Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cell ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39208796

RESUMEN

Fanzor (Fz) is an ωRNA-guided endonuclease extensively found throughout the eukaryotic domain with unique gene editing potential. Here, we describe the structures of Fzs from three different organisms. We find that Fzs share a common ωRNA interaction interface, regardless of the length of the ωRNA, which varies considerably across species. The analysis also reveals Fz's mode of DNA recognition and unwinding capabilities as well as the presence of a non-canonical catalytic site. The structures demonstrate how protein conformations of Fz shift to allow the binding of double-stranded DNA to the active site within the R-loop. Mechanistically, examination of structures in different states shows that the conformation of the lid loop on the RuvC domain is controlled by the formation of the guide/DNA heteroduplex, regulating the activation of nuclease and DNA double-stranded displacement at the single cleavage site. Our findings clarify the mechanism of Fz, establishing a foundation for engineering efforts.

2.
Sci Rep ; 14(1): 19014, 2024 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152124

RESUMEN

We previously identified a unique genetic feature of Autism Spectrum Disorder (ASD) in human patients and established mouse models, a low to very low level of six microRNAs, miR-19a-3p, miR-361-5p, miR-3613-3p, miR-150-5p, miR-126-3p and miR-499a-5p. We attempted to interfere experimentally in mice with two of them, miR19a-3p and miR499a-5p by microinjecting into zygote pronuclei either the complementary sequence or an excess of the microRNA. Both resulted in low levels in the tissues and sperm of the targeted microRNAs and their pri and pre precursors. This method stably modify predetermined levels of miRNAs and identify miRNA alterations that cause changes in autistic behavior and predispose the individual to an inherited disease. Excess miRNA results in single-stranded miRNA variations in both free and DNA-bound RNA (R-loop) fractions in mouse models thus appearing to affect their own transcription. Analysis of miRNAs fractions in human patients blood samples confirm low level of six microRNAs also in R-loop fractions.


Asunto(s)
MicroARNs , Fenotipo , Animales , MicroARNs/genética , MicroARNs/metabolismo , Ratones , Humanos , Masculino , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Femenino , Modelos Animales de Enfermedad , Embrión de Mamíferos/metabolismo , Adulto
3.
Front Mol Neurosci ; 17: 1414949, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39149612

RESUMEN

Neurodevelopmental disorders (NDDs) represent a large group of disorders with an onset in the neonatal or early childhood period; NDDs include intellectual disability (ID), autism spectrum disorders (ASD), attention deficit hyperactivity disorders (ADHD), seizures, various motor disabilities and abnormal muscle tone. Among the many underlying Mendelian genetic causes for these conditions, genes coding for proteins involved in all aspects of the gene expression pathway, ranging from transcription, splicing, translation to the eventual RNA decay, feature rather prominently. Here we focus on two large families of RNA helicases (DEAD- and DExH-box helicases). Genetic variants in the coding genes for several helicases have recently been shown to be associated with NDD. We address genetic constraints for helicases, types of pathological variants which have been discovered and discuss the biological pathways in which the affected helicase proteins are involved.

4.
Mol Ther Nucleic Acids ; 35(3): 102274, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39161621

RESUMEN

CRISPR-Cas9 has emerged as a powerful tool for genome editing. However, Cas9 genome editing faces challenges, including low efficiency and off-target effects. Here, we report that combined treatment with RAD51, a key factor in homologous recombination, and SCR7, a DNA ligase IV small-molecule inhibitor, enhances CRISPR-Cas9-mediated genome-editing efficiency in human embryonic kidney 293T and human induced pluripotent stem cells, as confirmed by cyro- transmission electron microscopy and functional analyses. First, our findings reveal the crucial role of RAD51 in homologous recombination (HR)-mediated DNA repair process. Elevated levels of exogenous RAD51 promote a post-replication step via single-strand DNA gap repair process, ensuring the completion of DNA replication. Second, using the all-in-one CRISPR-Cas9-RAD51 system, highly expressed RAD51 improved the multiple endogenous gene knockin/knockout efficiency and insertion/deletion (InDel) mutation by activating the HR-based repair pathway in concert with SCR7. Sanger sequencing shows distinct outcomes for RAD51-SCR7 in the ratio of InDel mutations in multiple genome sites. Third, RAD51-SCR7 combination can induce efficient R-loop resolution and DNA repair by enhanced HR process, which leads to DNA replication stalling and thus is advantageous to CRISPR-Cas9-based stable genome editing. Our study suggests promising applications in genome editing by enhancing CRISPR-Cas9 efficiency through RAD51 and SCR7, offering potential advancements in biotechnology and therapeutics.

5.
Front Mol Biosci ; 11: 1441550, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39170746

RESUMEN

Introduction: Drugs that target reactive oxygen species (ROS) metabolism have progressed the treatment of pancreatic cancer treatment, yet their efficacy remains poor because of the adaptation of cancer cells to high concentration of ROS. Cells cope with ROS by recognizing 8-oxoguanine residues and processing severely oxidized RNA, which make it feasible to improve the efficacy of ROS-modulating drugs in pancreatic cancer by targeting 8-oxoguanine regulators. Methods: Poly(rC)-binding protein 1 (PCBP1) was identified as a potential oncogene in pancreatic cancer through datasets of The Cancer Genome Atlas (TCGA) project and Gene Expression Omnibus (GEO). High-throughput virtual screening was used to screen out potential inhibitors for PCBP1. Computational molecular dynamics simulations was used to verify the stable interaction between the two compounds and PCBP1 and their structure-activity relationships. In vitro experiments were performed for functional validation of silychristin. Results: In this study, we identified PCBP1 as a potential oncogene in pancreatic cancer. By applying high-throughput virtual screening, we identified Compound 102 and Compound 934 (silychristin) as potential PCBP1 inhibitors. Computational molecular dynamics simulations and virtual alanine mutagenesis verified the structure-activity correlation between PCBP1 and the two identified compounds. These two compounds interfere with the PCBP1-RNA interaction and impair the ability of PCBP1 to process RNA, leading to intracellular R loop accumulation. Compound 934 synergized with ROS agent hydrogen peroxide to strongly improve induced cell death in pancreatic cancer cells. Discussion: Our results provide valuable insights into the development of drugs that target PCBP1 and identified promising synergistic agents for ROS-modulating drugs in pancreatic cancer.

6.
Eur J Pharmacol ; 982: 176944, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39187041

RESUMEN

Pulmonary hypertension (PH) is a serious pulmonary vascular disease characterized by vascular remodeling. Circular RNAs (CircRNAs) play important roles in pulmonary hypertension, but the mechanism of PH is not fully understood, particularly the roles of circRNAs located in the nucleus. Circ-calmodulin 4 (circ-calm4) is expressed in both the cytoplasm and the nucleus of pulmonary arterial smooth muscle cells (PASMCs). This study aimed to investigate the role of endonuclear circ-calm4 in PH and elucidate its underlying signaling pathway in ferroptosis. Immunoblotting, quantitative real-time polymerase chain reaction (PCR), malondialdehyde (MDA) assay, immunofluorescence, iron assay, dot blot, and chromatin immunoprecipitation (ChIP) were performed to investigate the role of endonuclear circ-calm4 in PASMC ferroptosis. Increased endonuclear circ-calm4 facilitated ferroptosis in PASMCs under hypoxic conditions. We further identified the cartilage oligomeric matrix protein (COMP) as a downstream effector of circ-calm4 that contributed to the occurrence of hypoxia-induced ferroptosis in PASMCs. Importantly, we confirmed that endonuclear circ-calm4 formed circR-loops with the promoter region of the COMP gene and negatively regulated its expression. Inhibition of COMP restored the phenotypes related to ferroptosis under hypoxia stimulation combined with antisense oligonucleotide (ASO)-circ-calm4 treatment. We conclude that the circ-calm4/COMP axis contributed to hypoxia-induced ferroptosis in PASMCs and that circ-calm4 formed circR-loops with the COMP promoter in the nucleus and negatively regulated its expression. The circ-calm4/COMP axis may be useful for the design of therapeutic strategies for protecting cellular functionality against ferroptosis and pulmonary hypertension.

7.
Bioessays ; : e2400121, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169755

RESUMEN

Topologically associating domain (TAD) boundaries are the flanking edges of TADs, also known as insulated neighborhoods, within the 3D structure of genomes. A prominent feature of TAD boundaries in mammalian genomes is the enrichment of clustered CTCF sites often with mixed orientations, which can either block or facilitate enhancer-promoter (E-P) interactions within or across distinct TADs, respectively. We will discuss recent progress in the understanding of fundamental organizing principles of the clustered CTCF insulator codes at TAD boundaries. Specifically, both inward- and outward-oriented CTCF sites function as topological chromatin insulators by asymmetrically blocking improper TAD-boundary-crossing cohesin loop extrusion. In addition, boundary stacking and enhancer clustering facilitate long-distance E-P interactions across multiple TADs. Finally, we provide a unified mechanism for RNA-mediated TAD boundary function via R-loop formation for both insulation and facilitation. This mechanism of TAD boundary formation and insulation has interesting implications not only on how the 3D genome folds in the Euclidean nuclear space but also on how the specificity of E-P interactions is developmentally regulated.

8.
RNA ; 30(9): 1122-1140, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38986572

RESUMEN

The cleavage and polyadenylation specificity factor (CPSF) complex plays a central role in the formation of mRNA 3' ends, being responsible for the recognition of the poly(A) signal sequence, the endonucleolytic cleavage step, and recruitment of poly(A) polymerase. CPSF has been extensively studied for over three decades, and its functions and those of its individual subunits are becoming increasingly well-defined, with much current research focusing on the impact of these proteins on the normal functioning or disease/stress states of cells. In this review, we provide an overview of the general functions of CPSF and its subunits, followed by a discussion of how they exert their functions in a surprisingly diverse variety of biological processes and cellular conditions. These include transcription termination, small RNA processing, and R-loop prevention/resolution, as well as more generally cancer, differentiation/development, and infection/immunity.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación , ARN Mensajero , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Animales , Poliadenilación , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Terminación de la Transcripción Genética , Procesamiento de Término de ARN 3'
9.
Trends Immunol ; 45(8): 568-570, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39060141

RESUMEN

In a recent article, Maxwell et al. report that loss of tumor cell-specific AT-rich interaction domain 1A (ARID1A), a component of the chromatin remodeling SWI/SNF complex, triggers antitumor immunity via R-loop-mediated upregulation of the type-I interferon (IFN) pathway. These recent findings uncover a molecular mechanism underlying improved responses to immune checkpoint therapy (ICT) seen in patients harboring an ARID1A loss-of-function mutation.


Asunto(s)
Proteínas de Unión al ADN , Proteínas de la Membrana , Neoplasias , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Neoplasias/inmunología , Neoplasias/genética , Animales , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Transducción de Señal , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Ensamble y Desensamble de Cromatina
10.
J Virol ; 98(8): e0100324, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39046232

RESUMEN

Three-stranded DNA-RNA structures known as R-loops that form during papillomavirus transcription can cause transcription-replication conflicts and lead to DNA damage. We found that R-loops accumulated at the viral early promoter in human papillomavirus (HPV) episomal cells but were greatly reduced in cells with integrated HPV genomes. RNA-DNA helicases unwind R-loops and allow for transcription and replication to proceed. Depletion of the RNA-DNA helicase senataxin (SETX) using siRNAs increased the presence of R-loops at the viral early promoter in HPV-31 (CIN612) and HPV-16 (W12) episomal HPV cell lines. Depletion of SETX reduced viral transcripts in episomal HPV cell lines. The viral E2 protein, which binds with high affinity to specific palindromes near the promoter and origin, complexes with SETX, and both SETX and E2 are present at the viral p97 promoter in CIN612 and W12 cells. SETX overexpression increased E2 transcription activity on the p97 promoter. SETX depletion also significantly increased integration of viral genomes in CIN612 cells. Our results demonstrate that SETX resolves viral R-loops to proceed with HPV transcription and prevent genome integration.IMPORTANCEPapillomaviruses contain small circular genomes of approximately 8 kilobase pairs and undergo unidirectional transcription from the sense strand of the viral genome. Co-transcriptional R-loops were recently reported to be present at high levels in cells that maintain episomal HPV and were also detected at the early viral promoter. R-loops can inhibit transcription and DNA replication. The process that removes R-loops from the PV genome and the requisite enzymes are unknown. We propose a model in which the host RNA-DNA helicase senataxin assembles on the HPV genome to resolve R-loops in order to maintain the episomal status of the viral genome.


Asunto(s)
ADN Helicasas , Enzimas Multifuncionales , Regiones Promotoras Genéticas , Estructuras R-Loop , ARN Helicasas , Humanos , ARN Helicasas/genética , ARN Helicasas/metabolismo , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/metabolismo , ADN Helicasas/metabolismo , ADN Helicasas/genética , Estructuras R-Loop/genética , Plásmidos/genética , Replicación Viral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Papillomaviridae/genética , Genoma Viral , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Transcripción Genética , Línea Celular , ADN Viral/genética
11.
Hum Gene Ther ; 35(15-16): 555-563, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39046112

RESUMEN

Double-stranded break (DSB) repair of eukaryotic DNA is mainly accomplished by nonhomologous end joining and homologous recombination (HR). Providing exogenous templates during HR repair can result in the editing of target genes, which is the central mechanism of the well-established clustered regularly interspaced short palindromic repeats (CRISPR) gene editing system. Currently, exogenous templates are mainly DNA molecules, which can provoke a cellular immune response within the cell. In order to verify the feasibility of RNA molecules as repair templates for HR in mammalian cell genome editing, we fused RNA template molecules to the 3'-end of single guide RNA (sgRNA), so that the sgRNA and the homologous template RNA form a single RNA molecule. The results show this construct can be used as a repair template to achieve target gene editing in mammalian cells. In addition, the factors influencing HR mediated by RNA template molecules were investigated, and it was found that increasing the length of homologous arms and inducing an R-loop near the DSBcan effectively promote HR repair. Furthermore, intracellular homologous chromosomes may compete with exogenous RNA templates. The findings in this article provide a reference for the utilization of RNA template molecules to mediate target gene editing in eukaryotic cells, as well as a basis for the study of the mechanism by which RNA molecules mediate the repair of DSBs.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , ARN Guía de Sistemas CRISPR-Cas , Reparación del ADN por Recombinación , Edición Génica/métodos , Humanos , ARN Guía de Sistemas CRISPR-Cas/genética , Animales , Células HEK293 , ARN/genética , ARN/metabolismo , Roturas del ADN de Doble Cadena
12.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 53(4): 472-480, 2024 Aug 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-39044569

RESUMEN

OBJECTIVES: To investigate the association of R-loop binding proteins with prognosis and chemotherapy efficacy in lung adenocarcinoma. METHODS: The data related to R-loop regulatory genes were obtained from literature of R-loop proteomics and relevant databases. We used 403 cases of lung adenocarcinoma in the Cancer Genome Atlas as training set, and two datasets GSE14814 and GSE31210 in Gene Expression Omnibus as validation sets. The weighted gene co-expression network analysis (WGCNA) was employed to identify R-loop genes with a significant impact on the clinical phenotype of lung adenocarcinoma. Least absolute shrinkage and selection operator (LASSO) regression analysis was utilized to eliminate genes exhibiting multicollinearity. A multivariate Cox regression analysis was employed to scrutinize clinical variables and R-loop characteristic genes that exert independent prognostic effects on patient survival. Subsequently, a risk score model was constructed. The predictive capacity of this model for the prognosis of patients was analyzed and validated. Additionally, the performance of risk model on the anti-tumor drug sensitivity was assessed. The mutations of R-loop genes were analyzed by maftools. The effect of PLEC expression on anti-tumor drug sensitivity was tested on non-small cell lung adenocarcinoma H1299 and A549 cells in vitro. RESULTS: A collection of 1551 R-loop genes were obtained, and 78 genes exhibited significant effects on the clinical phenotype shown on WGCNA. The LASSO regression analysis retained fourteen R-loop genes. A multivariate Cox regression analysis further identified three R-loop genes (HEXIM1, GLI2, PLEC) and a clinical variable (tumor grading) that were associated with patient prognosis. Risk prediction model was established according to the regression coefficients of each parameter. Kaplan-Meier survival analysis showed that the prognosis of high-risk group was significantly worse than that of low-risk group (P<0.01). The time-dependent ROC curve showed that the risk model had good predictive ability in both training and validation sets. Predictive analyses of anti-neoplastic drug sensitivity indicated a diminished responsiveness to both chemotherapy and targeted treatment drugs among high-risk patients. The expression of PLEC was strongly correlated with sensitivity to gefitinib, a classical EGFR inhibitor. CONCLUSIONS: R-loop binding proteins have been identified as significant determinants in the prognosis and therapeutic strategies for lung adenocarcinoma, which indicates that therapeutic interventions targeting these specific R-loop binding proteins might contribute to a better survival of the patients.


Asunto(s)
Adenocarcinoma del Pulmón , Antineoplásicos , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Pronóstico , Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos/genética
13.
Mol Cell ; 84(16): 3141-3153.e5, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39047725

RESUMEN

The metagenome-derived type I-E and type I-F variant CRISPR-associated complex for antiviral defense (Cascade) complexes, fused with HNH domains, precisely cleave target DNA, representing recently identified genome editing tools. However, the underlying working mechanisms remain unknown. Here, structures of type I-FHNH and I-EHNH Cascade complexes at different states are reported. In type I-FHNH Cascade, Cas8fHNH loosely attaches to Cascade head and is adjacent to the 5' end of the target single-stranded DNA (ssDNA). Formation of the full R-loop drives the Cascade head to move outward, allowing Cas8fHNH to detach and rotate ∼150° to accommodate target ssDNA for cleavage. In type I-EHNH Cascade, Cas5eHNH domain is adjacent to the 5' end of the target ssDNA. Full crRNA-target pairing drives the lift of the Cascade head, widening the substrate channel for target ssDNA entrance. Altogether, these analyses into both complexes revealed that crRNA-guided positioning of target DNA and target DNA-induced HNH unlocking are two key factors for their site-specific cleavage of target DNA.


Asunto(s)
Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , División del ADN , ADN de Cadena Simple , Edición Génica , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/genética , Edición Génica/métodos , Estructuras R-Loop/genética , Microscopía por Crioelectrón
15.
Discov Oncol ; 15(1): 322, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085703

RESUMEN

High Mobility Group A2 (HMGA2) oncofetal proteins are a distinct category of Transcription Factors (TFs) known as "architectural factors" due to their lack of direct transcriptional activity. Instead, they modulate the three-dimensional structure of chromatin by binding to AT-rich regions in the minor grooves of DNA through their AT-hooks. This binding allows HMGA2 to interact with other proteins and different regions of DNA, thereby regulating the expression of numerous genes involved in carcinogenesis. Consequently, multiple mechanisms exist to finely control HMGA2 protein expression at various transcriptional levels, ensuring precise concentration adjustments to maintain cellular homeostasis. During embryonic development, HMGA2 protein is highly expressed but becomes absent in adult tissues. However, recent studies have revealed its re-elevation in various cancer types. Extensive research has demonstrated the involvement of HMGA2 protein in carcinogenesis at multiple levels. It intervenes in crucial processes such as cell cycle regulation, apoptosis, angiogenesis, epithelial-to-mesenchymal transition, cancer cell stemness, and DNA damage repair mechanisms, ultimately promoting cancer cell survival. This comprehensive review provides insights into the HMGA2 protein, spanning from the genetic regulation to functional protein behavior. It highlights the significant mechanisms governing HMGA2 gene expression and elucidates the molecular roles of HMGA2 in the carcinogenesis process.

16.
BMC Biol ; 22(1): 151, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977974

RESUMEN

BACKGROUND: RNA-DNA hybrids or R-loops are associated with deleterious genomic instability and protective immunoglobulin class switch recombination (CSR). However, the underlying phenomenon regulating the two contrasting functions of R-loops is unknown. Notably, the underlying mechanism that protects R-loops from classic RNase H-mediated digestion thereby promoting persistence of CSR-associated R-loops during CSR remains elusive. RESULTS: Here, we report that during CSR, R-loops formed at the immunoglobulin heavy (IgH) chain are modified by ribose 2'-O-methylation (2'-OMe). Moreover, we find that 2'-O-methyltransferase fibrillarin (FBL) interacts with activation-induced cytidine deaminase (AID) associated snoRNA aSNORD1C to facilitate the 2'-OMe. Moreover, deleting AID C-terminal tail impairs its association with aSNORD1C and FBL. Disrupting FBL, AID or aSNORD1C expression severely impairs 2'-OMe, R-loop stability and CSR. Surprisingly, FBL, AID's interaction partner and aSNORD1C promoted AID targeting to the IgH locus. CONCLUSION: Taken together, our results suggest that 2'-OMe stabilizes IgH-associated R-loops to enable productive CSR. These results would shed light on AID-mediated CSR and explain the mechanism of R-loop-associated genomic instability.


Asunto(s)
Citidina Desaminasa , Cambio de Clase de Inmunoglobulina , Estructuras R-Loop , Cambio de Clase de Inmunoglobulina/genética , Citidina Desaminasa/metabolismo , Citidina Desaminasa/genética , Citidina Desaminasa/química , Animales , Ratones , Metilación , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/metabolismo , Recombinación Genética , ARN/metabolismo , ARN/genética
17.
Mol Cell ; 84(14): 2717-2731.e6, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38955179

RESUMEN

The specific nature of CRISPR-Cas12a makes it a desirable RNA-guided endonuclease for biotechnology and therapeutic applications. To understand how R-loop formation within the compact Cas12a enables target recognition and nuclease activation, we used cryo-electron microscopy to capture wild-type Acidaminococcus sp. Cas12a R-loop intermediates and DNA delivery into the RuvC active site. Stages of Cas12a R-loop formation-starting from a 5-bp seed-are marked by distinct REC domain arrangements. Dramatic domain flexibility limits contacts until nearly complete R-loop formation, when the non-target strand is pulled across the RuvC nuclease and coordinated domain docking promotes efficient cleavage. Next, substantial domain movements enable target strand repositioning into the RuvC active site. Between cleavage events, the RuvC lid conformationally resets to occlude the active site, requiring re-activation. These snapshots build a structural model depicting Cas12a DNA targeting that rationalizes observed specificity and highlights mechanistic comparisons to other class 2 effectors.


Asunto(s)
Acidaminococcus , Proteínas Bacterianas , Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Dominio Catalítico , Microscopía por Crioelectrón , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética , Acidaminococcus/enzimología , Acidaminococcus/genética , Acidaminococcus/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Estructuras R-Loop/genética , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/química , ARN Guía de Sistemas CRISPR-Cas/metabolismo , ARN Guía de Sistemas CRISPR-Cas/genética , Modelos Moleculares , Dominios Proteicos , Relación Estructura-Actividad , Unión Proteica
18.
Cell Insight ; 3(4): 100179, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38974143

RESUMEN

R-loop, a chromatin structure containing one RNA:DNA hybrid and one unpaired single-stranded DNA, plays multiple biological roles. However, due to technical limitations, the landscapes and potential functions of R-loops during embryogenesis remain elusive. Here, we developed a quantitative and high-resolution ultra-low input R-loop profiling method, named ULI-ssDRIP-seq, which can map global R-loops with as few as 1000 cells. By using ULI-ssDRIP-seq, we reveal the R-loop dynamics in the zebrafish from gametes to early embryos. In oocytes, the R-loop level is relatively low in most regions of the nuclear genome, except maternal-inherited rDNA and mitochondrial genome. The correlation between R-loop and CG methylation dynamics during early development is relatively weak. Furthermore, either up- or down-regulation of global R-loops by knockdown or overexpression of RNase H1 causes a delay of embryonic development with dramatic expression changes in zygotic and maternal genes. This study provides comprehensive R-loop landscapes during early vertebrate embryogenesis and demonstrates the implication of R-loops in embryonic development.

19.
DNA Repair (Amst) ; 140: 103697, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38878563

RESUMEN

Tonicity-responsive enhancer binding protein (TonEBP) is a stress-responsive protein that plays a critical role in the regulation of gene expression and cellular adaptation to stressful environments. Recent studies uncovered the novel role of TonEBP in the DNA damage response, which significantly impacts genomic stability. This review provides a comprehensive overview of the novel role of TonEBP in DNA damage repair, including its involvement in the DNA damage bypass pathway and the recognition and resolution of DNA damage-induced R-loop structures.


Asunto(s)
Daño del ADN , Reparación del ADN , Estructuras R-Loop , Humanos , Animales , Inestabilidad Genómica , ADN/metabolismo
20.
EMBO J ; 43(14): 3044-3071, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38858601

RESUMEN

MCM8 has emerged as a core gene in reproductive aging and is crucial for meiotic homologous recombination repair. It also safeguards genome stability by coordinating the replication stress response during mitosis, but its function in mitotic germ cells remains elusive. Here we found that disabling MCM8 in mice resulted in proliferation defects of primordial germ cells (PGCs) and ultimately impaired fertility. We further demonstrated that MCM8 interacted with two known helicases DDX5 and DHX9, and loss of MCM8 led to R-loop accumulation by reducing the retention of these helicases at R-loops, thus inducing genome instability. Cells expressing premature ovarian insufficiency-causative mutants of MCM8 with decreased interaction with DDX5 displayed increased R-loop levels. These results show MCM8 interacts with R-loop-resolving factors to prevent R-loop-induced DNA damage, which may contribute to the maintenance of genome integrity of PGCs and reproductive reserve establishment. Our findings thus reveal an essential role for MCM8 in PGC development and improve our understanding of reproductive aging caused by genome instability in mitotic germ cells.


Asunto(s)
ARN Helicasas DEAD-box , Inestabilidad Genómica , Proteínas de Mantenimiento de Minicromosoma , Estructuras R-Loop , Animales , Femenino , Humanos , Masculino , Ratones , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Daño del ADN , Células Germinativas/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Mantenimiento de Minicromosoma/genética , Estructuras R-Loop/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA