Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1163858, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37197659

RESUMEN

The threat of viral influenza infections has sparked research efforts to develop vaccines that can induce broadly protective immunity with safe adjuvants that trigger robust immune responses. Here, we demonstrate that subcutaneous or intranasal delivery of a seasonal trivalent influenza vaccine (TIV) adjuvanted with the Quillaja brasiliensis saponin-based nanoparticle (IMXQB) increases the potency of TIV. The adjuvanted vaccine (TIV-IMXQB) elicited high levels of IgG2a and IgG1 antibodies with virus-neutralizing capacity and improved serum hemagglutination inhibition titers. The cellular immune response induced by TIV-IMXQB suggests the presence of a mixed Th1/Th2 cytokine profile, antibody-secreting cells (ASCs) skewed toward an IgG2a phenotype, a positive delayed-type hypersensitivity (DTH) response, and effector CD4+ and CD8+ T cells. After challenge, viral titers in the lungs were significantly lower in animals receiving TIV-IMXQB than in those inoculated with TIV alone. Most notably, mice vaccinated intranasally with TIV-IMXQB and challenged with a lethal dose of influenza virus were fully protected against weight loss and lung virus replication, with no mortality, whereas, among animals vaccinated with TIV alone, the mortality rate was 75%. These findings demonstrate that TIV-IMXQB improved the immune responses to TIV, and, unlike the commercial vaccine, conferred full protection against influenza challenge.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Nanopartículas , Animales , Ratones , Humanos , Gripe Humana/prevención & control , Quillaja , Linfocitos T CD8-positivos , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , Saponinas de Quillaja , Inmunoglobulina G
2.
Methods Mol Biol ; 2469: 119-128, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35508834

RESUMEN

Triterpene saponins of the genus Quillaja (Quillajaceae) are known for their immunoadjuvant, hypocholesterolemic, and anti-inflammatory activity. Plant cell cultures are useful for the study of saponin metabolism and industrial production of these bioactive compounds. While structurally related phytosterols are primary metabolites essential to growth and development, saponins are responsive to pathogen and abiotic stress, fulfilling roles in plant specialized metabolism. For cell culture production of saponins, phytosterols may be considered a competing pathway which relies on a common pool of cytosolic isoprenoid precursors.Understanding the metabolic allocation of resources between these two related pathways is key to maximizing saponin production in in vitro production systems. Sterols and saponins naturally occur in multiple conjugated forms, which complicate separation and quantification. The acid hydrolysis of conjugated sterols and saponins to their free forms is a useful technique to simplify their analysis by gas chromatography. Here we provide the workflow for the quantification of free sterols and sapogenins in cell cultures of Quillaja brasiliensis .


Asunto(s)
Fitosteroles , Sapogeninas , Saponinas , Triterpenos , Técnicas de Cultivo de Célula , Cromatografía de Gases y Espectrometría de Masas , Quillaja/química , Saponinas/química , Esteroles
3.
Methods Mol Biol ; 2469: 183-191, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35508839

RESUMEN

Adjuvants are essential components of subunit, recombinant, nonreplicating and killed vaccines, as they are substances that boost, shape, and/or enhance the immune response triggered by vaccination. Saponins obtained from the Chilean Q. saponaria tree are used as vaccine adjuvants in commercial vaccines, although they are scarce and difficult to obtain. In addition, tree felling is needed during its extraction, which has ecological impact. Q. brasiliensis leaf-extracted saponins arise as a more sustainable alternative, although its use is still limited to preclinical studies. Despite the remarkable immunostimulating properties of saponins, they are toxic to mammalian cells, due to their intrinsic characteristics. For these reasons they are mostly used in veterinary vaccines, although recently the Q. saponaria purified saponin QS-21 has been included in adjuvant systems for human vaccines, such as Mosquirix and Shingrix (GSK). In order to abrogate the toxicity of the saponins fractions, they can be formulated as immunostimulating complexes (ISCOMs). ISCOM-matrices are cage-like nanoparticles of approximately 40 nm, formulated combining saponins and lipids, without antigen, and are great adjuvants able to promote Th1-biased immune responses in a safe manner. Herein we describe how to formulate ISCOM-matrices nanoparticles using Q. brasiliensis purified saponin fractions (IMXQB) by the dialysis method. In addition, we indicate how to verify the appropriate size and homogeneity of the formulated nanoparticles.


Asunto(s)
ISCOMs , Nanopartículas , Saponinas , Adyuvantes Inmunológicos/farmacología , Adyuvantes de Vacunas , Animales , Humanos , ISCOMs/farmacología , Vacunas contra la Malaria , Mamíferos , Quillaja , Saponinas de Quillaja , Saponinas/farmacología
4.
Molecules ; 27(8)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35458600

RESUMEN

An immunoadjuvant preparation (named Fraction B) was obtained from the aqueous extract of Quillaja brasiliensis leaves, and further fractionated by consecutive separations with silica flash MPLC and reverse phase HPLC. Two compounds were isolated, and their structures elucidated using a combination of NMR spectroscopy and mass spectrometry. One of these compounds is a previously undescribed triterpene saponin (Qb1), which is an isomer of QS-21, the unique adjuvant saponin employed in human vaccines. The other compound is a triterpene saponin previously isolated from Quillaja saponaria bark, known as S13. The structure of Qb1 consists of a quillaic acid residue substituted with a ß-d-Galp-(1→2)-[ß-d-Xylp-(1→3)]-ß-d-GlcpA trisaccharide at C3, and a ß-d-Xylp-(1→4)-α-l-Rhap-(1→2)-[α-l-Arap-(1→3)]-ß-d-Fucp moiety at C28. The oligosaccharide at C28 was further substituted at O4 of the fucosyl residue with an acyl group capped with a ß-d-Xylp residue.


Asunto(s)
Saponinas , Triterpenos , Adyuvantes Inmunológicos/química , Humanos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Quillaja/química , Saponinas/química , Triterpenos/química
5.
Vaccines (Basel) ; 9(11)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34835281

RESUMEN

Vaccination is the most effective public health intervention to prevent influenza infections, which are responsible for an important burden of respiratory illnesses and deaths each year. Currently, licensed influenza vaccines are mostly split inactivated, although in order to achieve higher efficacy rates, some influenza vaccines contain adjuvants. Although split-inactivated vaccines induce mostly humoral responses, tailoring mucosal and cellular immune responses is crucial for preventing influenza infections. Quillaja brasiliensis saponin-based adjuvants, including ISCOM-like nanoparticles formulated with the QB-90 saponin fraction (IQB90), have been studied in preclinical models for more than a decade and have been demonstrated to induce strong humoral and cellular immune responses towards several viral antigens. Herein, we demonstrate that a split-inactivated IQB90 adjuvanted influenza vaccine triggered a protective immune response, stronger than that induced by a commercial unadjuvanted vaccine, when applied either by the subcutaneous or the intranasal route. Moreover, we reveal that this novel adjuvant confers up to a ten-fold dose-sparing effect, which could be crucial for pandemic preparedness. Last but not least, we assessed the role of caspase-1/11 in the generation of the immune response triggered by the IQB90 adjuvanted influenza vaccine in a mouse model and found that the cellular-mediated immune response triggered by the IQB90-Flu relies, at least in part, on a mechanism involving the casp-1/11 pathway but not the humoral response elicited by this formulation.

6.
Vaccine ; 39(3): 571-579, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33339669

RESUMEN

Vaccine adjuvants are compounds that enhance/prolong the immune response to a co-administered antigen. Saponins have been widely used as adjuvants for many years in several vaccines - especially for intracellular pathogens - including the recent and somewhat revolutionary malaria and shingles vaccines. In view of the immunoadjuvant potential of Q. brasiliensis saponins, the present study aimed to characterize the QB-80 saponin-rich fraction and a nanoadjuvant prepared with QB-80 and lipids (IMXQB-80). In addition, the performance of such adjuvants was examined in experimental inactivated vaccines against Zika virus (ZIKV). Analysis of QB-80 by DI-ESI-ToF by negative ion electrospray revealed over 29 saponins that could be assigned to known structures existing in their congener Q. saponaria, including the well-studied QS-21 and QS-7. The QB-80 saponins were a micrOTOF able to self-assembly with lipids in ISCOM-like nanoparticles with diameters of approximately 43 nm, here named IMXQB-80. Toxicity assays revealed that QB-80 saponins did present some haemolytical and cytotoxic potentials; however, these were abrogated in IMXQB-80 nanoparticles. Regarding the adjuvant activity, QB-80 and IMXQB-80 significantly enhanced serum levels of anti-Zika virus IgG and subtypes (IgG1, IgG2b, IgG2c) as well as neutralized antibodies when compared to an unadjuvanted vaccine. Furthermore, the nanoadjuvant IMXQB-80 was as effective as QB-80 in stimulating immune responses, yet requiring fourfold less saponins to induce the equivalent stimuli, and with less toxicity. These findings reveal that the saponin fraction QB-80, and particularly the IMXQB-80 nanoadjuvant, are safe and capable of potentializing immune responses when used as adjuvants in experimental ZIKV vaccines.


Asunto(s)
Saponinas , Infección por el Virus Zika , Virus Zika , Adyuvantes Inmunológicos , Animales , Inmunidad , Ratones , Quillaja , Saponinas de Quillaja , Infección por el Virus Zika/prevención & control
7.
Phytochem Anal ; 30(6): 644-652, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31059191

RESUMEN

INTRODUCTION: Quillaja brasiliensis (St. A. -Hil. & Tul) Mart (Quillajaceae) is a species native to South America, which is rich in saponins. Saponins are used in different industries, so there is a constant demand for this type of compound. Based on the wide range of applications for the saponins found in this species, notably as immunoadjuvants, we conducted a comprehensive study of this tree and its saponins. OBJECTIVE: The purpose of this work is to complete the characterisation of the immunoadjuvant saponin fraction from Q. brasiliensis leaves and further study the saponin fraction obtained from Q. brasiliensis bark. METHODOLOGY: Saponin fractions were studied using mass spectrometry in combination with classical methods of monosaccharide and methylation analysis. We performed direct infusion and liquid chromatography/electrospray ionisation ion trap multiple-stage mass spectrometry (DI-ESI-IT-MSn and LC-ESI-IT-MS2 ). RESULTS: Seventy-five saponins, 21 from leaves and 54 from bark, were tentatively identified according to their molecular mass, fragmentation pattern and chromatographic behaviour. This work represents the first investigation of saponins from the bark of Q. brasiliensis and some of them presented new structural motifs not previously reported in the genus Quillaja. CONCLUSION: The efficiency and selectivity of the data dependent LC-MS2 method allowed the rapid profiling of saponins from Q. brasiliensis. The results of the monosaccharide and methylation analysis performed in saponins from Q. brasiliensis fractions and Q. saponaria Molina (Quillajaceae) fraction gives further support to the structures proposed according to the mass spectral data, validating the strategy used in the present work.


Asunto(s)
Adyuvantes Inmunológicos/química , Cromatografía Liquida/métodos , Corteza de la Planta/química , Hojas de la Planta/química , Quillaja/química , Saponinas/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Conformación de Carbohidratos , Metilación , Saponinas/aislamiento & purificación
8.
Molecules ; 24(1)2019 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-30621160

RESUMEN

Quillaja saponaria Molina represents the main source of saponins for industrial applications. Q. saponaria triterpenoids have been studied for more than four decades and their relevance is due to their biological activities, especially as a vaccine adjuvant and immunostimulant, which have led to important research in the field of vaccine development. These saponins, alone or incorporated into immunostimulating complexes (ISCOMs), are able to modulate immunity by increasing antigen uptake, stimulating cytotoxic T lymphocyte production (Th1) and cytokines (Th2) in response to different antigens. Furthermore, antiviral, antifungal, antibacterial, antiparasitic, and antitumor activities are also reported as important biological properties of Quillaja triterpenoids. Recently, other saponins from Q. brasiliensis (A. St.-Hill. & Tul.) Mart. were successfully tested and showed similar chemical and biological properties to those of Q. saponaria barks. The aim of this manuscript is to summarize the current advances in phytochemical and pharmacological knowledge of saponins from Quillaja plants, including the particular chemical characteristics of these triterpenoids. The potential applications of Quillaja saponins to stimulate further drug discovery research will be provided.


Asunto(s)
Saponinas de Quillaja/química , Quillaja/química , Terpenos/química , Células TH1/efectos de los fármacos , Humanos , ISCOMs/química , ISCOMs/uso terapéutico , Inmunomodulación/efectos de los fármacos , Saponinas de Quillaja/uso terapéutico , Linfocitos T Citotóxicos/efectos de los fármacos , Terpenos/uso terapéutico , Células TH1/inmunología , Células Th2/efectos de los fármacos
9.
Vaccine ; 36(1): 55-65, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29174676

RESUMEN

Saponin-based adjuvants are promising adjuvants that enhance both humoral and T-cell-mediated immunity. One of the most used natural products as vaccine adjuvants are Quillaja saponaria bark saponins and its fraction named Quil A®. Despite that, its use has been restricted for human use due to safety issues. As an alternative, our group has been studying the congener species Quillaja brasiliensis saponins and its performance as vaccine adjuvants, which have shown to trigger humoral and cellular immune responses comparable to Quil A® but with milder side effects. Here, we studied a semi purified aqueous extract (AE) and a previously little characterized saponin-enriched fraction (QB-80) from Q. brasiliensis as vaccine adjuvants and an inactivated virus (bovine viral diarrhea virus, BVDV) antigen co-formulated in experimental vaccines in mice model. For the first time, we show the spectra pattern of the Q. brasiliensis saponins by MALDI-TOF, a novel and cost-effective method that could be used to characterize different batches during saponins production. Both AE and QB-80 exhibited noteworthy chemical similarities to Quil A®. In addition, the haemolytic activity and toxicity were assessed, showing that both AE and QB-80 were less toxic than Quil A®. When subcutaneously inoculated in mice, both fractions promoted long-term strong antibody responses encompassing specific IgG1 and IgG2a, enhanced the avidity of IgG antibodies, induced a robust DTH reaction and significantly increased IFN-É£ production in T CD4+ and T CD8+ cells. Furthermore, we have proven herein that AE has the potential to promote dose-sparing, substantially reducing the dose of antigen required for the BVDV vaccines and still eliciting a mixed Th1/Th2 strong immune response. Based on these results, and considering that AE is a raw extract, easier and cheaper to produce than commercially available saponins, this product can be considered as candidate to be escalated from experimental to industrial uses.


Asunto(s)
Diarrea Mucosa Bovina Viral/inmunología , Inmunidad Celular/inmunología , Extractos Vegetales/inmunología , Quillaja/química , Saponinas/inmunología , Vacunas Virales/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/efectos adversos , Adyuvantes Inmunológicos/química , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Diarrea Mucosa Bovina Viral/prevención & control , Linfocitos T CD8-positivos , Bovinos , Virus de la Diarrea Viral Bovina Tipo 1/inmunología , Relación Dosis-Respuesta Inmunológica , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Ratones , Extractos Vegetales/administración & dosificación , Extractos Vegetales/efectos adversos , Extractos Vegetales/química , Hojas de la Planta/química , Saponinas de Quillaja/administración & dosificación , Saponinas de Quillaja/efectos adversos , Saponinas de Quillaja/inmunología , Saponinas/química , Saponinas/economía , Saponinas/aislamiento & purificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Balance Th1 - Th2 , Vacunas Virales/administración & dosificación
10.
Sci Total Environ ; 610-611: 1133-1137, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28847133

RESUMEN

Some vegetal species have saponins in their composition with great potential to be used as natural surfactants in organic crops. This work aims to evaluate some surfactants physical properties of Quillaja brasiliensis and Agave angustifolia, based on different methods of preparation and concentration. The vegetal samples were prepared by drying and grinding, frozen and after chopped or used fresh and chopped. The neutral bar soap was used as a positive control. The drying and grinding of samples were the preparation method that resulted in higher foam column height in both species but Q. brasiliensis was superior to A. angustifolia in all comparisons and foam index was 2756 and 1017 respectively. Critical micelle concentration of Q. brasiliensis was 0.39% with the superficial tension of 54.40mNm-1 while neutral bar soap was 0.15% with 34.96mNm-1. Aspects such as genetic characteristics of the species, environmental conditions, and analytical methods make it difficult to compare the results with other studies, but Q. brasiliensis powder has potential to be explored as a natural surfactant in organic farming. Not only the surfactants physical properties of botanical saponins should be taken into account but also its effect on insects and diseases control when decided using them.

11.
Methods Mol Biol ; 1494: 87-93, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27718187

RESUMEN

Saponins include a large variety of molecules that find several applications in pharmacology. The use of Quillaja saponaria saponins as immunological adjuvants in vaccines is of interest due to their capacity to stimulate both humoral and cellular responses. The congener species Q. brasiliensis has saponins with chemical similarities and adjuvant activity comparable to that of Q. saponaria fraction Quil-A®, with additional advantages of showing lower toxicity and reduced hemolytic activity. Here we describe in detail the methods for preparing the aqueous extract from Q. brasiliensis leaves, as well as the purification of the bioactive saponin fraction QB-90 using silica reversed-phase chromatography.


Asunto(s)
Cromatografía de Fase Inversa/métodos , Hojas de la Planta/química , Quillaja/química , Saponinas/química , Saponinas/aislamiento & purificación , Dióxido de Silicio
12.
Vaccine ; 34(20): 2305-11, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-27032516

RESUMEN

Quillaja brasiliensis (Quillajaceae) is a saponin producing species native from southern Brazil and Uruguay. Its saponins are remarkably similar to those of Q. saponaria, which provides most of the saponins used as immunoadjuvants in vaccines. The immunostimulating capacities of aqueous extract (AE) and purified saponin fraction (QB-90) obtained from leaves of Q. brasiliensis were favorably comparable to those of a commercial saponin-based adjuvant preparation (Quil-A) in experimental vaccines against bovine herpesvirus type 1 and 5, poliovirus and bovine viral diarrhea virus in mice model. Herein, the immunogenicity and protection efficacy of rabies vaccines adjuvanted with Q. brasiliensis AE and its saponin fractions were compared with vaccines adjuvanted with either commercial Quil-A or Alum. Mice were vaccinated with one or two doses (on days 0 and 14) of one of the different vaccines and serum levels of total IgG, IgG1 and IgG2a were quantified over time. A challenge experiment with a lethal dose of rabies virus was carried out with the formulations. Viral RNA detection in the brain of mice was performed by qPCR, and RNA copy-numbers were quantified using a standard curve of in vitro transcribed RNA. All Q. brasiliensis saponin-adjuvanted vaccines significantly enhanced levels of specific IgG isotypes when compared with the no adjuvant group (P ≤ 0.05). Overall, one or two doses of saponin-based vaccine were efficient to protect against the lethal rabies exposure. Both AE and saponin fractions from Q. brasiliensis leaves proved potent immunological adjuvants in vaccines against a lethal challenge with a major livestock pathogen, hence confirming their value as competitive or complementary sustainable alternatives to saponins of Q. saponaria.


Asunto(s)
Adyuvantes Inmunológicos/química , Extractos Vegetales/química , Hojas de la Planta/química , Saponinas de Quillaja/química , Vacunas Antirrábicas/inmunología , Rabia/prevención & control , Adyuvantes Inmunológicos/administración & dosificación , Animales , Anticuerpos Antivirales/sangre , Encéfalo/virología , Femenino , Inmunoglobulina G/sangre , Ratones , Extractos Vegetales/administración & dosificación , Quillaja/química , Saponinas de Quillaja/administración & dosificación , ARN Viral/aislamiento & purificación
13.
Artículo en Inglés | MEDLINE | ID: mdl-27012913

RESUMEN

A saponin fraction extracted from Quillaja brasiliensis leaves (QB-90) and a semi-purified aqueous extract (AE) were evaluated as adjuvants in a bovine viral diarrhea virus (BVDV) vaccine in mice. Animals were immunized on days 0 and 14 with antigen plus either QB-90 or AE or an oil-adjuvanted vaccine. Two-weeks after boosting, antibodies were measured by ELISA; cellular immunity was evaluated by DTH, lymphoproliferation, cytokine release and single cell IFN-γ production. Serum anti-BVDV IgG, IgG1 and IgG2b were significantly increased in QB-90- and AE-adjuvanted vaccines. A robust DTH response, increased splenocyte proliferation, Th1-type cytokines and enhanced production of IFN-γ by CD4(+) and CD8(+) T lymphocytes were detected in mice that received QB-90-adjuvanted vaccine. The AE-adjuvanted preparation stimulated humoral responses but not cellular immune responses. These findings reveal that QB-90 is capable of stimulating both cellular and humoral immune responses when used as adjuvant.


Asunto(s)
Adyuvantes Inmunológicos , Anticuerpos Antivirales/sangre , Virus de la Diarrea Viral Bovina Tipo 1/inmunología , Inmunidad Celular , Inmunidad Humoral , Saponinas de Quillaja/inmunología , Vacunas Virales/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Bovinos , Citocinas/metabolismo , Hipersensibilidad Tardía , Inmunoglobulina G/sangre , Interferón gamma/inmunología , Activación de Linfocitos , Ratones , Extractos Vegetales/inmunología , Hojas de la Planta/química , Quillaja/química , Saponinas de Quillaja/administración & dosificación , Saponinas de Quillaja/aislamiento & purificación , Células TH1/inmunología , Vacunas Virales/administración & dosificación
14.
Vaccine ; 34(9): 1162-71, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26826546

RESUMEN

In the last decades, significant efforts have been dedicated to the search for novel vaccine adjuvants. In this regard, saponins and its formulations as "immunostimulating complexes" (ISCOMs) have shown to be capable of stimulating potent humoral and cellular immune responses, enhanced cytokine production and activation of cytotoxic T cells. The immunological activity of ISCOMs formulated with a saponin fraction extracted from Quillaja brasiliensis (QB-90 fraction) as an alternative to classical ISCOMs based on Quil A(®) (IQA) is presented here. The ISCOMs prepared with QB-90, named IQB-90, typically consist of 40-50 nm, spherical, cage-like particles, built up by QB-90, cholesterol, phospholipids and antigen (ovalbumin, OVA). These nanoparticles were efficiently uptaken in vitro by murine bone marrow-derived dendritic cells. Subcutaneously inoculated IQB-90 induced strong serum antibody responses encompassing specific IgG1 and IgG2a, robust DTH reactions, significant T cell proliferation and increases in Th1 (IFN-γ and IL-2) cytokine responses. Intranasally delivered IQB-90 elicited serum IgG and IgG1, and mucosal IgA responses at distal systemic sites (nasal passages, large intestine and vaginal lumen). These results indicate that IQB-90 is a promising alternative to classic ISCOMs as vaccine adjuvants, capable of enhancing humoral and cellular immunity to levels comparable to those induced by ISCOMs manufactured with Quillaja saponaria saponins.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , ISCOMs/farmacología , Inmunidad Celular , Inmunidad Humoral , Inmunidad Mucosa , Saponinas de Quillaja/farmacología , Adyuvantes Inmunológicos/química , Administración Intranasal , Animales , Células de la Médula Ósea/inmunología , Chlorocebus aethiops , Citocinas/inmunología , Células Dendríticas/inmunología , Femenino , ISCOMs/química , Inmunoglobulina A/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inyecciones Subcutáneas , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Quillaja/química , Saponinas de Quillaja/química , Conejos , Saponinas/química , Saponinas/farmacología , Linfocitos T Citotóxicos/inmunología , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA