Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Heliyon ; 10(17): e36454, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39281641

RESUMEN

Hepatectomy, or liver resection, is a process by which through surgery part or all of the liver is removed. In this operation, less bleeding, negligible damage and fast removal are the most important requirements. Surgery through waterjet is one of the most efficient techniques which is widely used in hepatectomy. Some clinical studies are conducted to investigate waterjet method in liver resection. In the present study interaction of waterjet with liver during the process of the surgery is investigated in terms of mechanical engineering. For this purpose, a system of waterjet is designed to consider the interaction of waterjet with liver at different nozzle diameter and velocities. For validation, SPH-FEM model is used to analyze waterjet interaction with hyperelastic liver. In this model, liver cutting is simulated using element deletion defined by a subroutine code based on maximum principal strain criterion. Depth of cut along with degraded volume are measured experimentally and compared with simulated method. Results show that good agreement exists between experimental and simulation finding. By comparing depth of cut in the experimental and simulation results, it can be seen that liver behavior changes from brittle to ductile by increasing waterjet velocity during the experimental tests. For the simulation, maximum principal strain threshold is set to be between 0.1 and 0.4. However, the best agreement between experimental and simulation results exists at maximum principal strain threshold equal to 0.2. The findings can help surgeons to find the best working range of waterjet device and the most efficient operation.

2.
Bioengineering (Basel) ; 11(9)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39329660

RESUMEN

Although the finite element head model (FEHM) has been widely utilized to analyze injury locations and patterns in traumatic brain injury, significant controversy persists regarding the selection of a mechanical injury variable and its corresponding threshold. This paper aims to determine an objective injury threshold for maximum principal strain (MPS) through a novel data-driven method, and to validate and apply it. We extract the peak responses from all elements across 100 head impact simulations to form a dataset, and then determine the objective injury threshold by analyzing the relationship between the combined injury degree and the threshold according to the stationary value principle. Using an occipital impact case from a clinical report as an example, we evaluate the accuracy of the injury prediction based on the new threshold. The results show that the injury area predicted by finite element analysis closely matches the main injury area observed in CT images, without the issue of over- or underestimating the injury due to an unreasonable threshold. Furthermore, by applying this threshold to the finite element analysis of designed occipital impacts, we observe, for the first time, supra-tentorium cerebelli injury, which is related to visual memory impairment. This discovery may indicate the biomechanical mechanism of visual memory impairment after occipital impacts reported in clinical cases.

3.
Ann Biomed Eng ; 52(9): 2496-2508, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39033199

RESUMEN

The supraspinatus tendon plays a crucial role in shoulder abduction, making it one of the common structures affected by injury. Clinically, crescent-shaped tears are the most commonly seen tear shape. By developing six specimen-specific, three-dimensional, supraspinatus-infraspinatus finite element model with heterogeneous material properties, this study aimed to examine the changes in tissue deformation (maximum principal strain) of the supraspinatus tendon due to specimen-specific material properties and rotator cuff tear size. FE models with small- and medium-sized full-thickness crescent-shaped tears were subjected to loads seen during activities of daily living and physiotherapy. Six fresh-frozen cadaveric shoulders were dissected to mechanically test the supraspinatus tendon and develop and validate FE models that can be used to assess changes in strain due to small (< 1 cm, equivalent to 20-30% of the tendon width) and medium-sized (1-3 cm, equivalent to 40-50% of the tendon width) tears that are located in the middle and posterior regions of the supraspinatus tendon. FE predictions of maximum principal strain at the tear tips were examined to determine whether failure strain was reached during activities of daily living (drinking and brushing teeth) and physiotherapy exercises (prone abduction and external rotation at 90° abduction). No significant differences were observed between the middle and posterior tear failure loads for small- and medium-sized tears. For prone abduction, there was a potential risk for tear progression (exceeded failure strain) for medium-sized tears in the supraspinatus tendon's middle and posterior regions. For external rotation at 90° abduction, one model with a middle tear and two with posterior tears experienced failure. For all daily activity loads, the strain never exceeded the failure strain. Our three-dimensional supraspinatus-infraspinatus FE model shows that small tears appear unlikely to progress based on the regional strain response; however, medium-sized tears are at higher risk during more strenuous physiotherapy exercises. Furthermore, differences in patient-specific tendon material properties are important in determining whether the tear will progress. Therefore, patient-specific management plans based on tear size may be beneficial to improve clinical outcomes.


Asunto(s)
Actividades Cotidianas , Lesiones del Manguito de los Rotadores , Manguito de los Rotadores , Humanos , Lesiones del Manguito de los Rotadores/fisiopatología , Masculino , Femenino , Manguito de los Rotadores/fisiología , Manguito de los Rotadores/fisiopatología , Anciano , Modalidades de Fisioterapia , Persona de Mediana Edad , Modelos Biológicos , Estrés Mecánico , Análisis de Elementos Finitos
4.
Stapp Car Crash J ; 67: 171-179, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38662624

RESUMEN

With the current trend of including the evaluation of the risk of brain injuries in vehicle crashes due to rotational kinematics of the head, two injury criteria have been introduced since 2013 - BrIC and DAMAGE. BrIC was developed by NHTSA in 2013 and was suggested for inclusion in the US NCAP for frontal and side crashes. DAMAGE has been developed by UVa under the sponsorship of JAMA and JARI and has been accepted tentatively by the EuroNCAP. Although BrIC in US crash testing is known and reported, DAMAGE in tests of the US fleet is relatively unknown. The current paper will report on DAMAGE in NCAP-like tests and potential future frontal crash tests involving substantial rotation about the three axes of occupant heads. Distribution of DAMAGE of three-point belted occupants without airbags will also be discussed. Prediction of brain injury risks from the tests have been compared to the risks in the real world. Although DAMAGE correlates well with MPS in the human brain model across several test scenarios, the predicted risk of AIS2+ brain injuries are too high compared to real-world experience. The prediction of AIS4+ brain injury risk in lower velocity crashes is good, but too high in NCAP-like and high speed angular frontal crashes.


Asunto(s)
Accidentes de Tránsito , Algoritmos , Humanos , Fenómenos Biomecánicos , Lesiones Encefálicas , Medición de Riesgo , Cinturones de Seguridad
5.
ArXiv ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37873019

RESUMEN

Experimental observations suggest that the force output of the skeletal muscle tissue can be correlated to the intra-muscular pressure generated by the muscle belly. However, pressure often proves difficult to measure through in-vivo tests. Simulations on the other hand, offer a tool to model muscle contractions and analyze the relationship between muscle force generation and deformations as well as pressure outputs, enabling us to gain insight into correlations among experimentally measurable quantities such as principal and volumetric strains, and the force output. In this work, a correlation study is performed using Pearson's and Spearman's correlation coefficients on the force output of the skeletal muscle, the principal and volumetric strains experienced by the muscle and the pressure developed within the muscle belly as the muscle tissue undergoes isometric contractions due to varying activation profiles. The study reveals strong correlations between force output and the strains at all locations of the belly, irrespective of the type of activation profile used. This observation enables estimation on the contribution of various muscle groups to the total force by the experimentally measurable principal and volumetric strains in the muscle belly. It is also observed that pressure does not correlate well with force output due to stress relaxation near the boundary of muscle belly.

6.
Front Bioeng Biotechnol ; 11: 1168783, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122861

RESUMEN

Introduction: The principal strain or equivalent strain is mainly used in current numerical studies to determine the mechanical state of the element in the cortical bone finite element model and then perform fracture simulation. However, it is unclear which strain is more suitable for judging the element mechanical state under different loading conditions due to the lack of a general strain judging criterion for simulating the cortical bone fracture. Methods: This study aims to explore a suitable strain judging criterion to perform compressive fracture simulation on the rat femoral cortical bone based on continuum damage mechanics. The mechanical state of the element in the cortical bone finite element model was primarily assessed using the principal strain and equivalent strain separately to carry out fracture simulation. The prediction accuracy was then evaluated by comparing the simulated findings with different strain judging criteria to the corresponding experimental data. Results: The results showed that the fracture parameters predicted using the principal strain were closer to the experimental values than those predicted using the equivalent strain. Discussion: Therefore, the fracture simulation under compression was more accurate when the principal strain was applied to control the damage and failure state in the element. This finding has the potential to improve prediction accuracy in the cortical bone fracture simulation.

7.
Comput Biol Med ; 158: 106830, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37011432

RESUMEN

BACKGROUND: Recently, a novel approach axis-blade angle (ABA) was developed to measure implant positions during trochanteric hip fracture surgery. It was defined as the sum of two angles α and ß measured between the femoral neck axis and helical blade axis in anteroposterior and lateral X-ray films, respectively. Although its clinical practicability has been confirmed, the mechanism is yet to be investigated by means of finite element (FE) analysis. METHODS: Computed tomography images of four femurs and dimensions of one implant at three angles were obtained to construct FE models. For each femur, 15 FE models in an arrangement (intramedullary nails at three angles multiplying five blade positions) were established. Under the simulation of normal walking loads, the ABA, von Mises stress (VMS), maximum/minimum principal strain and displacement were analyzed. RESULTS: When the ABA increased, all outcome indicators initially decreased till reaching inferior-middle site and then increased while the blade positions within the femoral head shifted from the superior-anterior quadrant toward the inferior-posterior quadrant, where the ABA were higher. Only the peak VMS of implant models in the inferior-posterior quadrant (particularly the inferior-middle site within) with blades in did not reach the yielding (risky) cut-off. CONCLUSIONS: From the perspective of angles, ABA, this study demonstrated the inferior-posterior quadrant as the relatively stable and safe regions, especially the inferior-middle site within. This was similar but more elaborate compared with previous studies and clinical practice. Therefore, ABA could be employed as a promising approach to anchor the implants into the optimal region.


Asunto(s)
Fijación Intramedular de Fracturas , Fracturas de Cadera , Humanos , Análisis de Elementos Finitos , Fracturas de Cadera/diagnóstico por imagen , Fracturas de Cadera/cirugía , Fémur/diagnóstico por imagen , Fémur/cirugía , Fijación Intramedular de Fracturas/métodos , Prótesis e Implantes
8.
J Neurotrauma ; 40(15-16): 1796-1807, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37002891

RESUMEN

Abstract In the last decade, computational models of the brain have become the gold standard tool for investigating traumatic brain injury (TBI) mechanisms and developing novel protective equipment and other safety countermeasures. However, most studies utilizing finite element (FE) models of the brain have been conducted using models developed to represent the average neuroanatomy of a target demographic, such as the 50th percentile male. Although this is an efficient strategy, it neglects normal anatomical variations present within the population and their contributions on the brain's deformation response. As a result, the contributions of structural characteristics of the brain, such as brain volume, on brain deformation are not well understood. The objective of this study was to develop a set of statistical regression models relating measures of the size and shape of the brain to the resulting brain deformation. This was performed using a database of 125 subject-specific models, simulated under six independent head kinematic boundary conditions, spanning a range of impact modes (frontal, oblique, side), severity (non-injurious and injurious), and environments (volunteer, automotive, and American football). Two statistical regression techniques were utilized. First, simple linear regression (SLR) models were trained to relate intracranial volume (ICV) and the 95th percentile of maximum principal strain (MPS-95) for each of the impact cases. Second, a partial least squares regression model was constructed to predict MPS-95 based on the affine transformation parameters from each subject, representing the size and shape of their brain, considering the six impact conditions collectively. Both techniques indicated a strong linear relationship between ICV and MPS-95, with MPS-95 varying by approximately 5% between the smallest and largest brains. This difference represented up to 40% of the mean strain across all subjects. This study represents a comprehensive assessment of the relationships between brain anatomy and deformation, which is crucial for the development of personalized protective equipment, identifying individuals at higher risk of injury, and using computational models to aid clinical diagnostics of TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Humanos , Masculino , Análisis de Elementos Finitos , Tamaño de los Órganos , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Cabeza , Fenómenos Biomecánicos
9.
J Am Soc Echocardiogr ; 36(8): 878-887, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36931578

RESUMEN

BACKGROUND: Principal strain (PS) analysis quantifies three-dimensional myocardial deformation using three-dimensional speckle-tracking echocardiography. It defines both the amplitude and direction of the principal myocardial contraction, expressed as PS, and a perpendicular secondary strain of lower intensity. The aims of this study were to apply PS analysis to describe the contractile pattern in the single right ventricle (SRV) functioning as a systemic chamber in hypoplastic left heart syndrome, compared with the normal left ventricle (LV) and right ventricle (RV), and to compare SRV function using conventional echocardiographic evaluations. METHODS: Fifty-four post-Fontan patients with hypoplastic left heart syndrome and age-matched control subjects (normal LV, n = 64; normal RV, n = 48) underwent computation of PS lines, ejection fraction (EF), end-diastolic volume indexed to body surface area, PS, secondary strain, circumferential strain, and longitudinal strain. The PS lines were compared between groups. Linear regressions with coefficient determination (R2) of strains, fractional area change, and tricuspid annular plane systolic excursion with EF and end-diastolic volume index were assessed in SRV. Additionally, the hypoplastic left heart syndrome cohort was equally divided into two groups with higher and lower EFs, followed by comparison of all parameters. RESULTS: The pattern of PS lines demonstrated a left-handed direction in the anterior free wall, a right-handed direction in the posterior free wall, and a circumferential direction in the medial wall in SRV. In contrast, in the normal LV, the principal contraction is in the circumferential direction, whereas in the normal RV, it is predominantly longitudinal. The R2 values for PS, secondary strain, and circumferential strain on EF were high (0.88, 0.72, and 0.90, respectively), whereas the R2 value for longitudinal strain was comparable with that for fractional area change (0.56 and 0.55). All parameters were independent of end-diastolic volume index. PS lines in the higher EF group showed a more circumferential orientation than in the lower EF group in SRV. CONCLUSION: PS analysis provides a unique functional map of SRV contraction. This map differs from corresponding maps of the normal LV and RV. This may be helpful in understanding the mechanisms of SRV function, although future longitudinal studies are needed.


Asunto(s)
Síndrome del Corazón Izquierdo Hipoplásico , Disfunción Ventricular Derecha , Humanos , Niño , Ventrículos Cardíacos/diagnóstico por imagen , Síndrome del Corazón Izquierdo Hipoplásico/cirugía , Ecocardiografía/métodos , Contracción Miocárdica , Estudios Longitudinales , Función Ventricular Derecha , Volumen Sistólico
10.
Cureus ; 15(1): e33412, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36751188

RESUMEN

Negative pressure wound therapy (NPWT) drape removal from the skin may be painful for patients and inadvertently cause skin damage during the length of therapy. Most NPWT drapes utilize an acrylate adhesive to achieve the seal. To improve the experience associated with NPWT drape removal, a novel hybrid drape was developed. This drape is composed of areas of acrylate adhesive and areas of silicone adhesive. To more fully understand how the removal of the hybrid drape versus the acrylate drape affects the skin, drape removal models were developed to assess the differences in strain profiles for acrylate versus hybrid NPWT drapes using finite element analysis (FEA) to measure the strain and deformation that occurs at the tissue interface with the NPWT drape. The FEA modeling showed that the maximum principal strain associated with the removal of the acrylate drape was 47.3%, whereas the maximum principal strain associated with the removal of the hybrid drape was 21.5%. The average peel force associated with the acrylate drape was 66.1 gf/in, while the peel force for the hybrid drape was 112.5 gf/in. NPWT drape removal may, in certain instances, be related to pain and periwound skin injury. The hybrid drape tested may provide clinicians with an option for NPWT that is gentler for the skin.

11.
Int J Cardiovasc Imaging ; 39(1): 115-134, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36598686

RESUMEN

3-Dimensional (3D) myocardial deformation analysis (3D-MDA) enables novel descriptions of geometry-independent principal strain (PS). Applied to routine 2D cine cardiovascular magnetic resonance (CMR), this provides unique measures of myocardial biomechanics for disease diagnosis and prognostication. However, healthy reference values remain undefined. This study describes age- and sex-stratified reference values from CMR-based 3D-MDA, including 3D PS. One hundred healthy volunteers were prospectively recruited following institutional ethics approval and underwent CMR imaging. 3D-MDA was performed using validated software. Age- and sex-stratified global and segmental strain measures were derived for conventional geometry-dependent [circumferential (CS), longitudinal (LS), and radial (RS)] and geometry-independent [minimum (minPS) and maximum principal (maxPS)] directions of deformation. Layer-specific contraction angle interactions were determined using local minPS vectors. The average age was 43 ± 15 years and 55% were women. Strain measures were higher in women versus men. 3D PS-based assessment of maximum tissue shortening (minPS) and maximum tissue thickening (maxPS) were greater than corresponding geometry-dependent markers of LS and RS, consistent with improved representation of local tissue deformations. Global maxPS amplitude best discriminated both age and sex. Segmental analyses showed greater strain amplitudes in apical segments. Transmural PS contraction angles were higher in females and showed a heterogeneous distribution across segments. In this study we provided age and sex-based reference values for 3D strain from CMR imaging, demonstrating improved capacity for 3D PS to document maximal local tissue deformations and to discriminate age and sex phenotypes. Novel markers of layer-specific strain angles from 3D PS were also described.


Asunto(s)
Corazón , Función Ventricular Izquierda , Femenino , Masculino , Animales , Valores de Referencia , Valor Predictivo de las Pruebas , Imagen por Resonancia Cinemagnética/métodos , Imagen por Resonancia Magnética , Reproducibilidad de los Resultados
12.
Ann Biomed Eng ; 51(4): 783-793, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36183024

RESUMEN

Brain and spinal cord injuries have devastating consequences on quality of life but are challenging to assess experimentally due to the traumatic nature of such injuries. Finite element human body models (HBM) have been developed to investigate injury but are limited by a lack of biofidelic spinal cord implementation. In many HBM, brain models terminate with a fixed boundary condition at the brain stem. The goals of this study were to implement a comprehensive representation of the spinal cord into a contemporary head and neck HBM, and quantify the effect of the spinal cord on brain deformation during simulated impacts. Spinal cord tissue geometries were developed, based on 3D medical imaging and literature data, meshed, and implemented into the GHBMC 50th percentile male model. The model was evaluated in frontal, lateral, rear, and oblique impact conditions, and the resulting maximum principal strains in the brain tissue were compared, with and without the spinal cord. A new cumulative strain curve metric was proposed to quantify brain strain distribution. Presence of the spinal cord increased brain tissue strains in all simulated cases, owing to a more compliant boundary condition, highlighting the importance of the spinal cord to assess brain response during impact.


Asunto(s)
Calidad de Vida , Traumatismos de la Médula Espinal , Masculino , Humanos , Encéfalo , Médula Espinal , Cabeza , Análisis de Elementos Finitos , Fenómenos Biomecánicos
13.
Ann Biomed Eng ; 51(5): 1002-1013, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36469168

RESUMEN

Continuum mechanics-based finite element models of the shoulder aim to quantify the mechanical environment of the joint to aid in clinical decision-making for rotator cuff injury and disease. These models allow for the evaluation of the internal loading of the shoulder, which cannot be measured in-vivo. This study uses human cadaveric rotator cuff samples with surface tendon strain estimates, to validate a heterogeneous finite element model of the supraspinatus-infraspinatus complex during various load configurations. The computational model was considered validated when the absolute difference in average maximum principal strain for the articular and bursal sides for each load condition estimated by the model was no greater than 3% compared to that measured in the biomechanical study. The model can predict the strains for varying infraspinatus loads allowing for the study of load sharing between these two tightly coordinated tendons. The future goal is to use the modularity of this validated model to study the initiation and propagation of rotator cuff tear and other rotator cuff pathologies to ultimately improve care for rotator cuff tear patients.


Asunto(s)
Lesiones del Manguito de los Rotadores , Articulación del Hombro , Humanos , Manguito de los Rotadores , Análisis de Elementos Finitos , Fenómenos Biomecánicos
14.
Front Bioeng Biotechnol ; 10: 950839, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159686

RESUMEN

Little research has been reported on evaluating the safety of the fixation construct in cervical kyphosis correction. In this study, we proposed a principal-strain criterion to evaluate the safety of the fixation construct and validated the modeling method against a retrospective case of anterior cervical discectomy fusion (ACDF). From C2 to T2 vertebra bodies, fixation instruments were reconstructed and positioned as per postoperative computed tomography (CT) scans. Head weight (HW) and various moments estimated from isometric strength data were imposed onto the C2. The postoperative stability of non-surgical segments, deformations surrounding the screw trajectories, and contact slipping on zygapophysial joints were analyzed. The model was validated against the reality that the patient had a good fusion and deformity correction. The ACDF restricted the range of motions (ROMs) of cervical segments and lent stability to vertebra fusion, no failure was found in the finite element (FE) model of cervical vertebrae. The deformation surrounding the screw trajectories were concentrated to the lateral sides of trajectories, recommending that the shape of the anterior cervical plate conforming to the curvature of the vertebra and screws fully inserted into vertebrae reduced the deformation concentration around the screw trajectories.

15.
J Esthet Restor Dent ; 34(7): 1085-1095, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35674468

RESUMEN

OBJECTIVE: This study intended to ascertain the dimensional effects of labial bone thickness and height on the mechanobiological stimuli distribution of maxillary anterior labial bone through biomechanical analysis. MATERIAL AND METHODS: Twelve 3D finite element models of an anterior maxillary region with an implant were computer-simulated, including four levels of labial bone thicknesses (2, 1.5, 1.0, and 0.5 mm) and three levels of labial bone heights (normal, reduced by 1/3, reduced by 1/2). A 45° buccolingual oblique load of 100 N was applied to the implant restoration. RESULTS: Equivalent stress and principal strain mainly concentrated on crestal bone around the implant neck. The maximum equivalent stress in bone decreased as labial bone mass decreased, while the maximum principal strain and the displacement of dental implant increased as labial bone mass decreased. No significant difference of these three indicators was observed, when the labial bone thickness changed in the range of 2.0-1.0 mm with sufficient labial bone height. CONCLUSIONS: In terms of biomechanics, the thickness of labial bone plate was recommended ≥1 mm. Sufficient labial bone height was warranted to prevent the stability of the implants from being seriously affected. The labial bone heights were more effective than thicknesses on the mechanobiological stimuli response of the dental implant-bone system. CLINICAL SIGNIFICANCE: For this 3D finite element study, the biomechanical responses under different bone mass conditions were explored, in order to predict the process of bone remodeling and provide valid clinical recommendations for the decision-making process regarding the choices of tissue augmentation for some specific esthetic implantation cases for future clinical applications.


Asunto(s)
Implantes Dentales , Fenómenos Biomecánicos , Simulación por Computador , Análisis del Estrés Dental , Análisis de Elementos Finitos , Maxilar/anatomía & histología , Estrés Mecánico
16.
Materials (Basel) ; 15(11)2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35683213

RESUMEN

The paper proposed an alternative optical metrology to classical methods (strain gauge measurements and numerical simulation) for strain determination on printed circuit board (PCBs) due to thermal loads. The digital image correlation (DIC) technique was employed to record the strain distribution in some particular areas of the PCB. A thermal load was applied using a heating chamber, and the measurements were performed at four different temperature steps (25 °C, 50 °C, 85 °C and 120 °C). An increase in the principal strains with temperature was observed. For validation, the principal strains on the PCB obtained with DIC were compared with the values from gauge strain measurements and numerical simulation. The conclusions highlighted that DIC represents a technique with potential for strain measurement caused by thermal deformation, with the advantages of full field measurement, less preparation of the surface and good accuracy.

17.
Materials (Basel) ; 15(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35269052

RESUMEN

In this study, the influence of curvilinear fibre reinforcement on the load-carrying capacity of additively manufactured continuous carbon fibre reinforced necked double shear lugs was investigated. A curvilinear fibre placement is descriptive of layers in extrusion-based continuous-fibre-reinforced additive manufacturing with carbon fibres aligned in the directions of principal stress. The alternating layered fibre trajectories follow the maximum and minimum principal stress directions due to axial tension loading derived from two-dimensional finite element analysis (FEA). The digital image correlation was utilised to monitor the strain distribution during the application of tensile load. The 2D FEA data and the tensile test results obtained were comparable, the part strength and the linear approximation of stiffness data variability were minimal and well within the acceptable range. Nondestructive fractography was performed by utilising computed tomography (CT) to analyse the fractured regions of the tensile-tested lug. The CT scanned images aided in deducing the failure phenomenon in layered lugs; process-induced voids and fibre layup undulation were identified as the cause for lug failure.

18.
J Biomech ; 135: 111036, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35320756

RESUMEN

Tissue-level brain responses to sport-related head impacts may be stronger predictors of brain injury risk than head kinematics alone. Despite the importance of accurate impact response estimation, the influence of head morphological variations has not been properly considered due to the limited sizes and shapes of existing computational head models. In this study, we developed 101 subject-specific finite element (FE) head-brain models based on CT scans and a parametric modeling approach to estimate tissue-level brain impact responses (maximal principal strain, MPS) under three head impact conditions. Principal component analysis (PCA) was used to quantify the geometric variations, with statistically significant PCs then selected to predict MPS using a stepwise linear regression model. High adjusted R2 values (0.6-0.9) were achieved in the regression model, suggesting a good model predictability. Brain volume explained the largest variance of 51.3%, and it was highly correlated with MPS, indicating a significant size effect on brain impact responses. This is the first modeling study to systematically consider the influence of morphological variations in the inner skull and scalp on brain tissue impact response.


Asunto(s)
Lesiones Encefálicas , Cabeza , Adolescente , Fenómenos Biomecánicos , Encéfalo , Análisis de Elementos Finitos , Cabeza/fisiología , Humanos , Cráneo , Adulto Joven
19.
Med Phys ; 49(3): 1759-1775, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35045186

RESUMEN

BACKGROUND: Noninvasive vascular strain imaging under conventional line-by-line scanning has a low frame rate and lateral resolution and depends on the coordinate system. It is thus affected by high deformations due to image decorrelation between frames. PURPOSE: To develop an ultrafast time-ensemble regularized tissue-Doppler optical-flow principal strain estimator for aorta deformability assessment in a long-axis view. METHODS: This approach alleviated the impact of lateral resolution using image compounding and that of the coordinate system dependency using principal strain. Accuracy and feasibility were evaluated in two aorta-mimicking phantoms first, and then in four age-matched individuals with either a normal aorta or a pathological ascending thoracic aorta aneurysm (TAA). RESULTS: Instantaneous aortic maximum and minimum principal strain maps and regional accumulated strains during each cardiac cycle were estimated at systolic and diastolic phases to characterize the normal aorta and TAA. In vitro, principal strain results matched sonomicrometry measurements. In vivo, a significant decrease in maximum and minimum principal strains was observed in TAA cases, whose range was respectively 7.9 ± 6.4% and 8.2 ± 2.6% smaller than in normal aortas. CONCLUSIONS: The proposed principal strain estimator showed an ability to potentially assess TAA deformability, which may provide an individualized and reliable evaluation method for TAA rupture risk assessment.


Asunto(s)
Aorta Torácica , Aneurisma de la Aorta Torácica , Aorta/diagnóstico por imagen , Aorta Torácica/diagnóstico por imagen , Aneurisma de la Aorta Torácica/diagnóstico por imagen , Estudios de Factibilidad , Humanos , Ultrasonografía
20.
J Mech Behav Biomed Mater ; 125: 104902, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34717119

RESUMEN

The study concerns mechanical behaviour of a living human abdominal wall. A better mechanical understanding of a human abdominal wall and recognition of its material properties is required to find mechanically compatible surgical meshes to significantly improve the treatment of ventral hernias. A non-invasive methodology, based on in vivo optical measurements is proposed to determine strains of abdominal wall corresponding to a known intraabdominal pressure. The measurement is performed in the course of a standard procedure of peritoneal dialysis. A dedicated experimental stand is designed for the experiment. The photogrammetric technique is employed to recover the three-dimensional surface geometry of the anterior abdominal wall at the initial and terminal instants of the dialysis. This corresponds to two deformation states, before and after filling the abdominal cavity with dialysis fluid. The study provides information on strain fields of living human abdominal wall. The inquiry is aimed at principal strains and their directions, observed at the level from -10% to 17%. The intraabdominal pressure related to the amount of introduced dialysis fluid measured within the medical procedure covers the range 11-18.5 cmH2O. The methodology leads to the deformation state of the abdominal wall according to the corresponding loading conditions. Therefore, the study is a step towards an identification of mechanical properties of living human abdominal wall.


Asunto(s)
Pared Abdominal , Hernia Ventral , Humanos , Mallas Quirúrgicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA