Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Psychoradiology ; 4: kkae013, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39258223

RESUMEN

High magnetic field homogeneity is critical for magnetic resonance imaging (MRI), functional MRI, and magnetic resonance spectroscopy (MRS) applications. B0 inhomogeneity during MR scans is a long-standing problem resulting from magnet imperfections and site conditions, with the main issue being the inhomogeneity across the human body caused by differences in magnetic susceptibilities between tissues, resulting in signal loss, image distortion, and poor spectral resolution. Through a combination of passive and active shim techniques, as well as technological advances employing multi-coil techniques, optimal coil design, motion tracking, and real-time modifications, improved field homogeneity and image quality have been achieved in MRI/MRS. The integration of RF and shim coils brings a high shim efficiency due to the proximity of participants. This technique will potentially be applied to high-density RF coils with a high-density shim array for improved B0 homogeneity. Simultaneous shimming and image encoding can be achieved using multi-coil array, which also enables the development of novel encoding methods using advanced magnetic field control. Field monitoring enables the capture and real-time compensation for dynamic field perturbance beyond the static background inhomogeneity. These advancements have the potential to better use the scanner performance to enhance diagnostic capabilities and broaden applications of MRI/MRS in a variety of clinical and research settings. The purpose of this paper is to provide an overview of the latest advances in B0 magnetic field shimming and magnetic field control techniques as well as MR hardware, and to emphasize their significance and potential impact on improving the data quality of MRI/MRS.

2.
Sensors (Basel) ; 24(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39275704

RESUMEN

In vivo phosphorus-31 (31P) magnetic resonance spectroscopy (MRS) imaging (MRSI) is an important non-invasive imaging tool for studying cerebral energy metabolism, intracellular nicotinamide adenine dinucleotide (NAD) and redox ratio, and mitochondrial function. However, it is challenging to achieve high signal-to-noise ratio (SNR) 31P MRS/MRSI results owing to low phosphorus metabolites concentration and low phosphorous gyromagnetic ratio (γ). Many works have demonstrated that ultrahigh field (UHF) could significantly improve the 31P-MRS SNR. However, there is a lack of studies of the 31P MRSI SNR in the 10.5 Tesla (T) human scanner. In this study, we designed and constructed a novel 31P-1H dual-frequency loop-dipole probe that can operate at both 7T and 10.5T for a quantitative comparison of 31P MRSI SNR between the two magnetic fields, taking into account the RF coil B1 fields (RF coil receive and transmit fields) and relaxation times. We found that the SNR of the 31P MRS signal is 1.5 times higher at 10.5T as compared to 7T, and the power dependence of SNR on magnetic field strength (B0) is 1.9.


Asunto(s)
Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Fósforo , Relación Señal-Ruido , Humanos , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/instrumentación , Espectroscopía de Resonancia Magnética/métodos , Fósforo/química , Ondas de Radio , Isótopos de Fósforo , Fantasmas de Imagen
3.
medRxiv ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39252906

RESUMEN

Background: Low-field open magnetic resonance imaging (MRI) systems, typically operating at magnetic field strengths below 1 Tesla, has greatly expanded the accessibility of MRI technology to meet a wide range of patient needs. However, the inherent challenges of low-field MRI, such as limited signal-to-noise ratios and limited availability of dedicated radiofrequency (RF) coils, have prompted the need for innovative coil designs that can improve imaging quality and diagnostic capabilities. Purpose: In response to these challenges, we introduce the coupled stack-up volume coil, a novel RF coil design that addresses the shortcomings of conventional birdcage in the context of low-field open MRI. Methods: The proposed coupled stack-up volume coil design utilizes a unique architecture that optimizes both transmit/receive efficiency and RF field homogeneity and offers the advantage of a simple design and construction, making it a practical and feasible solution for low-field MRI applications. This paper presents a comprehensive exploration of the theoretical framework, design considerations, and experimental validation of this innovative coil design. Results: We demonstrate the superior performance of the coupled stack-up volume coil in achieving 47.7% higher transmit/receive efficiency and 68% more uniform magnetic field distribution compared to traditional birdcage coils in electromagnetic simulations. Bench tests results show that the B1 field efficiency of coupled stack-up volume coil is 57.3% higher compared with that of conventional birdcage coil. Conclusions: The proposed coupled stack-up volume coil outperforms the conventional birdcage coil in terms of B1 efficiency, imaging coverage, and low-frequency operation capability. This design provides a robust and simple solution to low-field MR RF coil design.

4.
Magn Reson Med ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39188192

RESUMEN

PURPOSE: There is currently a strong trend in developing RF coils that are high-density, lightweight, and highly flexible. In addition to the resonator structure of the RF coil itself, the balun or cable trap circuit serves as another essential element in the functionality and sensitivity of RF coils. This study explores the development and application of reproducible highly miniaturized baluns in RF coil design. METHODS: We introduce a novel approach to producing Bazooka baluns with printed coaxial capacitors, enabling the achievement of significant capacitance per unit length. Rigorous electromagnetic simulations and thorough hardware fabrication validate the efficacy of the proposed design across various magnetic field strengths, including 1.5 T, 3 T, and 7 T MRI systems. RESULTS: Bench testing reveals that the proposed balun can achieve an acceptable common-mode rejection ratio even when it is highly miniaturized. The use of printed capacitors allows for a notable reduction in balun length and ensures high reproducibility. Findings demonstrate that the proposed balun exhibits no RF field distortion even when placed close to the sample, making it suitable for flexible coils, wearable coils, and high-density coils, particularly in high-field MRI. CONCLUSION: The reproducibility inherent in the manufacturing process of printed coaxial capacitors allows for simple fabrication and ensures consistency in production. These advancements pave the way for the development of flexible coils, wearable coils, and high-density coils.

5.
Materials (Basel) ; 17(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38998405

RESUMEN

Recent developments in the field of radiofrequency (RF) coils for magnetic resonance imaging (MRI) offer flexible and patient-friendly solutions. Previously, we demonstrated a proof-of-concept single-element stretchable coil design based on liquid metal and a self-tuning smart geometry. In this work, we numerically analyze and experimentally study a multi-channel stretchable coil array and demonstrate its application in dynamic knee imaging. We also compare our flexible coil array to a commonly used commercial rigid coil array. Our numerical analysis shows that the proposed coil array maintains its resonance frequency (<1% variation) and sensitivity (<6%) at various stretching configurations from 0% to 30%. We experimentally demonstrate that the signal-to-noise ratio (SNR) of the acquired MRI images is improved by up to four times with the stretchable coil array due to its conformal and therefore tight-fitting nature. This stretchable array allows for dynamic knee imaging at different flexion angles, infeasible with traditional, rigid coil arrays. These findings are significant as they address the limitations of current rigid coil technology, offering a solution that enhances patient comfort and image quality, particularly in applications requiring dynamic imaging.

6.
Magn Reson Imaging ; 112: 107-115, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38971265

RESUMEN

Low field MRI is safer and more cost effective than the high field MRI. One of the inherent problems of low field MRI is its low signal-to-noise ratio or sensitivity. In this work, we introduce a multimodal surface coil technique for signal excitation and reception to improve the RF magnetic field (B1) efficiency and potentially improve MR sensitivity. The proposed multimodal surface coil consists of multiple identical resonators that are electromagnetically coupled to form a multimodal resonator. The field distribution of its lowest frequency mode is suitable for MR imaging applications. The prototype multimodal surface coils are built, and the performance is investigated and validated through numerical simulation, standard RF measurements and tests, and comparison with the conventional surface coil at low fields. Our results show that the B1 efficiency of the multimodal surface coil outperforms that of the conventional surface coil which is known to offer the highest B1 efficiency among all coil categories, i.e., volume coil, half-volume coil and surface coil. In addition, in low-field MRI, the required low-frequency coils often use large value capacitance to achieve the low resonant frequency which makes frequency tuning difficult. The proposed multimodal surface coil can be conveniently tuned to the required low frequency for low-field MRI with significantly reduced capacitance value, demonstrating excellent low-frequency operation capability over the conventional surface coil.


Asunto(s)
Diseño de Equipo , Imagen por Resonancia Magnética , Relación Señal-Ruido , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Simulación por Computador , Reproducibilidad de los Resultados , Humanos , Ondas de Radio , Campos Magnéticos
7.
Magn Reson Imaging ; 111: 84-89, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38621550

RESUMEN

Temporomandibular Joint Magnetic Resonance Imaging (TMJ MRI) is crucial for diagnosing temporomandibular disorders (TMDs). This study advances the use of inductively coupled wireless coils to enhance imaging quality in TMJ MRI. After investigating multiple wireless resonator configurations, including a 1-loop design with a loop diameter of 9 cm, a 2-loop design with each loop having a diameter of 7 cm, and a 3-loop design with each loop having a diameter of 5 cm, our findings indicate that the 3-loop configuration achieves the optimal signal-to-noise ratio (SNR), surpassing other wireless arrays. Bilateral deployment of wireless coils further amplifies SNR, enabling superior visualization of TMJ structures, particularly with the 3-loop design. This cost-effective and comfortable solution, featuring a detunable design, eliminates the need for system parameter adjustments. The study indicates broad adaptability across MRI platforms, enhancing TMJ imaging for routine clinical diagnostics of TMDs.


Asunto(s)
Diseño de Equipo , Imagen por Resonancia Magnética , Relación Señal-Ruido , Articulación Temporomandibular , Tecnología Inalámbrica , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Humanos , Tecnología Inalámbrica/instrumentación , Articulación Temporomandibular/diagnóstico por imagen , Fantasmas de Imagen , Trastornos de la Articulación Temporomandibular/diagnóstico por imagen
8.
J Magn Reson ; 360: 107650, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38417250

RESUMEN

MRI is essential for evaluating and diagnosing various conditions affecting the temporomandibular joint (TMJ) and surrounding structures, as it provides highly detailed images that enable healthcare professionals to assess the joints and surroundings in great detail. While commercial MRI scanners typically come equipped with basic receive coils, such as the head receive array, RF coils tailored for specialized applications like TMJ MRI must be obtained separately. Consequently, TMJ MRI scans are often conducted using the head receive array, yet this configuration proves suboptimal due to the lack of specialized coils. In this study, we introduce a simple, low-cost, and easy-to-reproduce wireless resonator insert to enhance the quality of TMJ MRI at 1.5 T. The wireless resonator shows a significant improvement in signal-to-noise ratio (SNR) and noticeably better imaging quality than the head array alone configuration in both phantom and in vivo images.


Asunto(s)
Imagen por Resonancia Magnética , Articulación Temporomandibular , Humanos , Imagen por Resonancia Magnética/métodos , Articulación Temporomandibular/diagnóstico por imagen , Relación Señal-Ruido , Fantasmas de Imagen , Diseño de Equipo
9.
Phys Med Biol ; 69(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38324901

RESUMEN

A direct comparison of the impact of RF coil design under specific absorption rate andB1+rmslimitations are investigated and quantified using RF coils of different geometries and topologies at 64 MHz and 128 MHz. The RF-inducedin vivoelectric field and power deposition of a 50 cm long pacemaker and 55 cm long deep brain stimulator (DBS) are evaluated within two anatomical models exposed with these RF coils. The associated uncertainty is quantified and analyzed under a fixedB1+rmsincident and normal operating mode. For a fixedB1+rmsincident, thein vivoincident field shows a much higher uncertainty (>5.6 dB) to the RF coil diameter compared to other design parameters (e.g. <2.2 dB for coil length and topology), while the associated uncertainty reduced greatly (e.g. <1.5 dB) under normal operating mode exposure. Similar uncertainties are observed in the power deposition near the pacemaker and DBS electrode. Compared to the normal operating mode, applying a fixedB1+rmsfield to the untested implant will lead to a large variation in the induced incident and power deposition of the implant, as a result, a larger safe margin when different coil designs (e.g. coil diameter) are considered.


Asunto(s)
Calefacción , Calor , Imagen por Resonancia Magnética , Prótesis e Implantes , Ondas de Radio , Fantasmas de Imagen
10.
Magn Reson Med ; 92(1): 361-373, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38376359

RESUMEN

PURPOSE: The coax monopole antenna is presented for body imaging at 7 T. The antenna is fed at one end, eliminating the possibility of cable-coil coupling and simplifying cable routing. Additionally, its flexibility improves loading to the subject. METHODS: Like the coax dipole antenna, an interruption in the shield of the coaxial cable allows the current to extend to the outside of the shield, generating a B1 + field. Matching is achieved using a single inductor at the distal side, and a cable trap enforces the desired antenna length. Finite difference time domain simulations are employed to optimize the design parameters. Phantom measurements are conducted to determine the antenna's B1 + efficiency and to find the S-parameters in straight and bent positions. Eight-channel simulations and measurements are performed for prostate imaging. RESULTS: The optimal configuration is a length of 360 mm with a gap position of 40 mm. Simulation data show higher B1 + levels for the coax monopole (20% in the prostate), albeit with a 5% lower specific absorbance rate efficiency, compared to the fractionated dipole antenna. The S11 of the coax monopole exhibits remarkable robustness to loading changes. In vivo prostate imaging demonstrates B1 + levels of 10-14 µT with an input power of 8 × 800 W, which is comparable to the fractionated dipole antenna. High-quality images and acceptable coupling levels were achieved. CONCLUSION: The coax monopole is a novel, flexible antenna for body imaging at 7 T. Its simple design incorporates a single inductor at the distal side to achieve matching, and one-sided feeding greatly simplifies cable routing.


Asunto(s)
Simulación por Computador , Diseño de Equipo , Imagen por Resonancia Magnética , Fantasmas de Imagen , Humanos , Imagen por Resonancia Magnética/instrumentación , Masculino , Próstata/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos
11.
J Magn Reson ; 360: 107636, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38377783

RESUMEN

Very-low field (VLF) magnetic resonance imaging (MRI) offers advantages in term of size, weight, cost, and the absence of robust shielding requirements. However, it encounters challenges in maintaining a high signal-to-noise ratio (SNR) due to low magnetic fields (below 100 mT). Developing a close-fitting radio frequency (RF) receive coil is crucial to improve the SNR. In this study, we devised and optimized a helmet-shaped dual-channel RF receive coil tailored for brain imaging at a magnetic field strength of 54 mT (2.32 MHz). The methodology integrates the inverse boundary element method (IBEM) to formulate initial coil structures and wiring patterns, followed by optimization through introducing regularization terms. This approach frames the design process as an inverse problem, ensuring a close fit to the head contour. Combining theoretical optimization with physical measurements of the coil's AC resistance, we identified the optimal loop count for both axial and radial coils as nine and eight loops, respectively. The effectiveness of the designed dual-channel coil was verified through the imaging of a CuSO4 phantom and a healthy volunteer's brain. Notably, the in-vivo images exhibited an approximate 16-25 % increase in SNR with poorer B1 homogeneity compared to those obtained using single-channel coils. The high-quality images achieved by T1, T2-weighted, and fluid-attenuated inversion-recovery (FLAIR) protocols enhance the diagnostic potential of VLF MRI, particularly in cases of cerebral stroke and trauma patients. This study underscores the adaptability of the design methodology for the customization of RF coil structures in alignment with individual imaging requirements.


Asunto(s)
Encéfalo , Dispositivos de Protección de la Cabeza , Humanos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Cabeza/diagnóstico por imagen , Relación Señal-Ruido , Fantasmas de Imagen , Diseño de Equipo , Ondas de Radio , Neuroimagen
12.
Magn Reson Med ; 92(1): 389-405, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38342981

RESUMEN

PURPOSE: There are 118 known elements. Nearly all of them have NMR active isotopes and at least 39 different nuclei have biological relevance. Despite this, most of today's MRI is based on only one nucleus-1H. To facilitate imaging all potential nuclei, we present a single transmit coil able to excite arbitrary nuclei in human-scale MRI. THEORY AND METHODS: We present a completely new type of RF coil, the Any-nucleus Distributed Active Programmable Transmit Coil (ADAPT Coil), with fast switches integrated into the structure of the coil to allow it to operate at any relevant frequency. This coil eliminates the need for the expensive traditional RF amplifier by directly converting direct current (DC) power into RF magnetic fields with frequencies chosen by digital control signals sent to the switches. Semiconductor switch imperfections are overcome by segmenting the coil. RESULTS: Circuit simulations demonstrated the effectiveness of the ADAPT Coil approach, and a 9 cm diameter surface ADAPT Coil was implemented. Using the ADAPT Coil, 1H, 23Na, 2H, and 13C phantom images were acquired, and 1H and 23Na ex vivo images were acquired. To excite different nuclei, only digital control signals were changed, which can be programmed in real time. CONCLUSION: The ADAPT Coil presents a low-cost, scalable, and efficient method for exciting arbitrary nuclei in human-scale MRI. This coil concept provides further opportunities for scaling, programmability, lowering coil costs, lowering dead-time, streamlining multinuclear MRI workflows, and enabling the study of dozens of biologically relevant nuclei.


Asunto(s)
Diseño de Equipo , Imagen por Resonancia Magnética , Fantasmas de Imagen , Imagen por Resonancia Magnética/instrumentación , Humanos , Procesamiento de Señales Asistido por Computador , Análisis de Falla de Equipo , Transductores
13.
NMR Biomed ; 37(3): e5068, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37964107

RESUMEN

Inductively coupled radiofrequency (RF) coils are an inexpensive and simple method to realize wireless RF coils in magnetic resonance imaging (MRI), which can significantly ease the MRI scan setup and improve patient comfort because they do not require bulky components such as cables, baluns, preamplifiers, and connectors. However, volume-type wireless coils are typically operated in transmit/receive mode because detuning such coils is much more challenging due to their complex structure and multiple resonant modes. Meanwhile, adding too many detuning circuits to a wireless coil would decrease the coil's quality factor, impair the signal-to-noise ratio, and increase the cost. In this work, we proposed, constructed, and tested a novel wireless volume coil based on the Litzcage design for 1.5-T head imaging. Being an inductively coupled coil, it has a much simpler structure, resulting in a lighter weight and less bulky design. Despite its simpler structure, it exhibits comparable imaging performance with a commercial receive array, providing an alternative to conventional wired coils with a high cost and complex structure. The unique figure-of-8 conductor pattern within the rungs ensures that the proposed wireless Litzcage can be efficiently detuned with minimal detuning circuits.


Asunto(s)
Imagen por Resonancia Magnética , Ondas de Radio , Humanos , Imagen por Resonancia Magnética/métodos , Relación Señal-Ruido , Diseño de Equipo , Fantasmas de Imagen
14.
J Magn Reson ; 358: 107602, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38061293

RESUMEN

A three-dimensional numerical simulation of the magnetic field distribution and Bloch equations for arbitrary radio frequency (RF) coils is developed and compared against nuclear magnetic resonance (NMR) experimental results to evaluate the NMR signal intensity. Because NMR is inherently insensitive and its signal intensity is dependent on RF coil geometry, the investigation of RF coil geometry to maximize signal intensity for a given sample volume is important for improving the signal-to-noise ratio (SNR) and shortening the accumulation time. The developed simulation can optimize the RF coil geometry, specifically a single-layer solenoid coil with a constant winding pitch, and the result of the solenoid coil simulation serves as a new unifying metric for evaluating NMR/MRI probes. It is found that the most efficient sample aspect ratio (ratio of sample length to sample diameter) and pitch to wire diameter ratio for the highest signal intensity are around 2.2 and 1.65, respectively. Some discrepancies from the solenoid coil geometry ratios for higher signal intensity in previous studies can be explained by the difference in the gap between the inner diameter of the solenoid coil and the sample diameter. These results are confirmed through NMR signal intensity expressed in voltages with three approaches: 3D simulation, experiment, and estimation based on probe parameters. The simulated signal intensity shows a maximum error of approximately 5 % and an average error of 1 % when compared to the experimental results. This result suggests that the developed methods hold the potential for application in quantitative NMR (qNMR) without relying on standard reference materials. Finally, this study introduces a standardized geometry for the optimized solenoid coil for higher signal intensity and uses it to establish an evaluation metric called the signal-to-optimized-solenoid-signal ratio (3SR). The 3SR addresses the volume-dependence problem in conventional metrics like SNR and SNR per sample volume. It provides a standardized approach for the unified evaluation of all RF coils and probe designs, regardless of sample volume and measurement frequency. Therefore, 3SR can be utilized as a useful metric in the search for optimal coil geometry, while metrics such as SNR or SNR per sample volume are currently used for such purpose. This metric is expected to be useful for NMR/magnetic resonance imaging (MRI) users and developers.

15.
Magn Reson Imaging ; 106: 77-84, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37939971

RESUMEN

The design of radiofrequency (RF) coils is crucial for ultra-high field (UHF) magnetic resonance imaging (MRI) systems. To analyze RF coils, various numerical methods, such as finite-difference time-domain (FDTD) and method of moments (MoM), are usually adopted. In this paper, we present a novel hybrid approach that combines a two-dimensional (2D) FDTD with a three-dimensional (3D) MoM to analyze MRI RF problems. In our algorithm, the MoM is utilized for calculating the coil current, and FDTD is assigned for solving the electromagnetic (EM) fields in the imaging region. The hybrid method achieves superior efficiency and acceptable accuracy than using either method individually. To validate the hybrid method, we analyze an ellipse coil loaded with a uniform phantom and a realistic human head model, with the objective of tailoring the magnetic field intensity by adding a multilayer dielectric pad (DP). The results show an improvement in the magnetic field after optimizing the DP configuration. These simulation studies indicate the potential of the new numerical method for the design and analysis of RF systems for ultra-high field applications.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Simulación por Computador , Campos Electromagnéticos , Fantasmas de Imagen , Ondas de Radio , Diseño de Equipo
16.
ArXiv ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38106453

RESUMEN

Higher frequencies and shorter wavelengths present significant design issues at ultra-high fields, making multi-channel array setup a critical component for ultra-high field MR imaging. The requirement for multi-channel arrays, as well as ongoing efforts to increase the number of channels in an array, are always limited by the major issue known as inter-element coupling. This coupling affects the current and field distribution, noise correlation between channels, and frequency of array elements, lowering imaging quality and performance. To realize the full potential of UHF MRI, we must ensure that the coupling between array elements is kept to a minimum. High-impedance coils allow array systems to completely realize their potential by providing optimal isolation while requiring minimal design modifications. These minor design changes, which demand the use of low capacitance on the conventional loop to induce elevated impedance, result in a significant safety hazard that cannot be overlooked. High electric fields are formed across these low capacitance lumped elements, which may result in higher SAR values in the imaging subject, depositing more power and, ultimately, providing a greater risk of tissue heating-related injury to the human sample. We propose an innovative method of utilizing high-dielectric material to effectively reduce electric fields and SAR values in the imaging sample while preserving the B1 efficiency and inter-element decoupling between the array elements to address this important safety concern with minimal changes to the existing array design comprising high-impedance coils.

17.
J Magn Reson ; 356: 107580, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37924681

RESUMEN

Single-sided or unilateral magnetic resonance (UMR) technology has various benefits, such as an open structure, low cost, portability, and nondestructive measurement, in contrast to the conventional closed magnet structure. UMR is widely used in material analysis, well logging, and biomedicine. However, its development is constrained by its poor signal-to-noise ratio (SNR). To enhance the SNR of UMR sensor, a surface coil of LC resonator is added on the Radio Frequency (RF) coil. First, a method of calculating the current in the RF coil including LC resonator is derived. Next, the equivalent AC resistance of the coil is calculated using the partial-element equivalent-circuit (PEEC) method. Finally, the SNR of a UMR sensor incorporating LC resonator is analyzed, and its sensitivity map is provided. Experimental comparisons are made between the UMR sensor with and without a LC resonator. Results show that the SNR of the UMR can be enhanced by up to three times after the LC resonator is loaded. The SNR improves within 30 mm of the coil surface, and this beneficial effect steadily diminishes as the distance increases. This study offers a useful method for improving the signal of UMR sensors.

18.
J Magn Reson ; 356: 107577, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37897924

RESUMEN

Flexible coils offer improved patient comfort and better imaging quality. However, rigid and bulky baluns in RF coils limit flexibility and manufacturing. A miniaturized and flexible balun design was proposed to address this issue. It replaced rigid components with an ultra-flexible rubber tube and a flexible coaxial capacitor. Simulations validated the concept, and bench tests confirmed its performance, including a measured common-mode rejection ratio of -15.8 dB. The flexible balun was integrated into a 4-channel coil array, evaluating impedance changes caused by the "hand effect." Compared to coils without the balun, the flexible coil with the proposed balun showed improved robustness in impedance matching and inter-element couplings. Transmit efficiency of the flexible coil with the balun was compared to coils without a balun and with a rigid, shielded cable trap. Results demonstrated that the proposed balun circuit maintained high transmit efficiency. Overall, the flexible balun design offers a promising solution for improving the flexibility and performance of RF coil arrays in MRI applications.


Asunto(s)
Imagen por Resonancia Magnética , Ondas de Radio , Humanos , Fantasmas de Imagen , Imagen por Resonancia Magnética/métodos , Diseño de Equipo
19.
ArXiv ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37502626

RESUMEN

Objective: Information on the metabolism of tissues in healthy and diseased states plays a significant role in the detection and understanding of tumors, neurodegenerative diseases, diabetes, and other metabolic disorders. Hyperpolarized carbon-13 magnetic resonance imaging (13C-HPMRI) and deuterium metabolic imaging (2H-DMI) are two emerging X-nuclei used as practical imaging tools to investigate tissue metabolism. However due to their low gyromagnetic ratios (ɣ13C = 10.7 MHz/T; ɣ 2H = 6.5 MHz/T) and natural abundance, such method required a sophisticated dual-tuned radiofrequency (RF) coil. Methods: Here, we report a dual-tuned coaxial transmission line (CTL) RF coil agile for metabolite information operating at 7T with independent tuning capability. The design analysis has demonstrated how both resonant frequencies can be individually controlled by simply varying the constituent of the design parameters. Results: Numerical results have demonstrated a broadband tuning range capability, covering most of the X-nucleus signal, especially the 13C and 2H spectra at 7T. Furthermore, in order to validate the feasibility of the proposed design, both dual-tuned 1H/13C and 1H/2H CTLs RF coils are fabricated using a semi-flexible RG-405 .086" coaxial cable and bench test results (scattering parameters and magnetic field efficiency/distribution) are successfully obtained. Conclusion: The proposed dual-tuned RF coils reveal highly effective magnetic field obtained from both proton and heteronuclear signal which is crucial for accurate and detailed imaging. Significance: The successful development of this new dual-tuned RF coil technique would provide a tangible and efficient tool for ultrahigh field metabolic MR imaging.

20.
Brain Stimul ; 16(4): 1021-1031, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37307872

RESUMEN

PURPOSE: Multichannel Transcranial Magnetic Stimulation (mTMS) [1] is a novel non-invasive brain stimulation technique allowing multiple sites to be stimulated simultaneously or sequentially under electronic control without movement of the coils. To enable simultaneous mTMS and MR imaging, we have designed and constructed a whole-head 28-channel receive-only RF coil at 3T. METHODS: A helmet-shaped structure was designed considering a specific layout for a mTMS system with holes for positioning the TMS units next to the scalp. Diameter of the TMS units defined the diameter of RF loops. The placement of the preamplifiers was designed to minimize possible interactions and to allow straightforward positioning of the mTMS units around the RF coil. Interactions between TMS-MRI were analyzed for the whole-head system extending the results presented in previous publications [2]. Both SNR- and g-factors maps were obtained to compare the imaging performance of the coil with commercial head coils. RESULTS: Sensitivity losses for the RF elements containing TMS units show a well-defined spatial pattern. Simulations indicate that the losses are predominantly caused by eddy currents on the coil wire windings. The average SNR performance of the TMSMR 28-channel coil is about 66% and 86% of the SNR of the 32/20-channel head coil respectively. The g-factor values of the TMSMR 28-channel coil are similar to the 32-channel coil and significantly better than the 20-channel coil. CONCLUSION: We present the TMSMR 28-channel coil, a head RF coil array to be integrated with a multichannel 3-axisTMS coil system, a novel tool that will enable causal mapping of human brain function.


Asunto(s)
Encéfalo , Estimulación Magnética Transcraneal , Humanos , Encéfalo/diagnóstico por imagen , Estimulación Magnética Transcraneal/métodos , Imagen por Resonancia Magnética/métodos , Técnicas Estereotáxicas , Cuero Cabelludo , Fantasmas de Imagen , Diseño de Equipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA