Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cells ; 13(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38534324

RESUMEN

Understanding the role of biased G protein-coupled receptor (GPCR) agonism in receptor signaling may provide novel insights into the opposing effects mediated by cannabinoids, particularly in cancer and cancer metastasis. GPCRs can have more than one active state, a phenomenon called either 'biased agonism', 'functional selectivity', or 'ligand-directed signaling'. However, there are increasing arrays of cannabinoid allosteric ligands with different degrees of modulation, called 'biased modulation', that can vary dramatically in a probe- and pathway-specific manner, not from simple differences in orthosteric ligand efficacy or stimulus-response coupling. Here, emerging evidence proposes the involvement of CB1 GPCRs in a novel biased GPCR signaling paradigm involving the crosstalk between neuraminidase-1 (Neu-1) and matrix metalloproteinase-9 (MMP-9) in the activation of glycosylated receptors through the modification of the receptor glycosylation state. The study findings highlighted the role of CB1 agonists AM-404, Aravnil, and Olvanil in significantly inducing Neu-1 sialidase activity in a dose-dependent fashion in RAW-Blue, PANC-1, and SW-620 cells. This approach was further substantiated by findings that the neuromedin B receptor inhibitor, BIM-23127, MMP-9 inhibitor, MMP9i, and Neu-1 inhibitor, oseltamivir phosphate, could specifically block CB1 agonist-induced Neu-1 sialidase activity. Additionally, we found that CB1 receptors exist in a multimeric receptor complex with Neu-1 in naïve, unstimulated RAW-Blue, PANC-1, and SW-620 cells. This complex implies a molecular link that regulates the interaction and signaling mechanism among these molecules present on the cell surface. Moreover, the study results demonstrate that CB1 agonists induce NFκB-dependent secretory alkaline phosphatase (SEAP) activity in influencing the expression of epithelial-mesenchymal markers, E-cadherin, and vimentin in SW-620 cells, albeit the impact on E-cadherin expression is less pronounced compared to vimentin. In essence, this innovative research begins to elucidate an entirely new molecular mechanism involving a GPCR signaling paradigm in which cannabinoids, as epigenetic stimuli, may traverse to influence gene expression and contribute to cancer and cancer metastasis.


Asunto(s)
Cannabinoides , Neoplasias , Agonistas de Receptores de Cannabinoides/farmacología , Metaloproteinasa 9 de la Matriz/metabolismo , Vimentina/metabolismo , Ligandos , Glicosilación , Neuraminidasa/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Cannabinoides/farmacología , Transición Epitelial-Mesenquimal , Cadherinas/metabolismo
2.
Molecules ; 26(3)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494340

RESUMEN

Pharmacodynamic interactions between plant isolated compounds are important to understand the mode of action of an herbal extract to formulate or create better standardized extracts, phytomedicines, or phytopharmaceuticals. In this work, we propose binary mixtures using a leader compound to found pharmacodynamic interactions in inhibition of the NF-κB/AP-1 pathway using RAW-Blue™ cells. Eight compounds were isolated from Castilleja tenuiflora, four were new furofuran-type lignans for the species magnolin, eudesmin, sesamin, and kobusin. Magnolin (60.97%) was the most effective lignan inhibiting the NF-κB/AP-1 pathway, followed by eudesmin (56.82%), tenuifloroside (52.91%), sesamin (52.63%), and kobusin (45.45%). Verbascoside, a major compound contained in wild C. tenuiflora showed an inhibitory effect on NF-κB/AP-1. This polyphenol was chosen as a leader compound for binary mixtures. Verbacoside-aucubin and verbascoside-kobusin produced synergism, while verbascoside-tenuifloroside had subadditivity in all concentrations. Verbascoside-kobusin is a promising mixture to use on NF-κB/AP-1 related diseases and anti-inflammatory C. tenuiflora-based phytomedicines.


Asunto(s)
Antiinflamatorios , Glucósidos , Iridoides , Lignanos , FN-kappa B/antagonistas & inhibidores , Orobanchaceae/química , Fenoles , Factor de Transcripción AP-1/antagonistas & inhibidores , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Línea Celular , Glucósidos/química , Glucósidos/farmacología , Iridoides/química , Iridoides/farmacología , Lignanos/química , Lignanos/farmacología , Ratones , FN-kappa B/metabolismo , Fenoles/química , Fenoles/farmacología , Factor de Transcripción AP-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA