Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
J Transl Med ; 22(1): 904, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39369230

RESUMEN

BACKGROUND: Hyperactive RNA Polymerase I (Pol I) transcription is canonical in cancer, associated with malignant proliferation, poor prognosis, epithelial-mesenchymal transition, and chemotherapy resistance. Despite its significance, the molecular mechanisms underlying Pol I hyperactivity remain unclear. This study aims to elucidate the role of long noncoding RNAs (lncRNAs) in regulating Pol I transcription in lung adenocarcinoma (LUAD). METHODS: Bioinformatics analyses were applied to identify lncRNAs interacting with Pol I transcriptional machinery. Fluorescence in situ hybridization was employed to examine the nucleolar localization of candidate lncRNA in LUAD cells. RNA immunoprecipitation assay validated the interaction between candidate lncRNA and Pol I components. Chromatin isolation by RNA purification and Chromatin Immunoprecipitation (ChIP) were utilized to confirm the interactions of candidate lncRNA with Pol I transcriptional machinery and the rDNA core promoter. Functional analyses, including lncRNA knock-in and knockdown, inhibition of Pol I transcription, quantitative PCR, cell proliferation, clonogenicity, apoptosis, cell cycle, wound-healing, and invasion assays, were performed to determine the effect of candidate lncRNA on Pol I transcription and associated malignant phenotypes in LUAD cells. ChIP assays and luminometry were used to investigate the transcriptional regulation of the candidate lncRNA. RESULTS: We demonstrate that oncogenic LINC01116 scaffolds essential Pol I transcription factors TAF1A and TAF1D, to the ribosomal DNA promoter, and upregulate Pol I transcription. Crucially, LINC01116-driven Pol I transcription activation is essential for its oncogenic activities. Inhibition of Pol I transcription abrogated LINC01116-induced oncogenic phenotypes, including increased proliferation, cell cycle progression, clonogenicity, reduced apoptosis, increased migration and invasion, and drug sensitivity. Conversely, LINC01116 knockdown reversed these effects. Additionally, we show that LINC01116 upregulation in LUAD is driven by the oncogene c-Myc, a known Pol I transcription activator, indicating a functional regulatory feedback loop within the c-Myc-LINC01116-Pol I transcription axis. CONCLUSION: Collectively, our findings reveal, for the first time, that LINC01116 enhances Pol I transcription by scaffolding essential transcription factors to the ribosomal DNA promoter, thereby driving oncogenic activities in LUAD. We propose the c-Myc-LINC01116-Pol I axis as a critical oncogenic pathway and a potential therapeutic target for modulating Pol I transcription in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , Fenotipo , ARN Polimerasa I , ARN Largo no Codificante , Transcripción Genética , Regulación hacia Arriba , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Polimerasa I/metabolismo , ARN Polimerasa I/genética , Regulación hacia Arriba/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Línea Celular Tumoral , Carcinogénesis/genética , Carcinogénesis/patología , Proliferación Celular/genética , Regiones Promotoras Genéticas/genética , Oncogenes/genética , Apoptosis/genética , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Invasividad Neoplásica
2.
Comp Cytogenet ; 18: 183-198, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39363903

RESUMEN

Ribosomal RNA (18S, 5.8S, 28S) gene clusters in genomes form regions that consist of multiple tandem repeats. They are located on a single or several pairs of chromosomes and play an important role in the formation of the nucleolus responsible for the assembly of ribosome subunits. The rRNA gene cluster sequences are widely used for taxonomic studies, however at present, complete information on the avian rDNA repeat unit structure including intergenic spacer sequence is available only for the chicken (Gallusgallusdomesticus Linnaeus, 1758). The GC enrichment and high-order repeats peculiarities within the intergenic spacer described for the chicken rDNA cluster may be responsible for these failures. The karyotype of the Japanese quail (Coturnixjaponica Temminck et Schlegel, 1849) deserves close attention because, unlike most birds, it has three pairs of nucleolar organizer bearing chromosomes, two of which are microchromosomes enriched in repeating elements and heterochromatin that carry translocated terminal nucleolar organizers. Here we assembled and annotated the complete Japanese quail ribosomal gene cluster sequence of 21166 base pairs (GenBank under the registration tag BankIt2509210 CoturnixOK523374). This is the second deciphered avian rDNA cluster after the chicken. Despite the revealed high similarity with the chicken corresponding sequence, it has a number of specific features, which include a slightly lower degree of GC content and the presence of bendable elements in the content of both the transcribed spacer I and the non-transcribed intergenic spacer.

3.
bioRxiv ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39282452

RESUMEN

Transcription of ribosomal RNA (rRNA) by RNA Polymerase I (Pol I) is the rate-limiting step in ribosome biogenesis and a major determinant of cellular growth rates. Unlike virtually every other eukaryote, which express identical rRNA from large tandem arrays of dozens to hundreds of identical rRNA genes in every cell, the genome of the human malaria parasite Plasmodium falciparum contains only a handful single-copy 47S rRNA loci that differ substantially from one another in length, sequence and expression in different cell-types. We found that growth of malaria parasite was acutely sensitive to the Pol I inhibitors 9-hydroxyellipticine and BMH-21 and demonstrate that they greatly reduce the transcription of 47S rRNAs as well as transcription of other non-coding RNA genes. Surprisingly, we found that the various types of Pol I-transcribed genes differed by more than two orders of magnitude in their susceptibility to these inhibitors and explore the implications of these findings for regulation of rRNA in P. falciparum.

4.
Cell Rep ; 43(8): 114610, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39116201

RESUMEN

The tumor suppressor p53 and its antagonists MDM2 and MDM4 integrate stress signaling. For instance, dysbalanced assembly of ribosomes in nucleoli induces p53. Here, we show that the ribosomal protein L22 (RPL22; eL22), under conditions of ribosomal and nucleolar stress, promotes the skipping of MDM4 exon 6. Upon L22 depletion, more full-length MDM4 is maintained, leading to diminished p53 activity and enhanced cellular proliferation. L22 binds to specific RNA elements within intron 6 of MDM4 that correspond to a stem-loop consensus, leading to exon 6 skipping. Targeted deletion of these intronic elements largely abolishes L22-mediated exon skipping and re-enables cell proliferation, despite nucleolar stress. L22 also governs alternative splicing of the L22L1 (RPL22L1) and UBAP2L mRNAs. Thus, L22 serves as a signaling intermediate that integrates different layers of gene expression. Defects in ribosome synthesis lead to specific alternative splicing, ultimately triggering p53-mediated transcription and arresting cell proliferation.


Asunto(s)
Empalme Alternativo , Exones , Precursores del ARN , Proteínas Ribosómicas , Proteína p53 Supresora de Tumor , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Humanos , Exones/genética , Precursores del ARN/metabolismo , Precursores del ARN/genética , Empalme Alternativo/genética , Nucléolo Celular/metabolismo , Proliferación Celular , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Unión Proteica , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Ribosomas/metabolismo , Estrés Fisiológico/genética , Proteínas de Unión al ARN
5.
Clin Exp Metastasis ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162964

RESUMEN

Multiple myeloma (MM) is a clinical disorder characterized by aberrant plasma cell growth in the bone marrow microenvironment. Globally, the prevalence of MM has been steadily increasing at an alarming rate. In the United States, more than 30,000 cases will be diagnosed in 2024 and it accounts for about 2% of cancer diagnoses and more than 2% of cancer deaths, more than double the worldwide figure. Both symptomatic and active MM are distinguished by uncontrolled plasma cell growth, which results in severe renal impairment, anemia, hypercalcemia, and bone loss. Multiple drugs have been approved by the FDA and are now widely used in clinical practice for MM. Although triplet and quadruplet induction regimens, autologous stem cell transplantation (ASCT), and maintenance treatment are used, MM continues to be an incurable illness characterized by relapses that may occur at various phases of its progression. MM patients with frailty, extramedullary disease, plasma cell leukemia, central nervous system recurrence, functional high risk, and the elderly are among those with the greatest current unmet needs. The high cost of care is an additional challenge. MM cells are highly protein secretary cells and thus are dependent on the activation of certain translation pathways. MM also has a high chance of altering ribosomal protein-encoding genes like MYC mutation. In this article we discuss the importance of ribosome biogenesis in promoting MM and RNA polymerase I inhibition as an upcoming treatment with potential promise for MM patients.

6.
Biomedicines ; 12(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39062087

RESUMEN

While genotoxic chemotherapeutic agents are among the most effective tools to combat cancer, they are often associated with severe adverse effects caused by indiscriminate DNA damage in non-tumor tissue as well as increased risk of secondary carcinogenesis. This study builds on our previous work demonstrating that the RNA Polymerase I (Pol I) transcription inhibitor CX-5461 elicits a non-canonical DNA damage response and our discovery of a critical role for Topoisomerase 2α (Top2α) in the initiation of Pol I-dependent transcription. Here, we identify Top2α as a mediator of CX-5461 response in the murine Eµ-Myc B lymphoma model whereby sensitivity to CX-5461 is dependent on cellular Top2α expression/activity. Most strikingly, and in contrast to canonical Top2α poisons, we found that the Top2α-dependent DNA damage induced by CX-5461 is preferentially localized at the ribosomal DNA (rDNA) promoter region, thereby highlighting CX-5461 as a loci-specific DNA damaging agent. This mechanism underpins the efficacy of CX-5461 against certain types of cancer and can be used to develop effective non-genotoxic anticancer drugs.

7.
RNA Biol ; 21(1): 42-51, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38958280

RESUMEN

The TATA-box binding protein (TBP) is the sole transcription factor common in the initiation complexes of the three major eukaryotic RNA Polymerases (Pol I, II and III). Although TBP is central to transcription by the three RNA Pols in various species, the emergence of TBP paralogs throughout evolution has expanded the complexity in transcription initiation. Furthermore, recent studies have emerged that questioned the centrality of TBP in mammalian cells, particularly in Pol II transcription, but the role of TBP and its paralogs in Pol I transcription remains to be re-evaluated. In this report, we show that in murine embryonic stem cells TBP localizes onto Pol I promoters, whereas the TBP paralog TRF2 only weakly associates to the Spacer Promoter of rDNA, suggesting that it may not be able to replace TBP for Pol I transcription. Importantly, acute TBP depletion does not fully disrupt Pol I occupancy or activity on ribosomal RNA genes, but TBP binding in mitosis leads to efficient Pol I reactivation following cell division. These findings provide a more nuanced role for TBP in Pol I transcription in murine embryonic stem cells.


Asunto(s)
Mitosis , Regiones Promotoras Genéticas , ARN Polimerasa I , Proteína de Unión a TATA-Box , Transcripción Genética , Animales , ARN Polimerasa I/metabolismo , ARN Polimerasa I/genética , Proteína de Unión a TATA-Box/metabolismo , Proteína de Unión a TATA-Box/genética , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Unión Proteica , ADN Ribosómico/genética , ADN Ribosómico/metabolismo
8.
Biophys Chem ; 312: 107281, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38889653

RESUMEN

RNA polymerase I (Pol I) is responsible for synthesizing ribosomal RNA, which is the rate limiting step in ribosome biogenesis. We have reported wide variability in the magnitude of the rate constants defining the rate limiting step in sequential nucleotide additions catalyzed by Pol I. in this study we sought to determine if base identity impacts the rate limiting step of nucleotide addition catalyzed by Pol I. To this end, we report a transient state kinetic interrogation of AMP, CMP, GMP, and UMP incorporations catalyzed by Pol I. We found that Pol I uses one kinetic mechanism to incorporate all nucleotides. However, we found that UMP incorporation is faster than AMP, CMP, and GMP additions. Further, we found that endonucleolytic removal of a dimer from the 3' end was fastest when the 3' terminal base is a UMP. It has been previously shown that both downstream and upstream template sequence identity impacts the kinetics of nucleotide addition. The results reported here show that the incoming base identity also impacts the magnitude of the observed rate limiting step.


Asunto(s)
ARN Polimerasa I , Cinética , ARN Polimerasa I/metabolismo , ARN Polimerasa I/química , Nucleótidos/metabolismo , Nucleótidos/química
9.
Stem Cell Reports ; 19(5): 689-709, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38701778

RESUMEN

Embryo size, specification, and homeostasis are regulated by a complex gene regulatory and signaling network. Here we used gene expression signatures of Wnt-activated mouse embryonic stem cell (mESC) clones to reverse engineer an mESC regulatory network. We identify NKX1-2 as a novel master regulator of preimplantation embryo development. We find that Nkx1-2 inhibition reduces nascent RNA synthesis, downregulates genes controlling ribosome biogenesis, RNA translation, and transport, and induces severe alteration of nucleolus structure, resulting in the exclusion of RNA polymerase I from nucleoli. In turn, NKX1-2 loss of function leads to chromosome missegregation in the 2- to 4-cell embryo stages, severe decrease in blastomere numbers, alterations of tight junctions (TJs), and impairment of microlumen coarsening. Overall, these changes impair the blastocoel expansion-collapse cycle and embryo cavitation, leading to altered lineage specification and developmental arrest.


Asunto(s)
Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Factores de Transcripción , Animales , Ratones , Blastocisto/metabolismo , Blastocisto/citología , Nucléolo Celular/metabolismo , Desarrollo Embrionario/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Uniones Estrechas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Wnt/metabolismo , Vía de Señalización Wnt
10.
Mol Ther Oncol ; 32(1): 200771, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38596309

RESUMEN

The high rates of protein synthesis and processing render multiple myeloma (MM) cells vulnerable to perturbations in protein homeostasis. The induction of proteotoxic stress by targeting protein degradation with proteasome inhibitors (PIs) has revolutionized the treatment of MM. However, resistance to PIs is inevitable and represents an ongoing clinical challenge. Our first-in-human study of the selective inhibitor of RNA polymerase I transcription of ribosomal RNA genes, CX-5461, has demonstrated a potential signal for anti-tumor activity in three of six heavily pre-treated MM patients. Here, we show that CX-5461 has potent anti-myeloma activity in PI-resistant MM preclinical models in vitro and in vivo. In addition to inhibiting ribosome biogenesis, CX-5461 causes topoisomerase II trapping and replication-dependent DNA damage, leading to G2/M cell-cycle arrest and apoptotic cell death. Combining CX-5461 with PI does not further enhance the anti-myeloma activity of CX-5461 in vivo. In contrast, CX-5461 shows synergistic interaction with the histone deacetylase inhibitor panobinostat in both the Vk∗MYC and the 5T33-KaLwRij mouse models of MM by targeting ribosome biogenesis and protein synthesis through distinct mechanisms. Our findings thus provide strong evidence to facilitate the clinical development of targeting the ribosome to treat relapsed and refractory MM.

11.
J Biol Chem ; 300(3): 105737, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336292

RESUMEN

Transcription is a tightly regulated, complex, and essential cellular process in all living organisms. Transcription is comprised of three steps, transcription initiation, elongation, and termination. The distinct transcription initiation and termination mechanisms of eukaryotic RNA polymerases I, II, and III (Pols I, II, and III) have long been appreciated. Recent methodological advances have empowered high-resolution investigations of the Pols' transcription elongation mechanisms. Here, we review the kinetic similarities and differences in the individual steps of Pol I-, II-, and III-catalyzed transcription elongation, including NTP binding, bond formation, pyrophosphate release, and translocation. This review serves as an important summation of Saccharomyces cerevisiae (yeast) Pol I, II, and III kinetic investigations which reveal that transcription elongation by the Pols is governed by distinct mechanisms. Further, these studies illustrate how basic, biochemical investigations of the Pols can empower the development of chemotherapeutic compounds.


Asunto(s)
Quimioterapia , ARN Polimerasa III , ARN Polimerasa II , ARN Polimerasa I , Saccharomyces cerevisiae , Elongación de la Transcripción Genética , Biocatálisis/efectos de los fármacos , Cinética , ARN Polimerasa I/metabolismo , ARN Polimerasa II/metabolismo , ARN Polimerasa III/metabolismo , Saccharomyces cerevisiae/enzimología , Elongación de la Transcripción Genética/efectos de los fármacos
12.
Sci Rep ; 14(1): 4060, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374399

RESUMEN

VAV2 is an activator of RHO GTPases that promotes and maintains regenerative proliferation-like states in normal keratinocytes and oral squamous cell carcinoma (OSCC) cells. Here, we demonstrate that VAV2 also regulates ribosome biogenesis in those cells, a program associated with poor prognosis of human papilloma virus-negative (HPV-) OSCC patients. Mechanistically, VAV2 regulates this process in a catalysis-dependent manner using a conserved pathway comprising the RAC1 and RHOA GTPases, the PAK and ROCK family kinases, and the c-MYC and YAP/TAZ transcription factors. This pathway directly promotes RNA polymerase I activity and synthesis of 47S pre-rRNA precursors. This process is further consolidated by the upregulation of ribosome biogenesis factors and the acquisition of the YAP/TAZ-dependent undifferentiated cell state. Finally, we show that RNA polymerase I is a therapeutic Achilles' heel for both keratinocytes and OSCC patient-derived cells endowed with high VAV2 catalytic activity. Collectively, these findings highlight the therapeutic potential of modulating VAV2 and the ribosome biogenesis pathways in both preneoplastic and late progression stages of OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Proteínas Proto-Oncogénicas c-vav , Humanos , Carcinoma de Células Escamosas/patología , Proliferación Celular , Queratinocitos/metabolismo , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Proteínas Proto-Oncogénicas c-vav/metabolismo , Proteínas de Unión al GTP rho/metabolismo , ARN Polimerasa I/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello
13.
Exp Ther Med ; 27(3): 107, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38356673

RESUMEN

The selective RNA polymerase I inhibitor CX-5461 has been shown to be effective in treating some types of leukemic disorders. Emerging evidence suggests that combined treatments with CX-5461 and other chemotherapeutic agents may achieve enhanced effectiveness as compared with monotherapies. Currently, pharmacodynamic properties of the combination of CX-5461 with tyrosine kinase inhibitors remain to be explored. The present study tested whether CX-5461 could potentiate the effect of imatinib in the human chronic myeloid leukemia cell line K562, which is p53-deficient. It was demonstrated that CX-5461 at 100 nM, which was non-cytotoxic in K562 cells, potentiated the pro-apoptotic effect of imatinib. Mechanistically, the present study identified that the upregulated expression of kinesin family member 1B (KIF1B) gene might be involved in mediating the pro-apoptotic effect of imatinib/CX-5461 combination. Under the present experimental settings, however, neither CX-5461 nor imatinib alone exhibited a significant effect on KIF1B expression. Moreover, using other leukemic cell lines, it was demonstrated that regulation of KIF1B expression by imatinib/CX-5461 was not a ubiquitous phenomenon in leukemic cells and should be studied in a cell type-specific manner. In conclusion, the results suggested that the synergistic interaction between CX-5461 and imatinib may be of potential clinical value for the treatment of tyrosine kinase inhibitor-resistant chronic myeloid leukemia.

14.
Genes (Basel) ; 15(2)2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38397236

RESUMEN

RNA polymerase I (Pol I) is responsible for synthesizing the three largest eukaryotic ribosomal RNAs (rRNAs), which form the backbone of the ribosome. Transcription by Pol I is required for cell growth and, therefore, is subject to complex and intricate regulatory mechanisms. To accomplish this robust regulation, the cell engages a series of trans-acting transcription factors. One such factor, high mobility group protein 1 (Hmo1), has long been established as a trans-acting factor for Pol I in Saccharomyces cerevisiae; however, the mechanism by which Hmo1 promotes rRNA synthesis has not been defined. Here, we investigated the effect of the deletion of HMO1 on transcription elongation by Pol I in vivo. We determined that Hmo1 is an important activator of transcription elongation, and without this protein, Pol I accumulates across rDNA in a sequence-specific manner. Our results demonstrate that Hmo1 promotes efficient transcription elongation by rendering Pol I less sensitive to pausing in the G-rich regions of rDNA.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo
15.
Heliyon ; 10(1): e23167, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38169774

RESUMEN

Hyperactivation of ribosome biosynthesis (RiBi) is a hallmark of cancer, and targeting ribosome biogenesis has emerged as a potential therapeutic strategy. The depletion of TAF1B, a major component of selectivity factor 1 (SL1), disrupts the pre-initiation complex, preventing RNA polymerase I from binding ribosomal DNA and inhibiting the hyperactivation of RiBi. Here, we investigate the role of TAF1B, in regulating RiBi and proliferation in stomach adenocarcinoma (STAD). We disclosed that the overexpression of TAF1B correlates with poor prognosis in STAD, and found that knocking down TAF1B effectively inhibits STAD cell proliferation and survival in vitro and in vivo. TAF1B knockdown may also induce nucleolar stress, and promote c-MYC degradation in STAD cells. Furthermore, we demonstrate that TAF1B depletion impairs rRNA gene transcription and processing, leading to reduced ribosome biogenesis. Collectively, our findings suggest that TAF1B may serve as a potential therapeutic target for STAD and highlight the importance of RiBi in cancer progression.

16.
Biophys Chem ; 305: 107151, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38088007

RESUMEN

Transient state kinetic studies of eukaryotic DNA-dependent RNA polymerases (Pols) in vitro provide quantitative characterization of enzyme activity at the level of individual nucleotide addition events. Previous work revealed heterogeneity in the rate constants governing nucleotide addition by yeast RNA polymerase I (Pol I) for each position on a template DNA. In contrast, the rate constants that described nucleotide addition by yeast RNA polymerase II (Pol II) were more homogeneous. This observation led to the question, what drives the variability of rate constants governing RNA synthesis by Pol I? Are the kinetics of nucleotide addition dictated by the position of the nascent RNA within the polymerase or by the identity of the next encoded nucleotide? In this study, we examine the impact of nucleotide position (i.e. nascent RNA primer length) on the rate constants governing nine sequential nucleotide addition events catalyzed by Pol I. The results reveal a conserved trend in the observed rate constants at each position for all primer lengths used, and highlight that the 9-nucleotide, or 9-mer, RNA primer provides the fastest observed rate constants. These findings suggest that the observed heterogeneity of rate constants for RNA synthesis by Pol I in vitro is driven primarily by the template sequence.


Asunto(s)
Nucleótidos , ARN Polimerasa I , ARN Polimerasa I/metabolismo , Saccharomyces cerevisiae/metabolismo , Cinética , ARN
17.
Methods Mol Biol ; 2733: 87-99, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38064028

RESUMEN

The piscine orthomyxovirus called infectious salmon anemia virus (ISAV) is one of the most important emerging pathogens affecting the salmon industry worldwide. The first reverse genetics system for ISAV, which allows the generation of recombinant ISA virus (rISAV), is an important tool for the characterization and study of this virus. The plasmid-based reverse genetics system for ISAV includes the use of a novel fish promoter, the Atlantic salmon internal transcribed spacer region 1 (ITS-1). The salmon, viral, and mammalian genetic elements included in the pSS-URG vectors allow the expression of the eight viral RNA segments. In addition to four cytomegalovirus (CMV)-based vectors that express the four proteins of the ISAV ribonucleoprotein complex, the eight pSS-URG vectors allowed the generation of infectious rISAV in salmon cells.


Asunto(s)
Enfermedades de los Peces , Isavirus , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Animales , Isavirus/genética , ADN Complementario/genética , Línea Celular , Orthomyxoviridae/genética , ARN Viral/genética , Infecciones por Orthomyxoviridae/veterinaria , Salmón/genética , Mamíferos/genética
18.
Methods Mol Biol ; 2733: 175-183, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38064033

RESUMEN

The reverse genetics system commonly used for the production of hepatitis C virus (HCV), which is a major causative agent of liver diseases, involves introduction of the viral genomic RNA synthesized in vitro into human hepatoma cells by electroporation. As an alternative methodology, we describe a cell culture system based on transfection with an expression plasmid containing a full-length HCV cDNA clone flanked by RNA polymerase I promoter and terminator sequences to generate infectious virus particles from transfected cells.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis C , Humanos , Hepacivirus/genética , Hepacivirus/metabolismo , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , Genética Inversa , Hepatitis C/genética , Carcinoma Hepatocelular/genética , Transfección , ADN Complementario/genética , ARN Viral/genética
19.
BMC Genomics ; 24(1): 512, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658321

RESUMEN

The nucleolus is a large nuclear body that serves as the primary site for ribosome biogenesis. Recent studies have suggested that it also plays an important role in organizing chromatin architecture. However, to establish a causal relationship between nucleolar ribosome assembly and chromatin architecture, genetic tools are required to disrupt nucleolar ribosome biogenesis. In this study, we used ATAC-seq to investigate changes in chromatin accessibility upon specific depletion of two ribosome biogenesis components, RPOA-2 and GRWD-1, in the model organism Caenorhabditis elegans. To facilitate the analysis of ATAC-seq data, we introduced two tools: SRAlign, an extensible NGS data processing workflow, and SRAtac, a customizable end-to-end ATAC-seq analysis pipeline. Our results revealed highly comparable changes in chromatin accessibility following both RPOA-2 and GRWD-1 perturbations. However, we observed a weak correlation between changes in chromatin accessibility and gene expression. While our findings corroborate the idea of a feedback mechanism between ribosomal RNA synthesis, nucleolar ribosome large subunit biogenesis, and chromatin structure during the L1 stage of C. elegans development, they also prompt questions regarding the functional impact of these alterations on gene expression.


Asunto(s)
Caenorhabditis elegans , Secuenciación de Inmunoprecipitación de Cromatina , Animales , Caenorhabditis elegans/genética , Cromatina/genética , ARN Ribosómico/genética , Ribosomas
20.
Front Oncol ; 13: 1203775, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37645431

RESUMEN

Background: TAF1B (TATA Box Binding Protein (TBP)-Associated Factor) is an RNA polymerase regulating rDNA activity, stress response, and cell cycle. However, the function of TAF1B in the progression of hepatocellular carcinoma (HCC) is unknown. Objective: In this study, we intended to characterize the crucial role and molecular mechanisms of TAF1B in modulating nucleolar stress in HCC. Methods: We analyzed the differential expression and prognostic value of TAF1B in hepatocellular carcinoma based on The Cancer Genome Atlas (TCGA) database, tumor and paraneoplastic tissue samples from clinical hepatocellular carcinoma patients, and typical hepatocellular carcinoma. We detected cell proliferation and apoptosis by lentiviral knockdown of TAF1B expression levels in HepG2 and SMMC-7721 cells using clone formation, apoptosis, and Western blotting (WB) detection of apoptosis marker proteins. Simultaneously, we investigated the influence of TAF1B knockdown on the function of the pre-initiation complex (PIC) by WB, and co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP) assays verified the interaction between the complexes and the effect on rDNA activity. Immunofluorescence assays measured the expression of marker proteins of nucleolus stress, fluorescence in situ hybridization (FISH) assays checked the rDNA activity, and qRT-PCR assays tested the pre-rRNA levels. Regarding molecular mechanisms, we investigated the role of p53 and miR-101 in modulating nucleolar stress and apoptosis. Finally, the impact of TAF1B knockdown on tumor growth, apoptosis, and p53 expression was observed in xenograft tumors. Result: We identified that TAF1B was highly expressed in hepatocellular carcinoma and associated with poor prognosis in HCC patients. TAF1B depletion modulated nucleolar stress and apoptosis in hepatocellular carcinoma cells through positive and negative feedback from p53-miR-101. RNA polymerase I transcription repression triggered post-transcriptional activation of miR-101 in a p53-dependent manner. In turn, miR-101 negatively feeds back through direct inhibition of the p53-mediated PARP pathway. Conclusion: These findings broaden our comprehension of the function of TAF1B-mediated nucleolar stress in hepatocellular carcinoma and may offer new biomarkers for exploring prospective therapeutic targets in HCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA