Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.729
Filtrar
1.
J Virol ; : e0143524, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39360826

RESUMEN

The respiratory syncytial virus (RSV) matrix (M) protein plays an important role in infection as it can interact with viral components as well as the host cell actin microfilaments. The M-actin interaction may play a role in facilitating the transportation of virion components to the apical surface, where RSV is released. We show that M protein's association with actin is facilitated by palladin, an actin-binding protein. Cells were infected with RSV or transfected to express full-length M as a green fluorescent protein (GFP)-tagged protein, followed by removal of nuclear and cytosolic proteins to enrich for cytoskeleton and its associated proteins. M protein was present in inclusion bodies tethered to microfilaments in infected cells. In transfected cells, GFP-M was presented close to microfilaments, without association, suggesting the possible involvement of an additional protein in this interaction. As palladin can bind to proteins that also bind actin, we investigated its interaction with M. Cells were co-transfected to express GFP-M and palladin as an mCherry fluorescent-tagged protein, followed by cytoskeleton enrichment. M and palladin were observed to colocalize towards microfilaments, suggesting that palladin is involved in the M-actin interaction. In co-immunoprecipitation studies, M was found to associate with two isoforms of palladin, of 140 and 37 kDa. Interestingly, siRNA downregulation of palladin resulted in reduced titer of released RSV, while cell associated RSV titer increased, suggesting a role for palladin in virus release. Together, our data show that the M-actin interaction mediated by palladin is important for RSV budding and release.IMPORTANCERespiratory syncytial virus is responsible for severe lower respiratory tract infections in young children under 5 years old, the elderly, and the immunosuppressed. The interaction of the respiratory syncytial virus matrix protein with the host actin cytoskeleton is important in infection but has not been investigated in depth. In this study, we show that the respiratory syncytial virus matrix protein associates with actin microfilaments and the actin-binding protein palladin, suggesting a role for palladin in respiratory syncytial virus release. This study provides new insight into the role of the actin cytoskeleton in respiratory syncytial virus infection, a key host-RSV interaction in assembly. Understanding the mechanism by which the RSV M protein and actin interact will ultimately provide a basis for the development of therapeutics targeted at RSV infections.

2.
Structure ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39368461

RESUMEN

Protein-protein interactions (PPIs) play pivotal roles in directing T cell fate. One key player is the non-receptor tyrosine protein kinase Lck that helps to transduce T cell activation signals. Lck is mediated by other proteins via interactions that are inadequately understood. Here, we use the deep learning method AF2Complex to predict PPIs involving Lck, by screening it against ∼1,000 proteins implicated in immune responses, followed by extensive structural modeling for selected interactions. Remarkably, we describe how Lck may be specifically targeted by a palmitoyltransferase using a phosphotyrosine motif. We uncover "hotspot" interactions between Lck and the tyrosine phosphatase CD45, leading to a significant conformational shift of Lck for activation. Lastly, we present intriguing interactions between the phosphotyrosine-binding domain of Lck and the cytoplasmic tail of the immune checkpoint LAG3 and propose a molecular mechanism for its inhibitory role. Together, this multifaceted study provides valuable insights into T cell regulation and signaling.

3.
Biochem J ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39370942

RESUMEN

Myc proteins are transcription factors crucial for cell proliferation. They have a C-terminal domain that mediates Max and DNA binding, and an N-terminal disordered region culminating in the transactivation domain (TAD). The TAD participates in many protein-protein interactions, notably with kinases that promote stability (Aurora-A) or degradation (ERK1, GSK3) via the ubiquitin-proteasome system. We probed the structure, dynamics and interactions of N-myc TAD using nuclear magnetic resonance (NMR) spectroscopy following its complete backbone assignment. Chemical shift analysis revealed that N-myc has two regions with clear helical propensity: Trp77-Glu86 and Ala122-Glu132. These regions also have more restricted ps-ns motions than the rest of the TAD, and, along with the phosphodegron, have comparatively high transverse (R2) 15N relaxation rates, indicative of slower timescale dynamics and/or chemical exchange. Collectively these features suggest differential propensities for structure and interaction, either internal or with binding partners, across the TAD. Solution studies on the interaction between N-myc and Aurora-A revealed a previously uncharacterised binding site. The specificity and kinetics of sequential phosphorylation of N-myc by ERK1 and GSK3 were characterised using NMR and resulted in no significant structural changes outside the phosphodegron. When the phosphodegron was doubly phosphorylated, N-myc formed a robust interaction with the Fbxw7-Skp1 complex, but mapping the interaction by NMR suggests a more extensive interface. Our study provides foundational insights into N-myc TAD dynamics and a backbone assignment that will underpin future work on the structure, dynamics, interactions and regulatory post-translational modifications of this key oncoprotein.

4.
Talanta ; 282: 126938, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39357407

RESUMEN

Biomolecular interaction acts a pivotal part in understanding the mechanisms underlying the development of Alzheimer's disease (AD). Herein, we built a biosensing platform to explore the interaction between gelsolin (GSN) and different ß-amyloid protein 1-42 (Aß1-42) species, including Aß1-42 monomer (m-Aß), Aß1-42 oligomers with both low and high levels of aggregation (LLo-Aß and HLo-Aß) via dual polarization interferometry (DPI). Real-time molecular interaction process and kinetic analysis showed that m-Aß had the strongest affinity and specificity with GSN compared with LLo-Aß and HLo-Aß. The impact of GSN on inhibiting aggregation of Aß1-42 and solubilizing Aß1-42 aggregates was evaluated by circular dichroism (CD) spectroscopy. The maintenance of random coil structure of m-Aß and the reversal of ß-sheet structure in HLo-Aß were observed, demonstrating the beneficial effects of GSN on preventing Aß from aggregation. In addition, the structure of m-Aß/GSN complex was analyzed in detail by molecular dynamics (MD) simulation and molecular docking. The specific binding sites and crucial intermolecular forces were identified, which are believed to stabilize m-Aß in its soluble state and to inhibit the fibrilization of Aß1-42. Combined theoretical simulations and experiment results, we speculate that the success of GSN sequestration mechanism and the balance of GSN levels in cerebrospinal fluid and plasma of AD subjects may contribute to a delay in AD progression. This research not only unveils the molecular basis of the interaction between GSN and Aß1-42, but also provides clues to understanding the crucial functions of GSN in AD and drives the development of AD drugs and therapeutic approaches.

5.
Clin Genitourin Cancer ; 22(6): 102213, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39357460

RESUMEN

Prostate cancer stands as the most common cancer in men, and research into its genesis and spread is still vital. The idea that the human genome's transcriptional activity is more widespread than previously thought has received empirical validation through the application of deep sequencing-based transcriptome profiling techniques. An assortment of noncoding transcripts longer than 200 nucleotides is referred to as long noncoding RNAs (lncRNAs). Transposable elements comprise a substantial portion of the human genome, with projections indicating that their prospective proportion may reach 90%. Considering they can interact directly with proteins, alter the transcriptional activity of coding genes, and perhaps encode proteins, lncRNAs possess the capability to regulate a variety of biological processes. LncRNAs have been recognized to be key factors in the development of several types of human cancers, including lung, colorectal, and breast cancers, alongside other pathological processes that have a significant impact on the diagnosis and survival of cancer individuals. Furthermore, lncRNAs' discernible expression patterns throughout various cancer scenarios significantly raise their potential as biomarkers and therapeutic targets. We conducted an extensive analysis of the prevailing academic literature on the interaction between lncRNAs and prostate cancer in order to present a solid foundation for potential future studies on the prevention and intervention of prostate cancer. The discourse additionally expands on lncRNAs' prospective applications as targets and biomarkers for medical therapies.

6.
BMC Microbiol ; 24(1): 336, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256659

RESUMEN

BACKGROUND: Fusarium wilt is a devastating soil-borne fungal disease of tomato across the world. Conventional method of disease prevention including usage of common pesticides and methods like soil solarisation are usually ineffective in the treatment of this disease. Therefore, there is an urgent need to identify virulence related genes in the pathogen which can be targeted for fungicide development. RESULTS: Pathogenicity testing and phylogenetic classification of the pathogen used in this study confirmed it as Fusarium oxysporum f. sp. lycopersici (Fol) strain. A recent discovery indicates that EF1α, a protein with conserved structural similarity across several fungal genera, has a role in the pathogenicity of Magnaporthe oryzae, the rice blast fungus. Therefore, in this study we have done structural and functional classification of EF1α to understand its role in pathogenicity of Fol. The protein model of Fol EF1α was created using the template crystal structure of the yeast elongation factor complex EEF1A:EEF1BA which showed maximum similarity with the target protein. Using the STRING online database, the interactive information among the hub genes of EF1α was identified and the protein-protein interaction network was recognized using the Cytoscape software. On combining the results of functional analysis, MCODE, CytoNCA and CytoHubba 4 hub genes including Fol EF1α were selected for further investigation. The three interactors of Fol EF1α showed maximum similarity with homologous proteins found in Neurospora crassa complexed with the known fungicide, cycloheximide. Through the sequence similarity and PDB database analysis, homologs of Fol EF1α were found: EEF1A:EEF1BA in complex with GDPNP in yeast and EF1α in complex with GDP in Sulfolobus solfataricus. The STITCH database analysis suggested that EF1α and its other interacting partners interact with guanosine diphosphate (GDPNP) and guanosine triphosphate (GTP). CONCLUSIONS: Our study offers a framework for recognition of several hub genes network in Fusarium wilt that can be used as novel targets for fungicide development. The involvement of EF1α in nucleocytoplasmic transport pathway suggests that it plays role in GTP binding and thus apart from its use as a biomarker, it may be further exploited as an effective target for fungicide development. Since, the three other proteins that were found to be tightly associated Fol EF1α have shown maximum similarity with homologous proteins of Neurospora crassa that form complex with fungicide- Cycloheximide. Therefore, we suggest that cycloheximide can also be used against Fusarium wilt disease in tomato. The active site cavity of Fol EF1α can also be determined for computational screening of fungicides using the homologous proteins observed in yeast and Sulfolobus solfataricus. On this basis, we also suggest that the other closely associated genes that have been identified through STITCH analysis, they can also be targeted for fungicide development.


Asunto(s)
Proteínas Fúngicas , Fusarium , Factor 1 de Elongación Peptídica , Filogenia , Enfermedades de las Plantas , Fusarium/genética , Fusarium/metabolismo , Fusarium/patogenicidad , Factor 1 de Elongación Peptídica/genética , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Solanum lycopersicum/microbiología , Mapas de Interacción de Proteínas , Reacción en Cadena de la Polimerasa , Virulencia/genética , Modelos Moleculares
7.
Future Med Chem ; 16(17): 1801-1820, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39263789

RESUMEN

Protein-protein interactions (PPIs) play pivotal roles in biological processes and are closely linked with human diseases. Research on small molecule inhibitors targeting PPIs provides valuable insights and guidance for novel drug development. The cGAS-STING pathway plays a crucial role in regulating human innate immunity and is implicated in various pathological conditions. Therefore, modulators of the cGAS-STING pathway have garnered extensive attention. Given that this pathway involves multiple PPIs, modulating PPIs associated with the cGAS-STING pathway has emerged as a promising strategy for modulating this pathway. In this review, we summarize an overview of recent advancements in medicinal chemistry insights into cGAS-STING PPI-based modulators and propose alternative strategies for further drug discovery based on the cGAS-STING pathway.


[Box: see text].


Asunto(s)
Proteínas de la Membrana , Nucleotidiltransferasas , Transducción de Señal , Humanos , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Química Farmacéutica , Unión Proteica , Descubrimiento de Drogas , Inmunidad Innata/efectos de los fármacos
8.
FEBS Lett ; 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39245791

RESUMEN

NFIB is a transcription factor of the Nuclear Factor One (NFI) family that is essential for embryonic development. Post-translational control of NFIB or its upstream regulators have not been well characterized. Here, we show that PIN1 binds NFIB in a phosphorylation-dependent manner, via its WW domain. PIN1 interacts with the well-conserved N-terminal domains of all NFIs. Moreover, PIN1 attenuates the transcriptional activity of NFIB; this attenuation requires substrate binding by PIN1 but not its isomerase activity. Paradoxically, we found stabilization of NFIB by PIN1. We propose that PIN1 represses NFIB function not by regulating its abundance but by inducing a conformational change. These results identify NFIB as a novel PIN1 target and posit a role for PIN1 in post-translational regulation of NFIB and other NFIs.

9.
bioRxiv ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39257813

RESUMEN

Caveolin is a monotopic integral membrane protein, widely expressed in metazoa and responsible for constructing enigmatic membrane invaginations known as caveolae. Recently, the high-resolution structure of a purified human caveolin assembly, the CAV1-8S complex, revealed a unique organization of 11 protomers arranged in a tightly packed, radially symmetric spiral disc. One face and the outer rim of this disc are highly hydrophobic, suggesting that the complex incorporates into membranes by displacing hundreds of lipids from one leaflet. The feasibility of this unique molecular architecture and its biophysical and functional consequences are currently unknown. Using Langmuir film balance measurements, we find that CAV1-8S is highly surface active and intercalates into lipid monolayers. Molecular simulations of biomimetic bilayers support this 'leaflet replacement' model and reveal that while CAV1-8S effectively displaces phospholipids from one bilayer leaflet, it accumulates 40-70 cholesterol molecules into a disordered monolayer between the complex and its distal lipid leaflet. We find that CAV1-8S preferentially associates with positively curved membrane surfaces due to its influence on the conformations of distal leaflet lipids, and that these effects laterally sort lipids of the distal leaflet. Large-scale simulations of multiple caveolin assemblies confirmed their association with large, positively curved membrane morphologies, consistent with the shape of caveolae. Further, association with curved membranes regulates the exposure of caveolin residues implicated in protein-protein interactions. Altogether, the unique structure of CAV1-8S imparts unusual modes of membrane interaction with implications for membrane organization, morphology, and physiology.

10.
Plant J ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259840

RESUMEN

Trichomes, which originate from the epidermal cell of aerial organs, provide plants with defense and secretion functions. Although numerous genes have been implicated in trichome development, the molecular mechanisms underlying trichome cell formation in plants remain incompletely understood. Here, we using genome-wide association study (GWAS) across 1037 diverse accessions in upland cotton (Gossypium hirsutum) to identify three loci associated with leaf pubescence (hair) amount, located on chromosome A06 (LPA1), A08 (LPA2) and A11 (LPA3), respectively. GhHD1, a previously characterized candidate gene, was identified on LPA1 and encodes an HD-Zip transcription factor. For LPA2 and LPA3, we identified two candidate genes, GhGIR1 and GhGIR2, both encoding proteins with WD40 and RING domains that act as inhibitors of leaf hair formation. Expression analysis revealed that GhHD1 was predominantly expressed in hairy accessions, whereas GhGIR1 and GhGIR2 were expressed in hairless accessions. Silencing GhHD1 or overexpressing GhGIR1 in hairy accessions induced in a hairless phenotype, whereas silencing GhGIR2 in hairless accessions resulted in a hairy phenotype. We also demonstrated that GhHD1 interact with both GhGIR1 and GhGIR2, and GhGIR1 can interact with GhGIR2. Further investigation indicated that GhHD1 functions as a transcriptional activator, binding to the promoters of the GhGIR1 and GhGIR2 to active their expression, whereas GhGIR1 and GhGIR2 can suppress the transcriptional activation of GhHD1. Our findings shed light on the intricate regulatory network involving GhHD1, GhGIR1 and GhGIR2 in the initiation and development of plant epidermal hairs in cotton.

11.
Biophys Chem ; 314: 107317, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39236424

RESUMEN

Hydrogen sulfide (H2S) has emerged as a significant signaling molecule involved in various physiological processes, including vasodilation, neurotransmission, and cytoprotection. Its interactions with biomolecules are critical to understand its roles in health and disease. Recent advances in biophysical characterization techniques have shed light on the complex interactions of H2S with proteins, nucleic acids, and lipids. Proteins are primary targets for H2S, which can modify cysteine residues through S-sulfhydration, impacting protein function and signaling pathways. Advanced spectroscopic techniques, such as mass spectrometry and NMR, have enabled the identification of specific sulfhydrated sites and provided insights into the structural and functional consequences of these modifications. Nucleic acids also interact with H2S, although this area is less explored compared to proteins. Recent studies have demonstrated that H2S can induce modifications in nucleic acids, affecting gene expression and stability. Techniques like gel electrophoresis and fluorescence spectroscopy have been utilized to investigate these interactions, revealing that H2S can protect DNA from oxidative damage and modulate RNA stability and function. Lipids, being integral components of cell membranes, interact with H2S, influencing membrane fluidity and signaling. Biophysical techniques such as electron paramagnetic resonance (EPR) and fluorescence microscopy have elucidated the effects of H2S on lipid membranes. These studies have shown that H2S can alter lipid packing and dynamics, which may impact membrane-associated signaling pathways and cellular responses to stress. In the current work we have integrated this with key scientific explainations to provide a comprehensive review.


Asunto(s)
Sulfuro de Hidrógeno , Transducción de Señal , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/química , Sulfuro de Hidrógeno/farmacología , Humanos , Animales , Proteínas/química , Proteínas/metabolismo , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Espectroscopía de Resonancia por Spin del Electrón
12.
Plant Sci ; 349: 112242, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39244094

RESUMEN

Gibberellic acids (GAs) are a group of endogenous phytohormones that play important roles in plant growth and development. SLENDER RICE (SLR) serves as a vital component of the DELLA gene family, which plays an irreplaceable role in regulating plant flowering and height, as well as stress responses. SLR gene has not been reported in mango, and its function is unknown. In present study, two DELLA subfamily genes MiSLR1 and MiSLR2 were identified from mango. MiSLR1 and MiSLR2 were highly expressed in the stems of the juvenile stage, but were expressed at a low level in flower buds and flowers. Gibberellin treatment could up-regulate the expression of MiSLR1 and MiSLR2 genes, but gibberellin biosynthesis inhibitor prohexadione-calcium (Pro-Ca) and paclobutrazol (PAC) treatments significantly down-regulated the expression of MiSLR1, while MiSLR2 was up-regulated. The expression levels of MiSLR1 and MiSLR2 were up-regulated under both salt and drought treatments. Overexpression of MiSLR1 and MiSLR2 genes significantly resulted early flowering in transgenic Arabidopsis and significantly up-regulated the expression levels of endogenous flower-related genes, such as SUPPRESSOR OF CONSTANS1 (SOC1), APETALA1 (AP1), and FRUITFULL (FUL). Interestingly, MiSLR1 significantly reduced the height of transgenic plants, while MiSLR2 gene increased. Overexpression of MiSLR1 and MiSLR2 increased seed germination rate, root length and survival rate of transgenic plants under salt and drought stress. Physiological and biochemical detection showed that the contents of proline (Pro) and superoxide dismutase (SOD) were significantly increased, while the contents of malondialdehyde (MDA) and H2O2 were significantly decreased. Additionally, protein interaction analysis revealed that MiSLR1 and MiSLR2 interacted with several flowering-related and GA-related proteins. The interaction between MiSLR with MiGF14 and MiSOC1 proteins was found for the first time. Taken together, the data showed that MiSLR1 and MiSLR2 in transgenic Arabidopsis both regulated the flowering time and plant height, while also acting as positive regulators of abiotic stress responses.

13.
ACS Infect Dis ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39303064

RESUMEN

Here we used native mass spectrometry (native MS) to probe a SARS-CoV protease, PLpro, which plays critical roles in coronavirus disease by affecting viral protein production and antagonizing host antiviral responses. Ultraviolet photodissociation (UVPD) and variable temperature electrospray ionization (vT ESI) were used to localize binding sites of PLpro inhibitors and revealed the stabilizing effects of inhibitors on protein tertiary structure. We compared PLpro from SARS-CoV-1 and SARS-CoV-2 in terms of inhibitor and ISG15 interactions to discern possible differences in protease function. A PLpro mutant lacking a single cysteine was used to localize inhibitor binding, and thermodynamic measurements revealed that inhibitor PR-619 stabilized the folded PLpro structure. These results will inform further development of PLpro as a therapeutic target against SARS-CoV-2 and other emerging coronaviruses.

14.
Biotechnol Adv ; 77: 108457, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39343083

RESUMEN

Conditional protein-protein interactions enable dynamic regulation of cellular activity and are an attractive approach to probe native protein interactions, improve metabolic engineering of microbial factories, and develop smart therapeutics. Conditional protein-protein interactions have been engineered to respond to various chemical, light, and nucleic acid-based stimuli. These interactions have been applied to assemble protein fragments, build protein scaffolds, and spatially organize proteins in many microbial and higher-order hosts. To foster the development of novel conditional protein-protein interactions that respond to new inputs or can be utilized in alternative settings, we provide an overview of the process of designing new engineered protein interactions while showcasing many recently developed computational tools that may accelerate protein engineering in this space.

15.
Front Plant Sci ; 15: 1380969, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220006

RESUMEN

Introduction: Equipped with a photosynthetic apparatus that uses the energy of solar radiation to fuel biosynthesis of organic compounds, chloroplasts are the metabolic factories of mature leaf cells. The first steps of energy conversion are catalyzed by a collection of protein complexes, which can dynamically interact with each other for optimizing metabolic efficiency under changing environmental conditions. Materials and methods: For a deeper insight into the organization of protein assemblies and their roles in chloroplast adaption to changing environmental conditions, an improved complexome profiling protocol employing a MS-cleavable cross-linker is used to stabilize labile protein assemblies during the organelle isolation procedure. Results and discussion: Changes in protein:protein interaction patterns of chloroplast proteins in response to four different light intensities are reported. High molecular mass assemblies of central chloroplast electron transfer chain components as well as the PSII repair machinery react to different light intensities. In addition, the chloroplast encoded RNA-polymerase complex was found to migrate at a molecular mass of ~8 MDa, well above its previously reported molecular mass. Complexome profiling data produced during the course of this study can be interrogated by interested readers via a web-based online resource (https://complexomemap.de/projectsinteraction-chloroplasts).

16.
J Proteome Res ; 23(10): 4589-4600, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39287128

RESUMEN

α-N-Methylation (Nα-methylation), catalyzed by protein N-terminal methyltransferases (NTMTs), constitutes a crucial post-translational modification involving the transfer of a methyl group from S-adenosyl-l-methionine (SAM) to the Nα-terminal amino group of substrate proteins. NTMT1/2 are known to methylate canonical Nα sequences, such as X-P-K/R. With over 300 potential human protein substrates, only a small fraction has been validated, and even less is known about the functions of Nα-methylation. This study delves into the characterizations of protein arginine deiminase 1 (PAD1) as a substrate of NTMT1. By employing biochemical and cellular assays, we demonstrated NTMT1-mediated Nα-methylation of PAD1, leading to an increase in protein half-life and the modulation of protein-protein interactions in HEK293T cells. The methylation of PAD1 appears nonessential to its enzymatic activity or cellular localization. Proteomic studies revealed differential protein interactions between unmethylated and Nα-methylated PAD1, suggesting a regulatory role for Nα-methylation in modulating PAD1's protein-protein interactions. These findings shed light on the intricate molecular mechanisms governing PAD1 function and expand our knowledge of Nα-methylation in regulating protein function.


Asunto(s)
Procesamiento Proteico-Postraduccional , Humanos , Células HEK293 , Metilación , Estabilidad Proteica , Arginina Deiminasa Proteína-Tipo 1/metabolismo , Arginina Deiminasa Proteína-Tipo 1/genética , Especificidad por Sustrato , Proteómica/métodos , Desiminasas de la Arginina Proteica/metabolismo , Desiminasas de la Arginina Proteica/genética , Metiltransferasas/metabolismo , Metiltransferasas/química , Metiltransferasas/genética , Unión Proteica , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/química , Semivida
17.
Mol Cell ; 84(19): 3790-3809.e8, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39303721

RESUMEN

mRNAs interact with RNA-binding proteins (RBPs) throughout their processing and maturation. While efforts have assigned RBPs to RNA substrates, less exploration has leveraged protein-protein interactions (PPIs) to study proteins in mRNA life-cycle stages. We generated an RNA-aware, RBP-centric PPI map across the mRNA life cycle in human cells by immunopurification-mass spectrometry (IP-MS) of ∼100 endogenous RBPs with and without RNase, augmented by size exclusion chromatography-mass spectrometry (SEC-MS). We identify 8,742 known and 20,802 unreported interactions between 1,125 proteins and determine that 73% of the IP-MS-identified interactions are RNA regulated. Our interactome links many proteins, some with unknown functions, to specific mRNA life-cycle stages, with nearly half associated with multiple stages. We demonstrate the value of this resource by characterizing the splicing and export functions of enhancer of rudimentary homolog (ERH), and by showing that small nuclear ribonucleoprotein U5 subunit 200 (SNRNP200) interacts with stress granule proteins and binds cytoplasmic RNA differently during stress.


Asunto(s)
Mapas de Interacción de Proteínas , ARN Mensajero , Proteínas de Unión al ARN , Humanos , ARN Mensajero/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Unión Proteica , Células HeLa , Mapeo de Interacción de Proteínas , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Células HEK293 , Espectrometría de Masas , Empalme del ARN
18.
J Hazard Mater ; 480: 135828, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39321477

RESUMEN

Heavy metal stress threatens plant growth and productivity. In this study, we investigated the effects of CuSO4 and ZnSO4 toxicity on sorghum seedlings, focusing on their impact on biomass, germination rates, growth parameters, antioxidant enzyme activities, gene expression profiles, and stress resistance mechanisms. As a result, eight sorghum superoxide dismutase (SOD) genes were identified, and their evolutionary relationships with cis-acting regulatory elements and their expressional patterns were evaluated. Integrating transcriptomic data revealed a key SOD member SbCSD1 that might contribute to plant abiotic stress resistance. Furthermore, SbCSD1 overexpression enhanced plant tolerance to CuSO4 and ZnSO4 stress by regulating SOD activity and interacting with copper chaperone for superoxide dismutase 1 (CCS1) in the plant nucleus and cytoplasm. Meanwhile, silencing CCS1 in SbCSD1-overexpressing plants revealed that SbCSD1 and CCS1 synergistically contribute to Cu stress tolerance. By integrating transcriptomic and genetic data, herein we provide novel insights into the orchestration of plant responses to heavy-metal stress in sorghum by SOD.

19.
Biochem Soc Trans ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324605

RESUMEN

Protein arginine methylation is a versatile post-translational protein modification that has notable cellular roles such as transcriptional activation or repression, cell signaling, cell cycle regulation, and DNA damage response. However, in spite of their extensive significance in the biological system, there is still a significant gap in understanding of the entire function of the protein arginine methyltransferases (PRMTs). It has been well-established that PRMTs form homo-oligomeric complexes to be catalytically active, but in recent years, several studies have showcased evidence that different members of PRMTs can have cross-talk with one another to form hetero-oligomeric complexes. Additionally, these heteromeric complexes have distinct roles separate from their homomeric counterparts. Here, we review and highlight the discovery of the heterodimerization of PRMTs and discuss the biological implications of these hetero-oligomeric interactions.

20.
Foods ; 13(18)2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39335944

RESUMEN

This study investigates the impact of substituting lactose with maltodextrin in milk-tea formulations to enhance their physicochemical and structural properties. Various lactose-to-maltodextrin ratios (100:0, 90:10, 85:15, 80:20, 75:25) were evaluated in both post-pasteurized and concentrated skim milk-tea (SM-T) and whole milk-tea (WM-T) formulations. Concentration significantly improved the zeta potential, pH, and browning index in both SM-T and WM-T compared to pasteurization. L:M ratios of 90:10 and 75:25 in WM-T and 90:10 and 80:20 in SM-T showed higher phenolic preservation after concentration due to structural changes resulting from the addition of maltodextrin and water removal during prolonged heating. The preservation effect of phenolic components in both WM-T and SM-T is governed by many mechanisms including pH stabilization, zeta potential modulation, protein interactions, complex formation, and encapsulation effects. Therefore, optimizing milk-tea stability and phenolic preservation through L:M ratio adjustments provides a promising approach for enhancing milk-tea properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA