimum temperature, maximum temperature, solar radiation, and precipitation on relative rice yield variations within a complete dataset. A linear mixed-effects model was used to quantitatively analyze the relationships between the restricted datasets. The qualitative analysis based on the entire dataset revealed that rice yields decreased with increasing average temperature. The precipitation changed between 0 and 25 %, it was conducive to the stable production of rice, and when the precipitation changed >25 %, it would cause rice yield reduction. The change of solar radiation was less than -1.15 %, the rice yield increases with the increase of solar radiation, and when the change of solar radiation exceeds -1.15 %, the rice yield decreases. Elevated CO2 concentrations and management practices could mitigate the negative effects of climate change. The results of a quantitative analysis utilizing the mixed effects model revealed that average temperature, precipitation, CO2 concentration, and adaptation methods all had a substantial impact on rice production, and elevated CO2 concentrations and management practices could exert positive influences on rice production. For every 1 °C and 1 % increase in average temperature and precipitation, rice yield decreased by 3.85 % and 0.56 %, respectively. For every 100 ppm increase in CO2 concentration, rice yield increased by 7.1 %. The variation of rice yield under different climate models, study sites and climate scenarios had significant variability. Elevated CO2 concentrations and management practices could compensate for the negative effects of climate change, benefiting rice production. This study comprehensively collected and analyzed a wide range of literature and research, which provides an in-depth understanding of the impacts of climate change on rice production and informs future research and policy development.


Asunto(s)
Cambio Climático , Productos Agrícolas , Oryza , Oryza/crecimiento & desarrollo , Productos Agrícolas/crecimiento & desarrollo , Dióxido de Carbono/análisis , Modelos Climáticos , Temperatura , Agricultura/métodos
5.
Foods ; 13(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38998507

RESUMEN

Modifying starch allows for improvements in its properties to enable improved uses in food matrices, bioplastics, and encapsulating agents. In this research, four varieties of native potato starch were modified by acid treatment, enzymatic treatment, and ethanol precipitation, and their physicochemical, structural, thermal, and techno-functional characteristics were analyzed. According to FT-IR analysis, no influence of the modified starches on the chemical groups was observed, and by scanning electron microscopy (SEM), spherical and oval shapes were observed in the acid and enzymatic treatments, with particle sizes between 27 and 36 µm. In particular, the ethanolic precipitation treatment yielded a different morphology with a particle size between 10.9 and 476.3 nm, resulting in a significant decrease in gelatinization temperature (DSC) and more pronounced crystallites (XRD). On the other hand, the enzymatic treatment showed higher values for z-potential (ζ), and the acid treatment showed lower mass loss (TGA). Acid and ethanolic treatments affected the dough properties compared to native starches. The techno-functional properties showed a decrease in the water absorption index, an increase in the water solubility index, and varied swelling power behaviors. In conclusion, the modification of potato starches through acid, enzymatic, and ethanolic precipitation treatments alters their physicochemical properties, such as swelling capacity, viscosity, and thermal stability. This in turn affects their molecular structure, modifying morphology and the ability to form gels, which expands their applications in the food industry to improve textures, stabilize emulsions, and thicken products. Furthermore, these modifications also open new opportunities for the development of bioplastics by improving the biodegradability and mechanical properties of starch-based plastic materials.

6.
Sci Rep ; 14(1): 11659, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778092

RESUMEN

Drought is considered the most severe water-related disaster in the Cauto river basin, which is the longest river and the main agricultural producer in Cuba. Better understanding of drought characteristics is crucial to drought management. Given the sparsity of ground-based precipitation observations in the Cauto, this study aims at using gridded global precipitation to analyze the spatio-temporal variations of drought in this river basin. Firstly, the monthly Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) was calibrated with the gauged precipitation using the Thiessen polygon-based method and linear least squares regression equations. Then, the gridded standardized precipitation index (SPI) with time scales of 3, 6, 9 months and drought characteristics, namely, drought frequency, duration and intensity were calculated using the calibrated CHIRPS. Finally, the spatio-temporal analysis was performed to investigate the variations of drought in the Cauto river basin in time and space. The obtained results show that the calibrated CHIRPS is highly consistent with the gauged observations and is capable of determining the magnitude, time, and spatial extent of drought events in the Cauto river basin. The trend analysis by the Mann-Kendall test reveals that although the trend is not statistically significant, the SPI tends to decrease with time in the dry season, which indicates the more severe drought. The spatial analysis indicates that the lower altitude area of the Cauto river basin is suffered from longer drought duration and higher drought intensity than the upper one. This study expresses the importance of open global precipitation data sources in monitoring and quantifying drought characteristics in data-scarce regions.

7.
Am J Primatol ; 86(7): e23638, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38715239

RESUMEN

Phenolics, like tannins, are plant-specialized metabolites that play a protective role against herbivory. Tannins can reduce palatability and bind with proteins to reduce digestibility, acting as deterrents to feeding and impacting nutrient extraction by herbivores. Some assays measure tannin and total phenolics content in plants but lack determination of their biological effects, hindering the interpretation of tannin function in herbivory and its impacts on animal behavior and ecology. In this study, we successfully applied the radial diffusion assay to assess tannin protein precipitation (PP) capacity and evaluate the anti-nutritional effects of tannins in food plants (n = 24) consumed by free-ranging black howler monkeys (Alouatta pigra) in Tabasco, Mexico. We found PP rings in five plant species consumed by the monkeys. The mature fruit of Inga edulis was the most consumed food plant, despite having a high tannin PP capacity (56.66 mg tannic acid equivalent/g dry matter). These findings highlight the presence of tannins in the black howler diet and provide insight into the primates' resilience and potential strategies for coping with anti-nutritional aspects of the diet.


Asunto(s)
Alouatta , Dieta , Preferencias Alimentarias , Taninos , Animales , Taninos/análisis , Alouatta/fisiología , Dieta/veterinaria , México , Masculino , Femenino
8.
Environ Sci Pollut Res Int ; 31(25): 37810-37823, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38789704

RESUMEN

The new technology of microbially induced calcium carbonate precipitation (MICP) has been applied in construction materials as a strategy to enhance their properties. In pursuit of solutions that are more localized and tailored to the study's target, this work focused on isolating and selecting bacteria capable of producing CaCO3 for posterior application in concrete aggregates. First, eleven bacterial isolates were obtained from aggregates and identified as genera Bacillus, Lysinibacillus, Exiguobacterium, and Micrococcus. Then, the strains were compared based on the quantity and nature of calcium carbonate they produced using thermogravimetric analysis, X-ray diffraction, and scanning electron microscopy with energy dispersive spectroscopy. Bacillus sp. dominated the cultured isolates and, along with Lysinibacillus sp., exhibited the highest CaCO3 conversion (up to 80%). On the other hand, Exiguobacterium and Micrococcus genera showed the poor ability to MICP (21.3 and 20.3%, respectively). Calcite and vaterite were the dominant carbonate polymorphs, with varying proportions. Concrete aggregates have proven to be a source of microorganisms capable of producing stable calcium carbonates with a high conversion rate. This indicates the feasibility of using microorganisms derived from local sources for application in construction materials as a sustainable way to enhance their characteristics.


Asunto(s)
Carbonato de Calcio , Carbonato de Calcio/química , Bacterias/metabolismo , Bacillus/metabolismo , Materiales de Construcción/microbiología , Reciclaje , Microscopía Electrónica de Rastreo , Difracción de Rayos X
9.
PeerJ ; 12: e17393, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799067

RESUMEN

Inland waters are crucial in the carbon cycle, contributing significantly to the global CO2 fluxes. Carbonate lakes may act as both sources and sinks of CO2 depending on the interactions between the amount of dissolved inorganic carbon (DIC) inputs, lake metabolisms, and geochemical processes. It is often difficult to distinguish the dominant mechanisms driving CO2 dynamics and their effects on CO2 emissions. This study was undertaken in three groundwater-fed carbonate-rich lakes in central Spain (Ruidera Lakes), severely polluted with nitrates from agricultural overfertilization. Diel and seasonal (summer and winter) changes in CO2 concentration (CCO2) DIC, and CO2 emissions-(FCO2)-, as well as physical and chemical variables, including primary production and phytoplanktonic chlorophyll-a were measured. In addition, δ13C-DIC, δ13C-CO2 in lake waters, and δ13C of the sedimentary organic matter were measured seasonally to identify the primary CO2 sources and processes. While the lakes were consistently CCO2 supersaturated and FCO2 was released to the atmosphere during both seasons, the highest CCO2 and DIC were in summer (0.36-2.26 µmol L-1). Our results support a strong phosphorus limitation for primary production in these lakes, which impinges on CO2 dynamics. External DIC inputs to the lake waters primarily drive the CCO2 and, therefore, the FCO2. The δ13C-DIC signatures below -12‰  confirmed the primary geogenic influence on DIC. As also suggested by the high values on the calcite saturation index, the Miller-Tans plot revealed that the CO2 source in the lakes was close to the signature provided by the fractionation of δ13C-CO2 from calcite precipitation. Therefore, the main contribution behind the CCO2 values found in these karst lakes should be attributed to the calcite precipitation process, which is temperature-dependent according to the seasonal change observed in δ13C-DIC values. Finally, co-precipitation of phosphate with calcite could partly explain the observed low phytoplankton production in these lakes and the impact on the contribution to increasing greenhouse gas emissions. However, as eutrophication increases and the soluble reactive phosphorus (SRP) content increases, the co-precipitation of phosphate is expected to be progressively inhibited. These thresholds must be assessed to understand how the CO32- ions drive lake co-precipitation dynamics. Carbonate regions extend over 15% of the Earth's surface but seem essential in the CO2 dynamics at a global scale.


Asunto(s)
Dióxido de Carbono , Lagos , Estaciones del Año , Lagos/química , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , España , Monitoreo del Ambiente/métodos , Ciclo del Carbono , Fitoplancton/metabolismo
10.
Materials (Basel) ; 17(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38673175

RESUMEN

Bismuth sulfide (Bi2S3) nanostructures have gained significant attention in the fields of catalysis, optoelectronics, and biomedicine due to their unique physicochemical properties. This paper introduces a simple and cost-effective method for producing Bi2S3 microstructures at low temperatures (25 and 70 °C). These microstructures are formed by the hierarchical self-assembly of Bi2S3 nanoparticles, which are typically 15-40 nm in size. The nanoparticles are synthesized by the co-precipitation of thioglycolic acid, thioacetamide, and bismuth nitrate in water. The study delves into the phase composition and morphological evolution of the microstructures, concerning the chemical composition of the solution and the synthesis temperature. X-ray analysis has confirmed the formation of single-phase bismuthinite Bi2S3. The synthesis process generates primary building blocks in the form of 15-40 nm Bi2S3 nanocrystals, which then go through a hierarchical self-assembly process to produce a range of micrometer-sized structures. A scanning electron microscopy examination revealed that the primary nanoparticles self-assemble into quasi-1D worm-like nanostructures, which then self-assemble to create sponge-shaped microstructures. These structures subsequently self-organize and refine into either flower- or dandelion-like microstructures, mostly depending on the synthesis temperature and the chemistry of the digestion medium.

11.
Polymers (Basel) ; 16(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38543338

RESUMEN

This study presents a new optical sensor for tartrazine (TAR) quantification developed using a molecularly imprinted polymer (MIP) as the recognition element, with optical fiber serving as the supporting substrate. The fiber surface was functionalized with 3-(trimethoxysilyl)propyl methacrylate (MPS), and the fiber was coated with MIP using the precipitation polymerization method. The analysis of MIP immobilization on the functionalized optical fiber (FF) was conducted through the use of scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) techniques. Experimental parameters, such as contact time and fiber length, were adjusted in order to obtain the highest sensitive response signal for the functionalized optical fiber (FF-MIP). The fiber sensor, FF-MIP, exhibited a relatively higher response signal for tartrazine compared to other interfering dyes. The rapid and total desorption of the analyte from FF-MIP allowed the immediate reemployment of FF-MIP, which also presented an acceptable repeatability for the reflectance signal. The imprinting factors for the studied dyes were between 0.112 and 0.936 in front of TAR, 1.405, and selectivity factors were between 1.501 and 12.545, confirming the sensor selectivity. The FF-MIP sensor was successfully applied for tartrazine quantification in real water samples, where it yielded satisfactory results comparable to those of the HPLC reference method.

12.
Parasit Vectors ; 17(1): 129, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486221

RESUMEN

BACKGROUND: Rhipicephalus (Boophilus) microplus is the most important tick species affecting cattle in the world. Under field conditions, the non-parasitic phase of R. (B.) microplus is unknown in the Amazon biome, including Brazil. The present study aimed to evaluate the non-parasitic phase of R. (B.) microplus in field (grass plots) and laboratory conditions. METHODS: The study was conducted from September 2020 to April 2022 in an Amazonian region (Maranhão State, Brazil). We evaluated the biological parameters of R. (B.) microplus under laboratory and field conditions. Engorged females were exposed to experimental conditions every 14 days, totaling 20 months of study. The following biological parameters were observed: pre-oviposition period, egg mass incubation period, and maximum larval survival period. RESULTS: Abiotic data (e.g., temperature and humidity) varied little throughout the year. Precipitation was the factor that varied the most throughout the year (dry ~ 30 mm3 and rain 400 mm3), and the parameters of pre-oviposition and pre-hatching are longer during the rainy season. A possible negative effect of the dry season on the percentage of hatched eggs was observed. Larval longevity in the plots of both control and free females was short (mean ~ 50-60 days), below that recorded for larvae under controlled conditions (mean ~ 95 days). CONCLUSIONS: Rhipicephalus (Boophilus) microplus was able to complete its non-parasitic phase by producing host-seeking larvae in the pasture during all months of the study. The results indicate that R. (B.) microplus can complete up to six generations per year in biome Amazon. To our knowledge, this is the highest number of annual generations for R. (B.) microplus in Latin America.


Asunto(s)
Rhipicephalus , Femenino , Animales , Óvulo , Estaciones del Año , Larva , Biología
13.
Environ Geochem Health ; 46(3): 87, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38367090

RESUMEN

The ecotoxic effect of Zn species arising from the weathering of the marmatite-like sphalerite ((Fe, Zn)S) in Allium cepa systems was herein evaluated in calcareous soils and connected with its sulfide oxidation mechanism to determine the chemical speciation responsible of this outcome. Mineralogical analyses (X-ray diffraction patterns, Raman spectroscopy, scanning electron microscopy and atomic force microscopy), chemical study of leachates (total Fe, Zn, Cd, oxidation-reduction potential, pH, sulfates and total alkalinity) and electrochemical assessments (chronoamperometry, chronopotentiometry, cyclic voltammetry, and electrochemical impedance spectroscopy) were carried out using (Fe, Zn)S samples to elucidate interfacial mechanisms simulating calcareous soil conditions. Results indicate the formation of polysulfides (Sn2-), elemental sulfur (S0), siderite (FeCO3)-like, hematite (Fe2O3)-like with sorbed CO32- species, gunningite (ZnSO4·H2O)-like phase and smithsonite (ZnCO3)-like compounds in altered surface under calcareous conditions. However, the generation of gunningite (ZnSO4·H2O)-like phase was predominant bulk-solution system. Quantification of damage rates ranges from 75 to 90% of bulb cells under non-carbonated conditions after 15-30 days, while 50-75% of damage level is determined under neutral-alkaline carbonated conditions. Damage ratios are 70.08 and 30.26 at the highest level, respectively. These findings revealed lower ecotoxic damage due to ZnCO3-like precipitation, indicating the effect of carbonates on Zn compounds during vegetable up-taking (exposure). Other environmental suggestions of the (Fe, Zn)S weathering and ecotoxic effects under calcareous soil conditions are discussed.


Asunto(s)
Cebollas , Contaminantes del Suelo , Compuestos de Zinc , Suelo/química , Sulfuros/química , Tiempo (Meteorología) , Contaminantes del Suelo/análisis
14.
Food Chem ; 443: 138605, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301555

RESUMEN

Okara, the solid byproduct of water-soluble soybean extract production, is a potential source of proteins and isoflavones. This study investigated different experimental configurations for extracting these compounds from wet okara, including lipid removal with ethanol at different stages of the recovery process, sequential crosscurrent extraction, and using a saline MgCl2 solution as the solvent. Three washes with a 60:40 ethanol:water (w/w) solution after isoelectric precipitation significantly increased protein content by reducing lipid content (60 %). The crosscurrent approach using 0.05 M MgCl2 yielded okara proteinaceous material with 248 µg/g daidzein and 236 µg/g genistein, along with a 3 % increase in protein content, attributed to enhanced extraction of 7S globulins. These configurations notably affected the functional properties of the protein materials. Overall, this research provides detailed insights into the composition and properties of proteins extracted from wet okara, facilitating their specialized application in food products.


Asunto(s)
Etanol , Isoflavonas , Solventes , Agua , Lípidos
15.
Mol Pharm ; 21(4): 1861-1871, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38416030

RESUMEN

This study aims to investigate key variables affecting the dissolution of amorphous pharmaceuticals. We examined sample treatment methods (centrifugation vs syringe filtration), time delays between sample collection and processing (immediate, 2, or 24 h), and different sample preparations (bare powder, capsules, or tablets). These factors were evaluated through both sink and nonsink dissolution experiments, using controlled supersaturation conditions (sink index ≈ 0.1) with amorphous solid dispersions (ASDs) containing low-substituted hydroxypropyl cellulose (L-HPC) and either indomethacin or posaconazole as model drugs. Our results highlighted the significant impact of syringe filtration on nonsink dissolutions, particularly the notable reduction in dissolved drug concentration, possibly due to filtration-induced precipitation. Moreover, introducing a delay of 2 or 24 h between sample collection and quantitation under nonsink conditions led to substantial concentration changes. This effect was not as pronounced when samples underwent centrifugation, and only the analysis was delayed for 2 h. The findings also emphasize the importance of accounting for delays introduced by pharmaceutical formulations, particularly in assessing the kinetic-solubility profiles of ASDs. This research offers valuable insights into the field of ASDs, enhancing our understanding of how these variables can influence dissolution results.


Asunto(s)
Cristalización , Solubilidad , Liberación de Fármacos
16.
Methods Mol Biol ; 2751: 71-79, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38265710

RESUMEN

Acidovorax avenae subsp. avenae (Aaa) is the causal agent of red stripe in sugarcane, a disease characterized by two forms: leaf stripe and top rot. Despite the importance of this disease, little is known about Aaa virulence factors (VFs) and their function in the infection process. Among the different array of VFs exerted by phytopathogenic bacteria, exopolysaccharides (EPSs) often confer a survival advantage by protecting the cell against abiotic and biotic stresses, including host defensive factors. They are also main components of the extracellular matrix involved in cell-cell recognition, surface adhesion, and biofilm formation. EPS composition and properties have been well studied for some plant pathogenic bacteria; nevertheless, there is no knowledge about Aaa-EPS. In this work, we describe a simple and reliable method for EPS production, precipitation, and quantification based on cold precipitation after ethanol addition, which will allow to study EPS characteristics of different Aaa strains and to evaluate the association among EPS (e.g., amount, composition, viscosity) and Aaa pathogenicity.


Asunto(s)
Comamonadaceae , Factores de Virulencia , Agregación Celular , Comunicación Celular
17.
Foods ; 13(2)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38275694

RESUMEN

Cassava starch nanoparticles (SNP) were produced using the nanoprecipitation method after modification of starch granules using ultrasound (US) or heat-moisture treatment (HMT). To produce SNP, cassava starches were gelatinized (95 °C/30 min) and precipitated after cooling, using absolute ethanol. SNPs were isolated using centrifugation and lyophilized. The nanoparticles produced from native starch and starches modified using US or HMT, named NSNP, USNP and HSNP, respectively, were characterized in terms of their main physical or functional properties. The SNP showed cluster plate formats, which were smooth for particles produced from native starch (NSNP) and rough for particles from starch modified with US (USNP) or HMT (HSNP), with smaller size ranges presented by HSNP (~63-674 nm) than by USNP (~123-1300 nm) or NSNP (~25-1450 nm). SNP had low surface charge values and a V-type crystalline structure. FTIR and thermal analyses confirmed the reduction of crystallinity. The SNP produced after physical pretreatments (US, HMT) showed an improvement in lipophilicity, with their oil absorption capacity in decreasing order being HSNP > USNP > NSNP, which was confirmed by the significant increase in contact angles from ~68.4° (NSNP) to ~76° (USNP; HSNP). A concentration of SNP higher than 4% may be required to produce stability with 20% oil content. The emulsions produced with HSNP showed stability during the storage (7 days at 20 °C), whereas the emulsions prepared with NSNP exhibited phase separation after preparation. The results suggested that dual physical modifications could be used for the production of starch nanoparticles as stabilizers for Pickering emulsions with stable characteristics.

18.
J Sci Food Agric ; 104(6): 3361-3370, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38092559

RESUMEN

BACKGROUND: This research aimed to identify the agroclimatic zones in Brazil, excluding Rio Grande do Sul, that are suitable for olive (Olea europaea L.) cultivation, considering both climatic and topographical factors. Olives require specific conditions: moderate winter temperatures (7-15 °C), warmer summers (25-35 °C) and sufficient water during growth and fruit maturation. They can endure some drought, making them a viable option for agricultural diversification. Using daily meteorological data from 1989 to 2023 from NASA-POWER, this study analyzed variables like air temperature (minimum and maximum) and rainfall. Key climate variables were the mean air temperature in winter (T_w), spring (T_s), summer (T_su) and autumn (T_a) and total annual precipitation (Prec). Criteria for suitability included: T_w between 5 and 20 °C, T_s between 15 and 23 °C, T_su between 15 and 30 °C, T_a between 15 and 22 °C, annual precipitation over 900 mm and altitude below 900 m. Geographic information system software and Python 3.8 were employed for data analysis and zoning. RESULTS: Results indicated that only 1.92% of the analyzed area, mainly in Minas Gerais, was suitable for olive cultivation. High temperatures and low rainfall in Brazil, particularly in the North and Midwest, make 59.56% of the country unsuitable for olive farming. Additionally, 18.58% of the land, mainly in the Northeast, faces challenges due to extreme heat (T_w) and insufficient water supply. © 2023 Society of Chemical Industry.


Asunto(s)
Olea , Brasil , Estaciones del Año , Temperatura , Sequías
19.
Braz. j. biol ; 84: e261001, 2024. tab, graf, mapas
Artículo en Inglés | VETINDEX | ID: biblio-1384066

RESUMEN

Drought variability analysis is of utmost concern for planning and efficiently managing water resources and food security in any specific area. In the current study, drought spell occurrence has been investigated in the Balochistan province of Pakistan during the past four decades (1981-2020) using standardized precipitation index (SPI), reconnaissance drought index (RDI), and precipitation deciles (PD) at an annual timescale. Precipitation and temperature data collected from 13 synoptic meteorological stations located in Balochistan were used to calculate the SPI, the RDI, and the PD for calculation of drought severity and duration. Based on these indices, temporal analysis shows adverse impacts of drought spells in Nokkundi during 1991-1993, in Barkhan, Dalbandin, Quetta stations during 1999-2000, whereas Barkhan, Dalbandin, Lasbella, Sibi during 2002-2003, Zhob during 2010-2011, Kalat and Khuzdar during 2014-2015, and Panjgur during 2017-2018. Also, the aridity index for each station was calculated based on the UNEP method shows that major part of Balochistan lies in the arid zone, followed by the hyper-arid in the southwestern part and the semi-arid zones in the northeastern part of the province. SPI and RDI results were found more localized than PD, as PD shows extensive events. Furthermore, principal component analysis shows a significant contribution from all the indices. For SPI, RDI, and PD, the first three principal components have more than 70% share, contributing 73.63%, 74.15%, and 72.30% respectively. By integrating drought patterns, long-term planning, and preparedness to mitigate drought impacts are only possible. The RDI was found more suitable and recommended in case of temperature data availability.


A análise da variabilidade da seca é de extrema importância para o planejamento e gestão eficiente dos recursos hídricos e da segurança alimentar em qualquer área específica. No estudo atual, a ocorrência de períodos de seca foi investigada na província do Baluchistão, no Paquistão, durante as últimas quatro décadas (1981-2020), usando índice de precipitação padronizado (SPI), índice de seca de reconhecimento (RDI) e decis de precipitação (PD) em uma escala anual. Dados de precipitação e temperatura coletados de 13 estações meteorológicas sinóticas localizadas no Baluchistão foram usados ​​para calcular o SPI, o RDI e o PD para cálculo da severidade e duração da seca. A análise temporal mostra os impactos adversos dos períodos de seca em Nokkundi durante 1991-1993 e na maior parte da província de 1999 a 2004. Além disso, o índice de aridez para cada estação foi calculado com base no método do PNUMA. Os resultados de SPI e RDI foram encontrados mais localizados do que PD, pois PD apresenta eventos extensos. Além disso, a análise de componentes principais mostra uma contribuição significativa de todos os índices. Para SPI, RDI e PD, os três primeiros componentes principais têm mais de 70% de participação, contribuindo com 73,63%, 74,15% e 72,30%, respectivamente. O planejamento e a preparação de longo prazo para mitigar os impactos da seca só são possíveis por meio da integração dos padrões de seca.


Asunto(s)
Lluvia , Recursos Hídricos , Estaciones Meteorológicas , Sequías , Abastecimiento de Alimentos , Pakistán
20.
Heliyon ; 9(11): e21124, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37964834

RESUMEN

For this work, iron oxide nanoparticles are synthesized by the co-precipitation method with stoichiometric amounts of Fe2+ and Fe3+ salts in a 1:2 ratio in distilled water and the pH is raised by adding an aqueous ammonia solution by controlled dripping. Nanoparticles precipitating after the reaction time are magnetically filtered and stored in ethanol for further analysis. Superparamagnetic Fe3O4 nanoparticles with a slight deviation from the stoichiometry are obtained, with sizes between 7.4 and 12.8 nm and saturation magnetization between 40 and 78 emu/gr. At pH 6, rod-shaped nanoparticles are obtained in addition to spherical ones. With a statistical design, it is shown how the morphological, structural and magnetic properties of the resulting nanoparticles can be manipulated by the synthesis parameters, offering many possibilities to tailor the materials to a wide range of applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA