Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
BMC Cardiovasc Disord ; 24(1): 470, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39223509

RESUMEN

BACKGROUND: Glucose fluctuations may be involved in the pathophysiological process of cardiomyocyte apoptosis, but the exact mechanism remains elusive. This study focused on exploring the mechanisms related to glucose fluctuation-induced cardiomyocyte apoptosis. METHODS: Diabetic rats established via an injection of streptozotocin were randomized to five groups: the controlled diabetic (CD) group, the uncontrolled diabetic (UD) group, the glucose fluctuated diabetic (GFD) group, the GFD group rats with the injection of 0.9% sodium chloride (NaCl) (GFD + NaCl) and the GFD group rats with the injection of N-acetyl-L-cysteine (NAC) (GFD + NAC). Twelve weeks later, cardiac function and apoptosis related protein expressions were tested. Proteomic analysis was performed to further analyze the differential protein expression pattern of CD and GFD. RESULTS: The left ventricular ejection fraction levels and fractional shortening levels were decreased in the GFD group, compared with those in the CD and UD groups. Positive cells tested by DAB-TUNEL were increased in the GFD group, compared with those in the CD group. The expression of Bcl-2 was decreased, but the expressions of Bax, cleaved caspase-3 and cleaved caspase-9 were increased in response to glucose fluctuations. Compared with CD, there were 527 upregulated and 152 downregulated proteins in GFD group. Txnip was one of the differentially expressed proteins related to oxidative stress response. The Txnip expression was increased in the GFD group, while the Akt phosphorylation level was decreased. The interaction between Txnip and Akt was enhanced when blood glucose fluctuated. Moreover, the application of NAC partially reversed glucose fluctuations-induced cardiomyocyte apoptosis. CONCLUSIONS: Glucose fluctuations lead to cardiomyocyte apoptosis by up-regulating Txnip expression and enhancing Txnip-Akt interaction.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Apoptosis , Glucemia , Proteínas Portadoras , Diabetes Mellitus Experimental , Miocitos Cardíacos , Proteínas Proto-Oncogénicas c-akt , Ratas Sprague-Dawley , Transducción de Señal , Animales , Miocitos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Apoptosis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Diabetes Mellitus Experimental/metabolismo , Masculino , Proteínas Portadoras/metabolismo , Glucemia/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Fosforilación , Función Ventricular Izquierda/efectos de los fármacos , Tiorredoxinas/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/fisiopatología , Cardiomiopatías Diabéticas/etiología , Proteómica , Ratas , Mapas de Interacción de Proteínas , Proteínas de Ciclo Celular
2.
Microorganisms ; 12(9)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39338507

RESUMEN

Desulfovibrio, resident gut sulfate-reducing bacteria (SRB), are found to overgrow in diseases such as inflammatory bowel disease and Parkinson's disease. They activate a pro-inflammatory response, suggesting that Desulfovibrio may play a causal role in inflammation. Class I phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway regulates key events in the inflammatory response to infection. Dysfunctional PI3K/Akt signaling is linked to numerous diseases. Bacterial-induced PI3K/Akt pathway may be activated downstream of toll-like receptor (TLR) signaling. Here, we tested the hypothesis that Desulfovibrio vulgaris (DSV) may induce tumor necrosis factor alpha (TNF-α) and inducible nitric oxide synthase (iNOS) expression via PI3K/Akt in a TLR 2-dependent manner. RAW 264.7 macrophages were infected with DSV, and protein expression of p-Akt, p-p70S6K, p-NF-κB, p-IkB, TNF-α, and iNOS was measured. We found that DSV induced these proteins in a time-dependent manner. Heat-killed and live DSV, but not bacterial culture supernatant or a probiotic Lactobacillus plantarum, significantly caused PI3K/AKT/TNF/iNOS activation. LY294002, a PI3K/Akt signaling inhibitor, and TL2-C29, a TLR 2 antagonist, inhibited DSV-induced PI3K/AKT pathway. Thus, DSV induces pro-inflammatory TNF-α and iNOS via PI3K/Akt pathway in a TLR 2-dependent manner. Taken together, our study identifies a novel mechanism by which SRB such as Desulfovibrio may trigger inflammation in diseases associated with SRB overgrowth.

3.
J Zhejiang Univ Sci B ; 25(7): 541-556, 2024 Jul 15.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-39011675

RESUMEN

The protein kinase B (Akt) pathway can regulate the growth, proliferation, and metabolism of tumor cells and stem cells through the activation of multiple downstream target genes, thus affecting the development and treatment of a range of diseases. Thioesterase superfamily member 4 (THEM4), a member of the thioesterase superfamily, is one of the Akt kinase-binding proteins. Some studies on the mechanism of cancers and other diseases have shown that THEM4 binds to Akt to regulate its phosphorylation. Initially, THEM4 was considered an endogenous inhibitor of Akt, which can inhibit the phosphorylation of Akt in diseases such as lung cancer, pancreatic cancer, and liver cancer, but subsequently, THEM4 was shown to promote the proliferation of tumor cells by positively regulating Akt activity in breast cancer and nasopharyngeal carcinoma, which contradicts previous findings. Considering these two distinct views, this review summarizes the important roles of THEM4 in the Akt pathway, focusing on THEM4 as an Akt-binding protein and its regulatory relationship with Akt phosphorylation in various diseases, especially cancer. This work provides a better understanding of the roles of THEM4 combined with Akt in the treatment of diseases.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosforilación , Neoplasias/metabolismo , Proliferación Celular , Animales , Neoplasias de la Mama/metabolismo , Femenino , Proteínas Adaptadoras Transductoras de Señales
4.
IUBMB Life ; 76(9): 632-646, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38738523

RESUMEN

Protein kinase B (AKT1) is a serine/threonine kinase that regulates fundamental cellular processes, including cell survival, proliferation, and metabolism. AKT1 activity is controlled by two regulatory phosphorylation sites (Thr308, Ser473) that stimulate a downstream signaling cascade through phosphorylation of many target proteins. At either or both regulatory sites, hyperphosphorylation is associated with poor survival outcomes in many human cancers. Our previous biochemical and chemoproteomic studies showed that the phosphorylated forms of AKT1 have differential selectivity toward peptide substrates. Here, we investigated AKT1-dependent activity in human cells, using a cell-penetrating peptide (transactivator of transcription, TAT) to deliver inactive AKT1 or active phospho-variants to cells. We used enzyme engineering and genetic code expansion relying on a phosphoseryl-transfer RNA (tRNA) synthetase (SepRS) and tRNASep pair to produce TAT-tagged AKT1 with programmed phosphorylation at one or both key regulatory sites. We found that all TAT-tagged AKT1 variants were efficiently delivered into human embryonic kidney (HEK 293T) cells and that only the phosphorylated AKT1 (pAKT1) variants stimulated downstream signaling. All TAT-pAKT1 variants induced glycogen synthase kinase (GSK)-3α phosphorylation, as well as phosphorylation of ribosomal protein S6 at Ser240/244, demonstrating stimulation of downstream AKT1 signaling. Fascinatingly, only the AKT1 variants phosphorylated at S473 (TAT-pAKT1S473 or TAT-pAKT1T308,S473) were able to increase phospho-GSK-3ß levels. Although each TAT-pAKT1 variant significantly stimulated cell proliferation, cells transduced with TAT-pAKT1T308 grew significantly faster than with the other pAKT1 variants. The data demonstrate differential activity of the AKT1 phospho-forms in modulating downstream signaling and proliferation in human cells.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Fosforilación , Células HEK293 , Especificidad por Sustrato , Transducción de Señal , Péptidos de Penetración Celular/metabolismo , Péptidos de Penetración Celular/genética
5.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1017-1027, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621909

RESUMEN

Network pharmacology and animal and cell experiments were employed to explore the mechanism of astragaloside Ⅳ(AST Ⅳ) combined with Panax notoginseng saponins(PNS) in regulating angiogenesis to treat cerebral ischemia. The method of network pharmacology was used to predict the possible mechanisms of AST Ⅳ and PNS in treating cerebral ischemia by mediating angiogenesis. In vivo experiment: SD rats were randomized into sham, model, and AST Ⅳ(10 mg·kg~(-1)) + PNS(25 mg·kg~(-1)) groups, and the model of cerebral ischemia was established with middle cerebral artery occlusion(MCAO) method. AST Ⅳ and PNS were administered by gavage twice a day. the Longa method was employed to measure the neurological deficits. The brain tissue was stained with hematoxylin-eosin(HE) to reveal the pathological damage. Immunohistochemical assay was employed to measure the expression of von Willebrand factor(vWF), and immunofluorescence assay to measure the expression of vascular endothelial growth factor A(VEGFA). Western blot was employed to determine the protein levels of vascular endothelial growth factor receptor 2(VEGFR2), VEGFA, phosphorylated phosphatidylinositol 3-kinase(p-PI3K), and phosphorylated protein kinase B(p-AKT) in the brain tissue. In vitro experiment: the primary generation of rat brain microvascular endothelial cells(rBEMCs) was cultured and identified. The third-generation rBMECs were assigned into control, model, AST Ⅳ(50 µmol·L~(-1)) + PNS(30 µmol·L~(-1)), LY294002(PI3K/AKT signaling pathway inhibitor), 740Y-P(PI3K/AKT signaling pathway agonist), AST Ⅳ + PNS + LY294002, and AST Ⅳ + PNS + 740Y-P groups. Oxygen glucose deprivation/re-oxygenation(OGD/R) was employed to establish the cell model of cerebral ischemia-reperfusion injury. The cell counting kit-8(CCK-8) and scratch assay were employed to examine the survival and migration of rBEMCs, respectively. Matrigel was used to evaluate the tube formation from rBEMCs. The Transwell assay was employed to examine endothelial cell permeability. Western blot was employed to determine the expression of VEGFR2, VEGFA, p-PI3K, and p-AKT in rBEMCs. The results of network pharmacology analysis showed that AST Ⅳ and PNS regulated 21 targets including VEGFA and AKT1 of angiogenesis in cerebral infarction. Most of these 21 targets were involved in the PI3K/AKT signaling pathway. The in vivo experiments showed that compared with the model group, AST Ⅳ + PNS reduced the neurological deficit score(P<0.05) and the cell damage rate in the brain tissue(P<0.05), promoted the expression of vWF and VEGFA(P<0.01) and angiogenesis, and up-regulated the expression of proteins in the PI3K/AKT pathway(P<0.05, P<0.01). The in vitro experiments showed that compared with the model group, the AST Ⅳ + PNS, 740Y-P, AST Ⅳ + PNS + LY294002, and AST Ⅳ + PNS + 740Y-P improved the survival of rBEMCs after OGD/R, enhanced the migration of rBEMCs, increased the tubes formed by rBEMCs, up-regulated the expression of proteins in the PI3K/AKT pathway, and reduced endothelial cell permeability(P<0.05, P<0.01). Compared with the LY294002 group, the AST Ⅳ + PNS + LY294002 group showed increased survival rate, migration rate, and number of tubes, up-regulated expression of proteins in the PI3K/AKT pathway, and decreased endothelial cell permeability(P<0.05,P<0.01). Compared with the AST Ⅳ + PNS and 740Y-P groups, the AST Ⅳ + PNS + 740Y-P group presented increased survival rate, migration rate, and number of tubes and up-regulated expression of proteins in the PI3K/AKT pathway, and reduced endothelial cell permeability(P<0.01). This study indicates that AST Ⅳ and PNS can promote angiogenesis after cerebral ischemia by activating the PI3K/AKT signaling pathway.


Asunto(s)
Isquemia Encefálica , Panax notoginseng , Fragmentos de Péptidos , Receptores del Factor de Crecimiento Derivado de Plaquetas , Saponinas , Triterpenos , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Células Endoteliales/metabolismo , Factor de von Willebrand , Angiogénesis , Farmacología en Red , Ratas Sprague-Dawley , Saponinas/farmacología , Isquemia Encefálica/tratamiento farmacológico , Infarto Cerebral
6.
J Microbiol Biotechnol ; 34(4): 812-827, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38480001

RESUMEN

Phloroglucinol (PG) is one of the abundant isomeric benzenetriols in brown algae. Due to its polyphenolic structure, PG exhibits various biological activities. However, the impact of PG on anagen signaling and oxidative stress in human dermal papilla cells (HDPCs) is unknown. In this study, we investigated the therapeutic potential of PG for improving hair loss. A non-cytotoxic concentration of PG increased anagen-inductive genes and transcriptional activities of ß-Catenin. Since several anagen-inductive genes are regulated by ß-Catenin, further experiments were performed to elucidate the molecular mechanism by which PG upregulates anagen signaling. Various biochemical analyses revealed that PG upregulated ß-Catenin signaling without affecting the expression of Wnt. In particular, PG elevated the phosphorylation of protein kinase B (AKT), leading to an increase in the inhibitory phosphorylation of glycogen synthase kinase 3 beta (GSK3ß) at serine 9. Treatment with the selective phosphoinositide 3-kinase/AKT inhibitor, LY294002, restored the increased AKT/GSK3ß/ß-Catenin signaling and anagen-inductive proteins induced by PG. Moreover, conditioned medium from PG-treated HDPCs promoted the proliferation and migration of human epidermal keratinocytes via the AKT signaling pathway. Subsequently, we assessed the antioxidant activities of PG. PG ameliorated the elevated oxidative stress markers and improved the decreased anagen signaling in hydrogen peroxide (H2O2)-induced HDPCs. The senescence-associated ß-galactosidase staining assay also demonstrated that the antioxidant abilities of PG effectively mitigated H2O2-induced senescence. Overall, these results indicate that PG potentially enhances anagen signaling and improves oxidative stress-induced cellular damage in HDPCs. Therefore, PG can be employed as a novel therapeutic component to ameliorate hair loss symptoms.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta , Peróxido de Hidrógeno , Estrés Oxidativo , Floroglucinol , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , beta Catenina , Humanos , Floroglucinol/farmacología , Floroglucinol/análogos & derivados , Estrés Oxidativo/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Transducción de Señal/efectos de los fármacos , beta Catenina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Fosforilación/efectos de los fármacos , Folículo Piloso/efectos de los fármacos , Folículo Piloso/metabolismo , Folículo Piloso/citología , Dermis/citología , Dermis/metabolismo , Dermis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Alopecia/tratamiento farmacológico , Alopecia/metabolismo
7.
Physiol Rep ; 12(1): e15913, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38185480

RESUMEN

Heat stress (HS) induces Akt/mTOR phosphorylation and FoxO3a signaling; however, whether a prior increase in heat shock protein 72 (HSP72) expression affects intracellular signaling following eccentric exercise remains unclear. We analyzed the effects of HS pretreatment on intramuscular signaling in response to acute exercise in 10-week-old male Wistar rats (n = 24). One leg of each rat was exposed to HS and the other served as an internal control (CT). Post-HS, rats were either rested or subjected to downhill treadmill running. Intramuscular signaling responses in the red and white regions of the gastrocnemius muscle were analyzed before, immediately after, or 1 h after exercise (n = 8/group). HS significantly increased HSP72 levels in both deep red and superficial white regions. Although HS did not affect exercise-induced mTOR signaling (S6K1/ERK) responses in the red region, mTOR phosphorylation in the white region was significantly higher in CT legs than in HS legs after exercise. Thr308 phosphorylation of Akt showed region-specific alteration with a decrease in the red region and an increase in the white region immediately after downhill running. Overall, a prior increase in HSP72 expression elicits fiber type-specific changes in exercise-induced Akt and mTOR phosphorylation in rat gastrocnemius muscle.


Asunto(s)
Trastornos de Estrés por Calor , Proteínas Proto-Oncogénicas c-akt , Masculino , Ratas , Animales , Ratas Wistar , Transducción de Señal , Serina-Treonina Quinasas TOR , Proteínas del Choque Térmico HSP72 , Músculo Esquelético
8.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1006560

RESUMEN

ObjectiveTo investigate the promotional effect of astragaloside on the repair and healing of chronic non-healing wounds and its mechanism. MethodA total of 60 male SD rats were constructed with full-layer skin defect wounds on the back, and except for the control (Con) group, the rest were constructed with non-healing wounds, which were then randomly divided into the sham-operation (sham) group, the low-dose astragaloside group, the high-dose astragaloside group, the astragaloside + LY294002 [phosphatidylinositol 3-kinase (PI3K) inhibitor] group, and the astragaloside + EX527 [silencing regulatory protein 1 (SIRT1) inhibitor] group. The percentage of wound area in each group was observed on the 2nd, 4th, 6th, and 8th days after wound molding. Collagen type Ⅰ alpha 1 (COL1A1) and alpha smooth muscle actin (α-SMA) expressions in the wound tissue were detected by immunofluorescence. Hematoxylin and eosin (HE) staining was performed to determine the pathological structure of the wound. The mRNA expression of inflammatory factors in the wound was measured by real-time polymerase chain reaction (Real-time PCR), and the expression of proteins related to the SIRT1/ nuclear factor (NF)-κB and PI3K/protein kinase B (Akt) signaling pathways in the wound was tested by Western blot. ResultCompared with the sham group, the percentage of postoperative wound area of rats in both low-dose and high-dose astragaloside groups gradually decreased with time, and the efficacy of the high-dose astragaloside group was better. Compared with the Con group, the fluorescence intensity of COL1A1 in wound tissue of the sham group decreased, while the expression of α-SMA increased. The epithelial tissue was severely damaged, with an increase in the thickness, and a large number of inflammatory cells were seen in the infiltration. The mRNA expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and inducible nitric oxide synthase (iNOS) was elevated. The protein expression of NF-κB p65, p-PI3K/PI3K, and p-Akt/Akt was elevated, while SIRT1 expression was decreased (P<0.05). Compared with the sham group, the fluorescence intensity of COL1A1 and α-SMA increased after astragaloside treatment. The number of epithelial cells increased, and the thickness decreased. The inflammatory cells decreased, and the amount of collagen increased. The mRNA expression of TNF-α, IL-1β, IL-6, and iNOS was decreased, and the protein expression of NF-κB p65, p-PI3K/PI3K, and p-Akt/Akt was decreased. SIRT1 was elevated, and the effect was better in the high-dose astragaloside group (P<0.05). Compared with the high-dose astragaloside group, inhibition of the PI3K/Akt and SIRT1 pathways by LY294002 and EX527 prevented the therapeutic efficacy of astragaloside on chronic non-healing wounds. ConclusionThe topical application of astragaloside significantly promotes the healing of chronic non-healing wounds in rats, and the mechanism may be related to the activation of the PI3K/Akt pathway and the SIRT1/NF-κB pathway.

9.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1006578

RESUMEN

Cerebral ischemia/reperfusion injury (CIRI) is a complex cascade reaction process in which the blood flow and oxygen supply of brain tissue in the infarcted area recover after cerebral ischemia, resulting in secondary injury of ischemic brain tissue. At present, thrombolysis as soon as possible and restoration of cerebral blood supply are still the only strategies for the treatment of stroke, but a considerable number of patients' symptoms will be more serious after reperfusion, making patients face adverse outcomes such as neurological function injury and even death and seriously affecting the quality of life and safety of patients. Therefore, an in-depth exploration of the mechanism and treatment strategy of CIRI has important clinical significance. The phosphatidylinositol 3- kinase (PI3K)/protein kinase B (Akt) signaling pathway is one of the classic anti-apoptosis/reproductive-promoting signal transduction pathways, which is responsible for cell proliferation, growth, and differentiation. It is the key cascade signaling pathway of CIRI, located at the core site in many mechanisms such as mitochondrial disorder, apoptosis, autophagy, oxidative stress, and inflammation. It is closely related to the occurrence and development of CIRI. Traditional Chinese medicine has been used in the clinical treatment of stroke and its complications for thousands of years, and the clinical effect of traditional Chinese medicine in the prevention and treatment of CIRI has been affirmed by a large number of research results in recent years. It is further clarified that the monomers, active components, and their compound prescriptions of traditional Chinese medicine can directly or indirectly regulate the PI3K/Akt signaling pathway by virtue of the biological advantages of multi-targets, multi-components, and multi-pathways and play an overall protective role in CIRI. By analyzing the related research progress of traditional Chinese medicine in China and abroad in recent years, the authors summarized the role and mechanism of regulating the PI3K/Akt signaling pathway in the prevention and treatment of CIRI, so as to provide further theoretical basis for the study of the mechanism of clinical prevention and treatment of CIRI.

10.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1016841

RESUMEN

ObjectiveKey microRNAs (miRNAs) of colorectal adenoma (CRA) were identified and analyzed by bioinformatics methods, and differentially expressed genes (DEGs) were screened to construct regulatory relationships. The mechanism of Xiezhuo Jiedu recipe in preventing CRA was speculated and verified by animal experiments. MethodThe miRNAs dataset GSE50194 was obtained from the Gene Expression Omnibus (GEO) database of intestinal mucosal tissue of CRA patients, and the differentially expressed miRNAs were screened by GEO2R and Excel. TargetScan, miRTarbase, and miRDB databases were used to predict the target genes of the differentially expressed miRNAs, and an intersection was obtained. Key DEGs were screened through the STRING database and Cytoscape software, and the TRRUST database was used to predict downstream binding transcription factors (TFs). The mRNA intersection was enriched by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) in the Metascape database. DIANA TOOLS were applied to perform KEGG enrichment analysis of key miRNAs, and the key signaling pathways were selected for animal experiments. In animal experiments, the CRA mice model was established by using sodium glycan sulfate (DSS) drinking combined with intraperitoneal injection of azomethane oxide (AOM), and Xiezhuo Jiedu recipe and aspirin were given by intragastric administration at the same time. The experiment lasted for nine weeks. The pathological changes in intestinal tissue were observed by hematoxylin-eosin (HE) staining. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of miR-34a-5p in adenoma tissue. Protein expression levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), phosphoryl-PI3K (p-PI3K), phosphoryl-Akt (p-Akt), and B cell lymphoma (Bcl)-2 were detected by Western blot. The expression of Cyclin D1 (CCND1) was detected by immunohistochemistry (IHC). In situ terminal transferase labeling (TUNEL) was used to detect apoptosis of adenoma tissue cells. ResultThe GEO database screened the GSE50194 dataset, and miR-34a-5p was selected as the research object from CRA and normal tissue. A total of 93 DEGs were selected. Among them, GO and KEGG enrichment analyses were closely related to biological processes such as transcriptional regulatory complex, RNA polymerase Ⅱ transcriptional regulatory complex, enzyme-linked receptor protein signaling pathway, and DNA-binding transcriptional activator activity, cancer pathway, PI3K/Akt pathway, etc. miR-34a-5p is mainly enriched in PI3K/Akt, cell cycle, and colorectal cancer pathways. Five key DEGs were screened out through the Matescape database, among which Bcl-2 and CCND1 were the key DEGs of miR-34a-5p. Further screening of the TFs of key DEGs revealed that E2F transcription factor 1 (E2F1) and tumor protein P53 (TP53) were the main TFs of Bcl-2 and CCND1. Animal experiments showed that Xiezhuo Jiedu recipe could effectively up-regulate mRNA level of miR-34a-5p, down-regulate the expression of PI3K, Akt, Bcl-2, p-PI3K, and p-Akt proteins in the intestinal tissue of CRA mice, down-regulate the positive expression rate of CCND1, and increase the apoptosis rate of intestinal epithelial cells. ConclusionIt is speculated that Xiezhuo Jiedu recipe may inhibit the abnormal proliferation and promote the apoptosis of intestinal epithelial cells in CRA mice by regulating the miR-34a-5p/PI3K/Akt signaling pathway, thus playing a role in the prevention of CRA.

11.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1017164

RESUMEN

ObjectiveTo observe the protective effect of Didang Xianxiong decoction on the kidneys of diabetic rats, its regulation on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, and its influence on podocyte apoptosis and explore the mechanism of Didang Xianxiong decoction in improving diabetic nephropathy. MethodThe diabetic model was established by a single intraperitoneal injection of streptozotocin (STZ) solution of 55 mg·kg-1. The successfully replicated model rats were randomly divided into the model group, Didang Xianxiong decoction group (8.10 g·kg-1), Xiao Xianxiongtang group (4.05 g·kg-1), Didangtang group (4.05 g·kg-1), and alagebrium (ALT-711) group (3 mg·kg-1), with six rats in each group. In addition, six rats were included in the blank group. After continuous administration for eight weeks, hematoxylin-eosin (HE) staining was used to observe the pathological changes in rats' kidney tissue. Masson staining was used to observe the degree of collagen deposition. Periodic acid-Schiff (PAS) staining was used to observe basement membrane lesions, and immunohistochemistry was used to detect the expression of phosphorylation (p)-PI3K and p-Akt proteins in rats' kidney tissue. The terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) method was used to detect podocyte apoptosis. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of PI3K and Akt in rats' kidney tissue. Western blot was used to detect the protein expression of PI3K, p-PI3K, Akt, p-Akt, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), phosphorylation glycogen synthase kinase-3β (p-GSK-3β), and Caspase-3 in the kidney tissue. ResultCompared with the normal group, the model group had compensatory expansion of glomeruli, proliferation of mesangial cells, a large amount of collagen deposition in the mesangial stroma, thickening of the basement membrane, decreased mRNA expression of PI3K and Akt, and inhibition of PI3K and Akt protein phosphorylation (P<0.01). It also underwent enhanced apoptotic signaling, decreased expression of anti-apoptotic protein Bcl-2 (P<0.01), and increased expression of Bax, p-GSK-3β, and Caspase-3 (P<0.01). Compared with the model group, Didang Xianxiong decoction significantly improved kidney tissue pathology, increased mRNA expression of PI3K and Akt (P<0.01), significantly up-regulated phosphorylation levels of PI3K and Akt proteins (P<0.01) and Bcl-2 expression (P<0.01), downregulated the expression of Bax, p-GSK-3β, and Caspase-3 (P<0.01), and weakened podocyte apoptotic signaling. ConclusionDidang Xianxiong decoction may promote the activation of the PI3K/Akt signaling pathway, inhibit podocyte apoptosis, and thus slow down the progression of diabetic nephropathy.

12.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1021210

RESUMEN

BACKGROUND:In recent years,it has been found that some traditional Chinese medicine monomers can alleviate oxidative stress and apoptosis of the skin flap,promote vascular regeneration of the skin flap and prevent skin flap necrosis by activating autophagy. OBJECTIVE:To review the research progress of traditional Chinese medicine monomer regulating autophagy in preventing flap necrosis. METHODS:The Chinese and English key words were"traditional Chinese medicine(TCM),autophagy,skin flaps".The first author searched the relevant articles published in CNKI and PubMed databases from January 2010 to October 2022.A total of 196 articles were retrieved in the preliminary screening and then screened according to the inclusion and exclusion criteria.The quality assessment was conducted by reading the literature titles and abstracts.Finally,55 articles were summarized. RESULTS AND CONCLUSION:(1)The regulation of autophagy is mediated by AMPK/mTOR,PI3K/AKT and other signaling pathways.Activation of autophagy can alleviate the oxidative stress and apoptosis of the flap,promote the regeneration of blood vessels in the flap,and prevent flap necrosis.(2)Terpenoids(Betulinic acid,Andrographolide,Notoginseng Triterpenes,Catalpa),phenolic compounds(Resveratrol,Curcumin,Gastrodin),phenolic acids(Salvianolic acid B)and steroid compounds(Pseudoginsenoside F11)in traditional Chinese medicine monomers can alleviate oxidative stress and apoptosis of skin flap by regulating related signaling pathways to activate autophagy,promote skin flap angiogenesis and promote skin flap survival.(3)Studying the research progress of traditional Chinese medicine monomer to prevent flap necrosis by regulating autophagy can provide a reference and theoretical basis for traditional Chinese medicine to prevent flap necrosis and promote flap healing in the clinic.

13.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1030945

RESUMEN

ObjectiveTo investigate the molecular mechanism of action of artemisinin in attenuating asthmatic airway inflammation and airway remodeling through the phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt) signaling pathway. MethodFifty male SD rats were randomly divided into blank group, model group, and low-dose, medium-dose, and high-dose groups of artemisinin, with 10 rats in each group. The ovalbumin (OVA)-induced asthma model of the rats was established, and after successful modeling, the blank group and model group received tail vein injection of 1.0 mL·kg-1 normal saline, while the low-dose, medium-dose, and high-dose groups of artemisinin received tail vein injection of 12.5, 25, and 50 mg·kg-1 artemisinin daily for seven days. Airway resistance was measured by the acetylcholine chloride method. Cell number and species changes in the alveolar lavage fluid of each group were determined by flow cytometry. Morphological changes in airway endothelial tissue were determined by the hematoxylin-eosin (HE) staining method. Apoptosis was determined by CytoTox 96 method, and enzyme-linked immunosorbent assay (ELISA) method was used to determine the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome, interleukin-1β (IL-1β), and interleukin-10 (IL-10) expression. Western blot method was used to detect the (p)-PI3K/p-Akt level in the alveolar bronchial tissue of each group. ResultCompared with the blank group, the total number of cells, total number of macrophages, total number of eosinophils, total number of lymphocytes, and total number of neutrophils were significantly higher in the model group (P<0.05). HE staining showed that the airway mucosa of the rats had obvious edema, and a large number of inflammatory cells were infiltrated (P<0.05). The rate of apoptosis was significantly higher (P<0.05), and the levels of the inflammasome NLRP3, IL-1β, and IL-10 increased significantly (P<0.05). p-PI3K/p-Akt level increased significantly (P<0.05). Compared with the model group, the total number of cells, total number of macrophages, total number of eosinophils, total number of lymphocytes, and total number of neutrophils were significantly decreased after the intervention of artemisinin at low, medium, and high concentrations (P<0.05). HE staining showed that the degree of edema of the airway mucosa of the rats was reduced, and the area of the inflammatory cell infiltration was drastically reduced (P<0.05). The apoptosis rate was significantly reduced (P<0.05), and the levels of the inflammasome NLRP3, IL-1β, and IL-10 decreased significantly (P<0.05). p-PI3K/p-Akt level decreased significantly (P<0.05). ConclusionArtemisinin significantly inhibits NLRP3 inflammasome activation, reduces cellular pyroptosis and inflammatory cell expression, and attenuates airway inflammatory manifestations and airway remodeling in asthmatic rats, which may be related to the regulation of p-PI3K/p-Akt, and the results may provide laboratory insights and basis for the treatment of bronchial asthma with artemisinin.

14.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1036255

RESUMEN

Prostate cancer (PCa) is one of the most common malignant tumors in the male genitourinary system. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway is a carcinogenic pathway responsible for the migration, proliferation, and drug resistance of various cancers. In recent years, as the research on the pathogenesis of PCa is deepening, the role of the PI3K/Akt signaling pathway in the development of PCa has attracted much attention. Traditional Chinese medicine, comprehensively regulating multiple components, targets, and pathways, has shown great potential in the treatment of PCa. This article reviews the research progress of traditional Chinese medicine targeting the PI3K/Akt signaling pathway in the treatment of PCa and discusses the expression of the PI3K/Akt signaling pathway in PCa, which involves inhibiting apoptosis of PCa cells, promoting the cell cycle, invasion, and migration of PCa cells, promoting tumor tissue angiogenesis, and mediating the androgen receptor. Additionally, it summarizes the single Chinese medicines that target and regulate this pathway, including Hedyotis diffusa, Taxus chinensis, Bovisc Alculus, and Atractylodis Macrocephalae Rhizoma. The active ingredients of these Chinese medicines mainly include flavonoids, alkaloids, terpenes, polyphenols, lignans, and other compounds. The Chinese medicine compound prescriptions targeting the PI3K/Akt pathway mainly include Wenshen Sanjie prescription, Jianspi Lishi Huayu prescription, Yishen Tonglongtang, Qilan prescription, Xihuangwan, and modified Shenqi Dihuangtang. This review is expected to provide a scientific basis for deeply understanding the pathogenesis of PCa and identifying potential therapeutic targets, as well as to provide new ideas for clinical research and drug development for PCa.

15.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1003413

RESUMEN

ObjectiveTo investigate the effect of Tangzhi pills on the improvement of insulin resistance (IR) in the liver with type 2 diabetes (T2DM) by regulating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway based on differential genes and its possible molecular mechanism. MethodT2DM rat models were prepared by high fat (HFD) diet combined with streptozotocin (STZ) intraperitoneal injection. The experiment was divided into blank group, model group, metformin hydrochloride group (0.18 g·kg-1), Tangzhi pills high (1.08 g·kg-1), medium (0.54 g·kg-1) and low (0.27 g·kg-1) dose groups. Rat serum, liver, and pancreatic tissue were collected, and the pathological tissue of the liver and pancreas was observed using hematoxylin-eosin (HE) staining. The fasting blood glucose level (FBG) was detected, and oral glucose tolerance (OGTT) tests were conducted. Enzyme-linked immunosorbent assay (ELISA) was used to detect fasting serum insulin (FINS) and glycated hemoglobin (GHb) levels in rats. IR homeostasis model index (HOMA-IR), β cellular homeostasis index (HOMA-β), and insulin sensitivity index (ISI) were calculated. Biochemical methods were used to determine the levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL-C), and high-density lipoprotein (HDL-C) in rat serum. Transcriptomics obtained differentially expressed mRNA from liver tissue and enriched differentially expressed pathways. Real-time reverse transcriptase polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of cyclic adenylate responsive element binding protein 3-like protein 2 antibody (CREB3l2), B-lymphocyte tumor 2 (Bcl-2), Toll-like receptor 2 (TLR2), cyclin-dependent kinase inhibitor 1A (CDNK1A), and DNA damage induced transcription factor 4-like protein (DDIT4) in liver tissue. Western blot was used to detect the protein expression of phosphorylated phosphatidylinositol 3-kinase (p-PI3K), phosphorylated protein kinase B (p-Akt), glucose transporter 4 (GLUT4), insulin receptor (INSR), and insulin receptor substrate 2 (IRS2). ResultThe pharmacodynamic experiment results showed that compared with model group, Tangzhi pills groups repaired liver and pancreatic tissue to varying degrees, reduced blood sugar (P<0.01), and promoted a decrease in serum FINS, GHb, and HOMA-IR (P<0.05, P<0.01). In addition, HOMA-β and ISI increased (P<0.05, P<0.01). The levels of TC, TG, and LDL-C decreased (P<0.05, P<0.01), while the levels of HDL-C increased (P<0.05, P<0.01). The transcriptomics experimental results confirmed that the PI3K/Akt signaling pathway was significantly expressed in both the blank group and model group, as well as in the high-dose Tangzhi pills group and model group. CDNK1A, DDIT4, CREB3l2, Bcl-2, and TLR2 were significantly differentially expressed mRNA during TG intervention in T2DM. Compared with the model group, the protein expression of p-PI3K, p-Akt, GLUT4, INSR, and IRS2 increased in all Tangzhi pills groups (P<0.01). The mRNA expression of CREB3l2, Bcl-2, and TLR2 increased (P<0.01), while that of CDNK1A and DDIT4 decreased (P<0.01). ConclusionTangzhi pills may regulate the PI3K/Akt signaling pathway based on the differential mRNA expression of CREB3l2, Bcl-2, TLR2, CDNK1A, and DDIT4, thereby improving IR in the liver with T2DM.

16.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1012718

RESUMEN

As one of the most difficult-to-cure neuropsychiatric disorders in clinical practice, schizophrenia is mainly manifested by behavioral abnormalities and multidimensional cognitive dysfunction, and the recurrence rate and disability rate of the disease are increasing year by year, which seriously affects patients' social functioning and quality of life, and even threatens the physical and mental health of the surrounding population. At present, the treatment of schizophrenia is mainly based on antipsychotic drugs combined with psychotherapeutic techniques, which have limited long-term therapeutic effects and a high relapse rate. Traditional Chinese medicine (TCM) boasts the advantages of multi-targets, multi-pathways, multi-links, and multi-levels, and plays a crucial role in the prevention and treatment of schizophrenia and its prognosis. Phosphatidylinositol 3-kinase (PI3K) is widely present in cells and is involved in the regulation of protein synthesis and apoptosis, and the different isoforms of protein kinase B (Akt) are of great significance in cell growth, oxidative stress, neuronal development and other processes. In recent years, a large number of studies have found that the PI3K/Akt signaling pathway is closely related to schizophrenia. Through regulating the PI3K/Akt signaling pathway, TCM monomers and TCM compounds mainly affect key signaling molecules such as mammalian target of rapamycin (mTOR), glycogen synthase kinase (GSK), glucose transporter (GLUT) for glucose uptake and transport, and nuclear factor E2-associated factor 2 (Nrf2), which organize the intracellular network of centers and regulate the formation and plasticity of neuronal synapse, and they play an important role in mitigating schizophrenia by regulating the processes of cell proliferation, migration and apoptosis of neurons, and has the advantages of multi-targets, all-encompassing and low toxicity. This article analyzes and explains the mechanism of TCM intervention in the PI3K/Akt signaling pathway against schizophrenia, in order to provide a theoretical basis and reference for the prevention and treatment of schizophrenia by TCM.

17.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1013339

RESUMEN

ObjectiveExploring the role of microRNA126 (miRNA126) in chronic kidney disease combined with atherosclerosis (CKD AS) by regulating the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway and the mechanism of Shenshuai Xiezhuo decoction in the intervention of CKD AS rats with 5/6 nephrectomy combined with high-fat feeding. MethodA total of 60 SD rats were randomly divided into sham operation group, model group, losartan group, and low, medium, and high dose groups of Shenshuai Xiezhuo decoction. The CKD AS rat model was established by 5/6 nephrectomy combined with high-fat feeding for 10 weeks. The low, medium, and high dose groups (6.0, 12.0, 24.0 g·kg-1·d-1) of Shenshuai Xiezhuo decoction and the losartan group (20 mg·kg-1·d-1) were gavaged, and the corresponding intervention was carried out for eight weeks. Then, the rats were killed, and samples were collected for corresponding detection. Fully automated biochemical analyzers were used to detect kidney function and blood lipids in rats: blood creatinine (SCr), blood urea nitrogen (BUN), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) levels. Hematoxylin-eosin (HE) and Masson staining of aortic tissue and pathological observation under a light microscope were carried out, and autophagosomes and autophagy lysosomes were observed by transmission electron microscopy. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to determine the mRNA levels of miRNA126, PI3K, Akt, and mTOR in rats, and Western blot was used to determine the protein expression levels of phosphorylated (p)-PI3K, PI3K, p-Akt, Akt, p -mTOR, mTOR, benzyl chloride 1 (Beclin-1), and microtubule-associated protein light chain 3Ⅱ/Ⅰ (LC3Ⅱ/LC3Ⅰ). ResultCompared with the sham operation group, the serum SCr, BUN, TC, TG, and LDL-C in the model group were significantly increased (P<0.01). Compared with the model group, the SCr, BUN, TC, TG, and LDL-C were decreased in the losartan group and low, medium, and high dose groups of Shenshuai Xiezhuo decoction (P<0.05). Compared with the sham operation group, thickening plaques, infiltration of mononuclear macrophages, a small number of foam cells, disordered arrangement of smooth muscle fibers in the tunica media, and increased collagen fibers were observed in the model group, and the lesions in the losartan group and Shenshuai Xiezhuo decoction groups were alleviated compared with those in the model group. Compared with the model group, the number of autophagosomes and autophagy lysosomes increased in the medium and high dose groups of Shenshuai Xiezhuo decoction. Compared with the sham operation group, the expression of miRNA126 in the aortic tissue of the model group was significantly decreased (P<0.01), and the mRNA expressions of PI3K, Akt, and mTOR were significantly increased (P<0.01). Compared with the model group, the expression of miRNA126 in the aortic tissue of rats in high, medium, and low dose groups of Shenshuai Xiezhuo decoction and losartan group was significantly increased (P<0.01), while the mRNA expressions of PI3K, Akt, and mTOR were significantly decreased (P<0.01). Compared with the sham operation group, the protein expressions of p-PI3K, PI3K, p-Akt, Akt, p-mTOR, and mTOR in the model group were significantly increased (P<0.01), while the protein levels of Beclin-1, LC3Ⅰ, and LC3Ⅱ were significantly decreased (P<0.01). Compared with the model group, the protein expressions of p-PI3K, PI3K, p-Akt, Akt, p-mTOR, and mTOR in the losartan group and low, medium, and high dose groups of Shenshuai Xiezhuo decoction were decreased (P<0.05), while the protein levels of Beclin-1 and LC3Ⅱ/LC3Ⅰ were increased (P<0.05). ConclusionThe expression of miRNA126 is decreased in the aortic tissue of CKD AS rats, and the PI3K/Akt/mTOR pathway is activated to inhibit autophagy flux. Shenshuai Xiezhuo decoction regulates the PI3K/Akt/mTOR signaling pathway through miRNA126, restores the autophagy of aortic endothelial cells, protects the damage of CKD vessels, reduces the formation of As plaques, and slows the development of cardiovascular complications.

18.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1013596

RESUMEN

Aim To investigate the effect of ellagic acid (EA) on cognitive function in APP/PS 1 double- transgenic mice, and to explore the regulatory mechanism of ellagic acid on the level of oxidative stress in the hippocampus of double-transgenic mice based on the phosphatidylinositol 3-kinase/protein kinase B/glycogen synthase kinase-3 (PI3K/AKT/GSK-3 β) signaling pathway. Methods Thirty-two SPF-grade 6-month-old APP/PS 1 double transgenic mice were randomly divided into four groups, namely, APP/PS 1 group, APP/PS1 + EA group, APP/PS1 + LY294002 group, APP/PS 1 + EA + LY294002 group, with eight mice in each group, and eight SPF-grade C57BL/6J wild type mice ( Wild type) were selected as the blank control group. The APP/PS 1 + EA group was given 50 mg · kg

19.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1016461

RESUMEN

ObjectiveTo explore the molecular mechanism of Sanhuang Xiexintang (SHXXT) in protecting stress gastric ulcer (SGU) in rats through network pharmacology, molecular docking, and animal experiments. MethodThe active ingredients and corresponding targets in SHXXT were collected and screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Traditional Chinese Medicine Information Database (TCMID), Bioinformation Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM), and Swiss Target Prediction database. SGU-related targets were screened from the Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), GeneCards database, and PharmGKB database. Herbal-ingredient-target (H-C-T) network was constructed by using Cytoscape 3.9.1 software. Protein-protein interaction (PPI) of drug and disease intersection targets was analyzed by using the Protein Interaction Platform (STRING) database. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted through the Database for Annotation Visualization and Integrated Discovery (DAVID). The active ingredients and key targets were validated using AutodockVina 1.2.2 molecular docking software, and the experimental results were further validated through animal experiments. ResultThe 55 active ingredients were screened, and 255 potential target genes for SHXXT treatment of SGU were predicted. The PPI analysis showed that protein kinase B (Akt), phosphatase and tensin homolog deleted on chromosome ten (PTEN), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and cyclooxygenase-2 (COX-2) are the core targets of SHXXT for protecting SGU. GO and KEGG analyses showed that SHXXT may affect the development of SGU by regulating various biological processes such as the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway and inflammatory processes. The molecular docking results showed that both the active ingredients and key targets had good binding ability. Animal experiments showed that compared with the blank group, the ulcer index (UI) of the model group was significantly increased (P<0.01), and the serum levels of TNF-α and IL-1β significantly increased (P<0.01). The phosphorylation level of PTEN in gastric mucosal tissue was significantly down-regulated (P<0.05). The phosphorylation levels of PI3K, Akt, and nuclear factor kappa-B (NF-κB) were significantly up-regulated (P<0.05). Compared with the model group, the UI of the treatment group was significantly reduced (P<0.01), and the serum levels of TNF-α and IL-1β were significantly reduced (P<0.01). The phosphorylation level of PTEN in gastric mucosal tissue was significantly up-regulated (P<0.01), and the phosphorylation levels of PI3K, Akt, and NF-κB were significantly downregulated (P<0.01). ConclusionThe application of network pharmacology prediction, molecular docking simulation, and animal experimental validation confirms that SHXXT regulates the PI3K/Akt/NF-κB signaling pathway to regulate the inflammatory response of rats and thus protects the gastric mucosa of SGU rats.

20.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1011469

RESUMEN

Cognitive impairment refers to the abnormality of the hippocampus, cortex and other parts of the brain, which is manifested by the decline of cognitive abilities such as learning, memory and attention. With the increase in people's work pressure and bad living habits, the incidence of cognitive impairment is getting higher and higher, which seriously affects people's normal life. However, there are adverse reactions such as gastrointestinal reactions and extrapyramidal reactions in Western drug treatment for cognitive impairment. Therefore, the development of a drug with relatively minimal adverse reactions is of great significance. Traditional Chinese medicine (TCM) has the characteristics of "multi-component, multi-pathway and multi-target", and the incidence of adverse reactions is relatively low. Studies have shown that the pathogenesis of cognitive impairment is closely related to oxidative stress, inflammation, apoptosis, autophagy and other processes of neurons in the cerebral cortex and hippocampus. Phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) signal pathway plays an important role in the transmission of intracellular and intracellular signals, and in the regulation of cellular inflammation, apoptosis, autophagy, etc. TCM monomers, TCM extracts, and TCM compounds exert anti-inflammatory, antioxidant, anti-apoptotic and autophagy regulation effects by regulating the PI3K/Akt signaling pathway to improve cognitive impairment. This review first summarized the composition and regulatory process of the PI3K/Akt signaling pathway, and then discussed the research progress on the improvement of cognitive impairment through the improvement of oxidative stress, inflammation, apoptosis and autophagy of neurons. Finally, the recent research status of the regulation of this signaling pathway by TCM extracts, TCM monomers and TCM compounds to improve cognitive impairment was summarized. This study provides a theoretical basis for the future study of new TCM related to cognitive impairment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA