Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Vet Comp Oncol ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179510

RESUMEN

A comprehensive understanding of the tumour immune microenvironment (TIME) is essential for advancing precision medicine and identifying potential therapeutic targets. This study focused on canine urothelial carcinoma (cUC) recognised for its high sensitivity to cyclooxygenase (COX) inhibitors. Using immunohistochemical techniques, we quantified the infiltration of seven immune cell populations within cUC tumour tissue to identify clinicopathological features that characterise the TIME in cUC. Our results revealed several notable factors, including the significantly higher levels of CD3+ T cells and CD8+ T cells within tumour cell nests in cases treated with preoperative COX inhibitors compared to untreated cases. Based on the immunohistochemistry data, we further performed a comparative analysis using publicly available RNA-seq data from untreated cUC tissues (n = 29) and normal bladder tissues (n = 4) to explore the link between COX-prostanoid pathways and the immune response to tumours. We observed increased expression of COX-2, microsomal prostaglandin E2 synthase-1 (mPGES-1) and mPGES-2 in cUC tissues. However, only mPGES-2 showed a negative correlation with the cytotoxic T-cell (CTL)-related genes CD8A and granzyme B (GZMB). In addition, a broader analysis of solid tumours using The Cancer Genome Atlas (TCGA) database revealed similar patterns in several human tumours, suggesting a common mechanism in dogs and humans. Our results suggest that the COX-2/mPGES-2 pathway may act as a cross-species tumour-intrinsic factor that weakens anti-tumour immunity, and that COX inhibitors may convert TIME from a 'cold tumour' to a 'hot tumour' state by counteracting COX/mPGES-2-mediated immunosuppression.

2.
Front Immunol ; 15: 1409458, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015572

RESUMEN

Current treatments of eosinophilic chronic rhinosinusitis (ECRS) involve corticosteroids with various adverse effects and costly therapies such as dupilumab, highlighting the need for improved treatments. However, because of the lack of a proper mouse ECRS model that recapitulates human ECRS, molecular mechanisms underlying this disease are incompletely understood. ECRS is often associated with aspirin-induced asthma, suggesting that dysregulation of lipid mediators in the nasal mucosa may underlie ECRS pathology. We herein found that the expression of microsomal PGE synthase-1 (encoded by PTGES) was significantly lower in the nasal mucosa of ECRS patients than that of non-ECRS subjects. Histological, transcriptional, and lipidomics analyses of Ptges-deficient mice revealed that defective PGE2 biosynthesis facilitated eosinophil recruitment into the nasal mucosa, elevated expression of type-2 cytokines and chemokines, and increased pro-allergic and decreased anti-allergic lipid mediators following challenges with Aspergillus protease and ovalbumin. A nasal spray containing agonists for the PGE2 receptor EP2 or EP4, including omidenepag isopropyl that has been clinically used for treatment of glaucoma, markedly reduced intranasal eosinophil infiltration in Ptges-deficient mice. These results suggest that the present model using Ptges-deficient mice is more relevant to human ECRS than are previously reported models and that eosinophilic inflammation in the nasal mucosa can be efficiently blocked by activation of the PGE2-EP2 pathway. Furthermore, our findings suggest that drug repositioning of omidenepag isopropyl may be useful for treatment of patients with ECRS.


Asunto(s)
Dinoprostona , Eosinofilia , Ratones Noqueados , Mucosa Nasal , Subtipo EP2 de Receptores de Prostaglandina E , Rinitis , Sinusitis , Animales , Sinusitis/tratamiento farmacológico , Sinusitis/metabolismo , Sinusitis/inmunología , Humanos , Ratones , Rinitis/tratamiento farmacológico , Rinitis/metabolismo , Rinitis/inmunología , Dinoprostona/metabolismo , Mucosa Nasal/metabolismo , Mucosa Nasal/inmunología , Mucosa Nasal/efectos de los fármacos , Eosinofilia/tratamiento farmacológico , Eosinofilia/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Modelos Animales de Enfermedad , Masculino , Transducción de Señal/efectos de los fármacos , Prostaglandina-E Sintasas/genética , Prostaglandina-E Sintasas/metabolismo , Eosinófilos/inmunología , Eosinófilos/metabolismo , Eosinófilos/efectos de los fármacos , Femenino , Enfermedad Crónica , Ratones Endogámicos C57BL , Rinosinusitis
3.
Artículo en Inglés | MEDLINE | ID: mdl-38291895

RESUMEN

OBJECTIVE: Our objective was to test the hypothesis, in a double-blind, placebo-controlled study that vipoglanstat, an inhibitor of microsomal prostaglandin E synthase-1 (mPGES-1) which decreases prostaglandin E2 (PGE2) and increases prostacyclin biosynthesis, improves RP. METHODS: Patients with systemic sclerosis (SSc) and ≥7 RP attacks during the last screening week prior to a baseline visit were randomised to four weeks treatment with vipoglanstat 120 mg or placebo. A daily electronic diary captured RP attacks (duration and pain) and Raynaud's Condition Score, with change in RP attacks/week as primary end point. Cold challenge assessments were performed at baseline and end of treatment. Exploratory endpoints included patients' and physicians' global impression of change, Assessment of Scleroderma-associated Raynaud's Phenomenon questionnaire, mPGES-1 activity, and urinary excretion of arachidonic acid metabolites. RESULTS: Sixty-nine subjects received vipoglanstat (n = 33) or placebo (n = 36). Mean weekly number of RP attacks (baseline; vipoglanstat 14.4[SD 6.7], placebo 18.2[12.6]) decreased by 3.4[95% CI -5.8;-1.0] and 4.2[-6.5;-2.0] attacks per week (p= 0.628) respectively. All patient reported outcomes improved, with no difference between the groups. Mean change in recovery of peripheral blood flow after cold challenge did not differ between the study groups. Vipoglanstat fully inhibited mPGES-1, resulting in 57% reduction of PGE2 and 50% increase of prostacyclin metabolites in urine. Vipoglanstat was safe and well tolerated. CONCLUSION: Although vipoglanstat was safe, and well tolerated in a dose achieving full inhibition of mPGES-1, it was ineffective in SSc-related RP. Further development and evaluation of vipoglanstat will therefore be in other diseases where mPGES-1 plays a pathogenetic role.

4.
Exp Biol Med (Maywood) ; 248(9): 811-819, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37515545

RESUMEN

The cyclooxygenase (COX)/prostaglandin E2 (PGE2) signaling pathway has emerged as a critical target for anti-inflammatory therapeutic development in neurological diseases. However, medical use of COX inhibitors in the treatment of various neurological disorders has been limited due to well-documented cardiovascular and cerebrovascular complications. It has been widely proposed that modulation of downstream microsomal prostaglandin E synthase-1 (mPGES-1) enzyme may provide more specificity for inhibiting PGE2-elicited neuroinflammation. Heightened levels of mPGES-1 have been detected in a variety of brain diseases such as epilepsy, stroke, glioma, and neurodegenerative diseases. Subsequently, elevated levels of PGE2, the enzymatic product of mPGES-1, have been demonstrated to modulate a multitude of deleterious effects. In epilepsy, PGE2 participates in retrograde signaling to augment glutamate release at the synapse leading to neuronal death. The excitotoxic demise of neurons incites the activation of microglia, which can become overactive upon further stimulation by PGE2. A selective mPGES-1 inhibitor was able to reduce gliosis and the expression of proinflammatory cytokines in the hippocampus following status epilepticus. A similar mechanism has also been observed in stroke, where the overactivation of microglia by PGE2 upregulated the expression and secretion of proinflammatory cytokines. This intense activation of neuroinflammatory processes triggered the secondary injury commonly observed in stroke, and blockade of mPGES-1 reduced infarction size and edema, suppressed induction of proinflammatory cytokines, and improved post-stroke well-being and cognition. Furthermore, elevated levels of PGE2 have been shown to intensify the proliferation of glioma cells, mediate P-glycoprotein expression at the blood-brain barrier (BBB) and facilitate breakdown of the BBB. For these reasons, targeting mPGES-1, the central and inducible enzyme of the COX cascade, may provide a more specific therapeutic strategy for treating neuroinflammatory diseases.


Asunto(s)
Epilepsia , Glioma , Accidente Cerebrovascular , Humanos , Prostaglandina-E Sintasas/metabolismo , Enfermedades Neuroinflamatorias , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Epilepsia/tratamiento farmacológico , Citocinas
5.
Biochem Cell Biol ; 101(6): 501-512, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37358009

RESUMEN

Insensitivity and resistance to 5-fluorouracil (5FU) remain as major hurdles for effective and durable 5FU-based chemotherapy in colorectal cancer (CRC) patients. In this study, we identified prostaglandin E synthase (PTGES)/prostaglandin E2 (PGE2) axis as an important regulator for 5FU sensitivity in CRC cells. We found that PTGES expression and PGE2 production are elevated in CRC cells in comparison to normal colorectal epithelial cells. Depletion of PTGES significantly enhanced the inhibitory effect of 5FU on CRC cell viability that was fully reverted by exogenous supplement of PGE2. Inhibition of PTGES enzymatic function, by either inducing loss-of-function mutant or treatment with selective inhibitors, phenocopied the PTGES depletion in terms of 5FU sensitization. Mechanistically, PTGES/PGE2 axis modulates glycolysis in CRC cells, thereby regulating the 5FU sensitivity. Importantly, high PTGES expression is correlated with poor prognosis in 5FU-treated CRC patients. Thus, our study defines PTGES/PGE2 axis as a novel therapeutic target for enhancing the efficacy of 5FU-based chemotherapy in CRC.


Asunto(s)
Neoplasias Colorrectales , Fluorouracilo , Humanos , Fluorouracilo/farmacología , Dinoprostona/metabolismo , Dinoprostona/farmacología , Dinoprostona/uso terapéutico , Prostaglandina-E Sintasas , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos
6.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36769370

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) affects a substantial proportion of the general population and is even more prevalent in obese and diabetic patients. NAFLD, and particularly the more advanced manifestation of the disease, nonalcoholic steatohepatitis (NASH), increases the risk for both liver-related and cardiovascular morbidity. The pathogenesis of NAFLD is complex and multifactorial, with many molecular pathways implicated. Emerging data suggest that microsomal prostaglandin E synthase-1 and -2 might participate in the development and progression of NAFLD. It also appears that targeting these enzymes might represent a novel therapeutic approach for NAFLD. In the present review, we discuss the association between microsomal prostaglandin E synthase-1 and -2 and NAFLD.


Asunto(s)
Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Prostaglandina-E Sintasas/metabolismo , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Neoplasias Hepáticas/metabolismo
7.
Inflamm Res ; 72(4): 683-701, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36745211

RESUMEN

Epilepsy is a group of chronic neurological disorders that have diverse etiologies but are commonly characterized by spontaneous seizures and behavioral comorbidities. Although the mechanisms underlying the epileptic seizures mostly remain poorly understood and the causes often can be idiopathic, a considerable portion of cases are known as acquired epilepsy. This form of epilepsy is typically associated with prior neurological insults, which lead to the initiation and progression of epileptogenesis, eventually resulting in unprovoked seizures. A convergence of evidence in the past two decades suggests that inflammation within the brain may be a major contributing factor to acquired epileptogenesis. As evidenced in mounting preclinical and human studies, neuroinflammatory processes, such as activation and proliferation of microglia and astrocytes, elevated production of pro-inflammatory cytokines and chemokines, blood-brain barrier breakdown, and upregulation of inflammatory signaling pathways, are commonly observed after seizure-precipitating events. An increased knowledge of these neuroinflammatory processes in the epileptic brain has led to a growing list of inflammatory mediators that can be leveraged as potential targets for new therapies of epilepsy and/or biomarkers that may provide valued information for the diagnosis and prognosis of the otherwise unpredictable seizures. In this review, we mainly focus on the most recent progress in understanding the roles of these inflammatory molecules in acquired epilepsy and highlight the emerging evidence supporting their candidacy as novel molecular targets for new pharmacotherapies of acquired epilepsy and the associated behavioral deficits.


Asunto(s)
Epilepsia , Humanos , Convulsiones/complicaciones , Convulsiones/metabolismo , Encéfalo/metabolismo , Inflamación/metabolismo , Astrocitos/metabolismo
8.
DNA Cell Biol ; 42(3): 107-112, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36720071

RESUMEN

We recently demonstrated that prostaglandin production in brain endothelial cells is both necessary and sufficient for the generation of fever during systemic immune challenge. I here discuss this finding in light of the previous literature and point to some unresolved issues.


Asunto(s)
Células Endoteliales , Fiebre , Humanos , Células Endoteliales/metabolismo , Ciclooxigenasa 2/metabolismo , Encéfalo/metabolismo , Prostaglandinas , Lipopolisacáridos
9.
Mol Brain ; 16(1): 14, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36694204

RESUMEN

Status epilepticus (SE) in humans is characterized by prolonged convulsive seizures that are generalized and often difficult to control. The current antiseizure drugs (ASDs) aim to stop seizures quickly enough to prevent the SE-induced brain inflammation, injury, and long-term sequelae. However, sole reliance on acute therapies is imprudent because prompt treatment may not always be possible under certain circumstances. The pathophysiological mechanisms underlying the devastating consequences of SE are presumably associated with neuroinflammatory reactions, where prostaglandin E2 (PGE2) plays a pivotal role. As the terminal synthase for pathogenic PGE2, the microsomal prostaglandin E synthase-1 (mPGES-1) is rapidly and robustly induced by prolonged seizures. Congenital deletion of mPGES-1 in mice is neuroprotective and blunts gliosis following chemoconvulsant seizures, suggesting the feasibility of mPGES-1 as a potential antiepileptic target. Herein, we investigated the effects of a dual species mPGES-1 inhibitor in a mouse pilocarpine model of SE. Treatment with the mPGES-1 inhibitor in mice after SE that was terminated by diazepam, a fast-acting benzodiazepine, time-dependently abolished the SE-induced PGE2 within the brain. Its negligible effects on cyclooxygenases, the enzymes responsible for the initial step of PGE2 biosynthesis, validated its specificity to mPGES-1. Post-SE inhibition of mPGES-1 also blunted proinflammatory cytokines and reactive gliosis in the hippocampus and broadly prevented neuronal damage in a number of brain areas. Thus, pharmacological inhibition of mPGES-1 by small-molecule inhibitors might provide an adjunctive strategy that can be implemented hours after SE, together with first-line ASDs, to reduce SE-provoked brain inflammation and injury.


Asunto(s)
Encefalitis , Estado Epiléptico , Animales , Ratones , Dinoprostona , Modelos Animales de Enfermedad , Encefalitis/genética , Encefalitis/metabolismo , Encefalitis/prevención & control , Gliosis/complicaciones , Gliosis/tratamiento farmacológico , Prostaglandina-E Sintasas , Convulsiones/tratamiento farmacológico , Convulsiones/genética , Convulsiones/metabolismo , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/genética , Estado Epiléptico/metabolismo
10.
Commun Integr Biol ; 16(1): 2166237, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36644132

RESUMEN

The initiation of fever has been a matter of controversy. Based on observations of little or no induction of prostaglandin synthesizing enzymes in the brain during the first phase of fever it was suggested that fever is initiated by prostaglandin released into the circulation from cells in the liver and lungs. Here we show in the mouse that prostaglandin synthesis is rapidly induced in the brain after immune challenge. These data are consistent with our recent findings in functional experiments that prostaglandin production in brain endothelial cells is both necessary and sufficient for the generation of all phases of fever.

11.
Front Cell Neurosci ; 17: 1279059, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38164437

RESUMEN

Drug-induced taste disorders are a serious problem in an aging society. This study investigated the mechanisms underlying taste disturbances induced by diclofenac, a non-steroidal anti-inflammatory drug that reduces pain and inflammation by inhibiting the synthesis of prostaglandins by cyclooxygenase enzymes (COX-1 and COX-2). RT-PCR analyses demonstrated the expression of genes encoding arachidonic acid pathway components such as COX-1, COX-2 and prostaglandin synthases in a subset of mouse taste bud cells. Double-staining immunohistochemistry revealed that COX-1 and cytosolic prostaglandin E synthase (cPGES) were co-expressed with taste receptor type-1 member-3 (T1R3), a sweet/umami receptor component, or gustducin, a bitter/sweet/umami-related G protein, in a subset of taste bud cells. Long-term administration of diclofenac reduced the expression of genes encoding COX-1, gustducin and cPGES in mouse taste buds and suppressed both the behavioral and taste nerve responses to sweet and umami taste stimuli but not to other tastants. Furthermore, diclofenac also suppressed the responses of both mouse and human sweet taste receptors (T1R2/T1R3, expressed in HEK293 cells) to sweet taste stimuli. These results suggest that diclofenac may suppress the activation of sweet and umami taste cells acutely via a direct action on T1R2/T1R3 and chronically via inhibition of the COX/prostaglandin synthase pathway inducing down-regulated expression of sweet/umami responsive components. This dual inhibition mechanism may underlie diclofenac-induced taste alterations in humans.

12.
Proc Natl Acad Sci U S A ; 119(43): e2122562119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252026

RESUMEN

Fever is known to be elicited by prostaglandin E2 acting on the brain, but its origin has remained disputed. We show in mice that selective deletion of prostaglandin synthesis in brain endothelial cells, but not in neural cells or myeloid cells, abolished fever induced by intravenous administration of lipopolysaccharide and that selective rescue of prostaglandin synthesis in brain endothelial cells reinstated fever. These data demonstrate that prostaglandin production in brain endothelial cells is both necessary and sufficient for eliciting fever.


Asunto(s)
Dinoprostona , Células Endoteliales , Fiebre , Animales , Ratones , Encéfalo/citología , Encéfalo/metabolismo , Dinoprostona/metabolismo , Células Endoteliales/metabolismo , Fiebre/inducido químicamente , Lipopolisacáridos
13.
Int Immunopharmacol ; 110: 108954, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35820363

RESUMEN

BACKGROUND: Immune-infiltration was positively relationship with overall survival in lung adenocarcinoma (LUAD). Nevertheless, the potential clinical value of PTGES3, especially in terms of prognosis and tumor immune-infiltration in LUAD had not been fully elucidated. METHODS: Original data available from TCGA and GEO databases and integrated via R3.6.3. Kaplan-Meier and Cox regression methods were used to examine the effect of PTGES3 expression in overall survival, and nomogram was performed to illustrate the correlation between the PTGES3 expression and the risk of LUAD. The associate between PTGES3 and cancer immune characteristics were analyzed via the TISIDB databases. Western blot and RT-qPCR were used to analyze PTGES3 expression in the clinical lung adenocarcinoma tissue samples or non-small cell lung cancer cell lines. RESULTS: PTGES3 mRNA and protein expression were significantly elevated in LUAD compared with normal lung tissues. Up-regulated PTGES3 was significantly associated with pathologic stage and TM stage. Kaplan-Meier survival analysis and subgroup analysis showed that up-regulated PTGES3 was associated with a worse overall survival of LUAD (HR = 1.71 (1.27-2.31), p < 0.001). Multivariate Cox analysis showed that high PTGES3 expression was an independent factor affecting overall survival (HR = 1.64 (1.14-2.37), p < 0.001). GO and KEGG analysis revealed that the cell cycle, regulation of DNA replication, and regulation of innate immune response were enriched. A positive correlation between PTGES3 expression and immune infiltrating levels of Th2 cells was found. CONCLUSION: PTGES3 may play an important role in the cell cycle and as an independent predictive prognostic biomarker correlates with immune infiltrates in lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/metabolismo , Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/patología , Pronóstico
14.
Biochim Biophys Acta Gene Regul Mech ; 1865(3): 194813, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35417776

RESUMEN

Prostaglandin E2 (PGE2) in cancer and inflammatory diseases is a key mediator of disease progression. Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used to inhibit the expression of PGE2 by depressing cyclooxygenase (COX) in inflammatory treatments. However, the inhibition to COXs may cause serious side effects. Thus, it is urgent to develop new anti-inflammatory drugs aiming new targets to inhibit PGE2 production. Microsomal prostaglandin E synthase 1 (mPGES-1) catalyzes the final step of PGE2 biosynthesis. Therefore, the selective inhibition of mPGES-1 has become a promising strategy in the treatments of cancer and inflammatory diseases. Our previous studies confirmed that sinomenine (SIN) is a specific mPGES-1 inhibitor. However, the exact mechanism by which SIN inhibits mPGES-1 remains unknown. This study aimed to explain the regulation effect of SIN to mPGES-1 gene expression by its DNA methylation induction effect. We found that the demethylating agent 5-azacytidine (5-AzaC) reversed the inhibitory effect of SIN to mPGES-1. Besides, SIN selectively increased the methylation level of the promoter region in the mPGES-1 gene while the pretreatment of 5-AzaC suppressed this effect. The results also shows that pretreatment with SIN increased the methylation level of specific GCG sites in the promoter region of mPGES-1. This specific methylation site may become a new biomarker for predicting and diagnosing RA and cancer with high expression of mPGES-1. Also, our research provides new ideas and solutions for clinical diagnosis and treatment of diseases related to mPGES-1 and for targeted methylation strategy in drug development.


Asunto(s)
Antiinflamatorios , Dinoprostona , Dinoprostona/metabolismo , Metilación , Morfinanos , Regiones Promotoras Genéticas , Prostaglandina-E Sintasas/genética , Prostaglandina-E Sintasas/metabolismo
15.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35328395

RESUMEN

Animal studies suggest that pain-related-molecule upregulation in degenerated intervertebral discs (IVDs) potentially leads to low back pain (LBP). We hypothesized that IVD mechanical stress and axial loading contribute to discogenic LBP's pathomechanism. This study aimed to elucidate the relationships among the clinical findings, radiographical findings, and pain-related-molecule expression in human degenerated IVDs. We harvested degenerated-IVD samples from 35 patients during spinal interbody fusion surgery. Pain-related molecules including tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-6, calcitonin gene-related peptide (CGRP), microsomal prostaglandin E synthase-1 (mPGES1), and nerve growth factor (NGF) were determined. We also recorded preoperative clinical findings including body mass index (BMI), Oswestry Disability Index (ODI), and radiographical findings including the vacuum phenomenon (VP) and spinal instability. Furthermore, we compared pain-related-molecule expression between the VP (-) and (+) groups. BMI was significantly correlated with the ODI, CGRP, and mPGES-1 levels. In the VP (+) group, mPGES-1 levels were significantly higher than in the VP (-) group. Additionally, CGRP and mPGES-1 were significantly correlated. Axial loading and mechanical stress correlated with CGRP and mPGES-1 expression and not with inflammatory cytokine or NGF expression. Therefore, axial loading and mechanical stress upregulate CGRP and mPGES-1 in human degenerated IVDs, potentially leading to chronic discogenic LBP.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Dolor de la Región Lumbar , Animales , Índice de Masa Corporal , Péptido Relacionado con Gen de Calcitonina/metabolismo , Humanos , Interleucina-6/metabolismo , Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Dolor de la Región Lumbar/etiología , Factor de Crecimiento Nervioso/metabolismo , Vacio
16.
Inflamm Regen ; 42(1): 1, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983695

RESUMEN

BACKGROUND: Microsomal prostaglandin E synthase-1 (mPGES-1) is a key enzyme that acts downstream of cyclooxygenase and plays a major role in inflammation by converting prostaglandin (PG) H2 to PGE2. The present study investigated the effect of genetic deletion of mPGES-1 on the development of immunologic responses to experimental colitis induced by dextran sodium sulfate (DSS), a well-established model of inflammatory bowel disease (IBD). METHODS: Colitis was induced in mice lacking mPGES-1 (mPGES-1-/- mice) and wild-type (WT) mice by administering DSS for 7 days. Colitis was assessed by body weight loss, diarrhea, fecal bleeding, and histological features. The colonic expression of mPGES-1 was determined by real-time PCR, western blotting, and immunohistochemistry. The impact of mPGES-1 deficiency on T cell immunity was determined by flow cytometry and T cell depletion in vivo. RESULTS: After administration of DSS, mPGES-1-/- mice exhibited more severe weight loss, diarrhea, and fecal bleeding than WT mice. Histological analysis further showed significant exacerbation of colonic inflammation in mPGES-1-/- mice. In WT mice, the colonic expression of mPGES-1 was highly induced on both mRNA and protein levels and colonic PGE2 increased significantly after DSS administration. Additionally, mPGES-1 protein was localized in the colonic mucosal epithelium and infiltrated inflammatory cells in underlying connective tissues and the lamina propria. The abnormalities consistent with colitis in mPGES-1-/- mice were associated with higher expression of colonic T-helper (Th)17 and Th1 cytokines, including interleukin 17A and interferon-γ. Furthermore, lack of mPGES-1 increased the numbers of Th17 and Th1 cells in the lamina propria mononuclear cells within the colon, even though the number of suppressive regulatory T cells also increased. CD4+ T cell depletion effectively reduced symptoms of colitis as well as colonic expression of Th17 and Th1 cytokines in mPGES-1-/- mice, suggesting the requirement of CD4+ T cells in the exacerbation of DSS-induced colitis under mPGES-1 deficiency. CONCLUSIONS: These results demonstrate that mPGES-1 is the main enzyme responsible for colonic PGE2 production and deficiency of mPGES-1 facilitates the development of colitis by affecting the development of colonic T cell-mediated immunity. mPGES-1 might therefore impact both the intestinal inflammation and T cell-mediated immunity associated with IBD.

17.
J Extracell Vesicles ; 10(12): e12143, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34596365

RESUMEN

Intercellular communication plays an essential role in lung cancer (LC). One of the major players in cell-cell-communication is small extracellular vesicles (sEV). SEV trigger various biological responses by transporting cellular cargo to target cells. One essential sEV component are microRNAs (miRs), whose transport has recently attracted increasing research interest. We report that prostaglandin E2 (PGE2 ), a key inflammatory lipid mediator, specifically induces the sorting of miR-574-5p in sEV of A549 and 2106T cells. We found that sEV-derived miR-574-5p activates Toll-like receptors (TLR) 7/8, thereby decreasing PGE2 -levels. In contrast, intracellular miR-574-5p induces PGE2 -biosynthesis. Consequently, the combination of intracellular and sEV-derived miR-574-5p controls PGE2 -levels via a feedback loop. This was only observed in adeno- but not in squamous cell carcinoma, indicating a cell-specific response to sEV-derived miRs, which might be due to unique tetraspanin compositions. Hence, we describe a novel function of miR-574-5p unique to adenocarcinoma. Intracellular miR-574-5p induces PGE2 and thus the secretion of sEV-derived miR-574-5p, which in turn decreases PGE2 -biosynthesis in recipient cells.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Vesículas Extracelulares/metabolismo , Neoplasias Pulmonares/genética , Receptor Toll-Like 7/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/patología , Transfección
18.
Prostaglandins Other Lipid Mediat ; 156: 106580, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34252545

RESUMEN

Using a wild yam (Dioscorea japonica), we previously found novel anti-inflammatory and anti-carcinogenic effects via the downregulation of cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase (mPGES)-1. One of the substances in wild yam is a steroidal saponin, diosgenin. We demonstrated that diosgenin suppressed COX-2 in human non-small-cell lung carcinoma A549 cells via nuclear factor-kappa B (NF-κB) translocation and the effects were reversed by a glucocorticoid receptor antagonist, RU486. In lipopolysaccharide (LPS)-induced mouse liver injury, COX-2 and mPGES-1 were induced and localized in sinusoidal macrophages and endothelial cells; however, diosgenin administration significantly suppressed Ptgs2 and Ptges expression and decreased COX-2 and mPGES-1 immunopositive cells in the sinusoids. Multiple immunohistochemical analyses showed that diosgenin had an effect on COX-2 and mPGES-1, particularly in the macrophages. Thus, we showed that diosgenin downregulated COX-2 and mPGES-1 via the glucocorticoid receptor and suppressed COX-2 and mPGES-1 in the macrophages of LPS-induced acute mouse liver injury.


Asunto(s)
Prostaglandina-E Sintasas
19.
Genomics ; 113(5): 3128-3140, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34245829

RESUMEN

The ductus arteriosus (DA) connects the fetal pulmonary artery and aorta, diverting placentally oxygenated blood from the developing lungs to the systemic circulation. The DA constricts in response to increases in oxygen (O2) with the first breaths, resulting in functional DA closure, with anatomic closure occurring within the first days of life. Failure of DA closure results in persistent patent ductus arteriosus (PDA), a common complication of extreme preterm birth. The DA's response to O2, though modulated by the endothelium, is intrinsic to the DA smooth muscle cells (DASMC). DA constriction is mediated by mitochondrial-derived reactive oxygen species, which increase in proportion to arterial partial pressure of oxygen (PaO2). The resulting redox changes inhibit voltage-gated potassium channels (Kv) leading to cell depolarization, calcium influx and DASMC constriction. To date, there has not been an unbiased assessment of the human DA O2-sensors using transcriptomics, nor are there known molecular mechanisms which characterize DA closure. DASMCs were isolated from DAs obtained from 10 term infants at the time of congenital heart surgery. Cells were purified by flow cytometry, negatively sorting using CD90 and CD31 to eliminate fibroblasts or endothelial cells, respectively. The purity of the DASMC population was confirmed by positive staining for α-smooth muscle actin, smoothelin B and caldesmon. Cells were grown for 96 h in hypoxia (2.5% O2) or normoxia (19% O2) and confocal imaging with Cal-520 was used to determine oxygen responsiveness. An oxygen-induced increase in intracellular calcium of 18.1% ± 4.4% and SMC constriction (-27% ± 1.5% shortening) occurred in all cell lines within five minutes. RNA sequencing of the cells grown in hypoxia and normoxia revealed significant regulation of 1344 genes (corrected p < 0.05). We examined these genes using Gene Ontology (GO). This unbiased assessment of altered gene expression indicated significant enrichment of the following GOterms: mitochondria, cellular respiration and transcription. The top regulated biologic process was generation of precursor metabolites and energy. The top regulated cellular component was mitochondrial matrix. The top regulated molecular function was transcription coactivator activity. Multiple members of the NADH-ubiquinone oxidoreductase (NDUF) family are upregulated in human DASMC (hDASMC) following normoxia. Several of our differentially regulated transcripts are encoded by genes that have been associated with genetic syndromes that have an increased incidence of PDA (Crebb binding protein and Histone Acetyltransferase P300). This first examination of the effects of O2 on human DA transcriptomics supports a putative role for mitochondria as oxygen sensors.


Asunto(s)
Conducto Arterioso Permeable , Conducto Arterial , Nacimiento Prematuro , Conducto Arterial/metabolismo , Conducto Arterioso Permeable/etiología , Conducto Arterioso Permeable/metabolismo , Células Endoteliales/metabolismo , Humanos , Recién Nacido , Mitocondrias/genética , Miocitos del Músculo Liso/metabolismo , Oxígeno/metabolismo , Oxígeno/farmacología , Nacimiento Prematuro/metabolismo , Transcriptoma , Vasoconstricción/fisiología
20.
Prostaglandins Other Lipid Mediat ; 154: 106552, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33930567

RESUMEN

Prostaglandin E synthases (PGESs) convert cyclooxygenase (COX)-derived prostaglandin H2 (PGH2) into prostaglandin E2 (PGE2) and comprise at least three types of structurally and biologically distinct enzymes. Two of these, namely microsomal prostaglandin E synthase-1 (mPGES-1) and mPGES-2, are membrane-bound enzymes. mPGES-1 is an inflammation-inducible enzyme that converts PGH2 into PGE2. mPGES-2 is a bifunctional enzyme that generally forms a complex with haem in the presence of glutathione. This enzyme can metabolise PGH2 into malondialdehyde and can produce PGE2 after its separation from haem. In this review, we discuss the role of PGESs, particularly mPGES-1 and mPGES-2, in the pathogenesis of liver diseases. A better understanding of the roles of PGESs in liver disease may aid in the development of treatments for patients with liver diseases.


Asunto(s)
Prostaglandina-E Sintasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA