Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.186
Filtrar
1.
Mol Ther Nucleic Acids ; 35(3): 102235, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39021763

RESUMEN

The intrinsic nature of CRISPR-Cas in conferring immunity to bacteria and archaea has been repurposed to combat pathogenic agents in mammalian and plant cells. In this regard, CRISPR-Cas13 systems have proved their remarkable potential for single-strand RNA viruses targeting. Here, different types of Cas13 orthologs were applied to knockdown foot-and-mouth disease virus (FMDV), a highly contagious disease of a wide variety of species with genetically diverse strains and is widely geographically distributed. Using programmable CRISPR RNAs capable of targeting conserved regions of the viral genome, all Cas13s from CRISPR system type VI (subtype A/B/D) could comprehensively target and repress different serotypes of FMDV virus. This approach has the potential to destroy all strains of a virus as targets the ultra-conserved regions of genome. We experimentally compared the silencing efficiency of CRISPR and RNAi by designing the most effective short hairpin RNAs according to our developed scoring system and observed comparable results. This study showed successful usage of various Cas13 enzymes for suppression of FMDV, which provides a flexible strategy to battle with other animal infectious RNA viruses, an underdeveloped field in the biotechnology scope.

2.
Biotechnol Bioeng ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39030834

RESUMEN

Crop pests and pathogens annually cause over $220 billion in global crop damage, with insects consuming 5%-20% of major grain crops. Current crop pest and disease control strategies rely on insecticidal and fungicidal sprays, plant genetic resistance, transgenes, and agricultural practices. Double-stranded RNA (dsRNA) is emerging as a novel sustainable method of plant protection as an alternative to traditional chemical pesticides. Successful commercialization of dsRNA-based biocontrols requires the economical production of large quantities of dsRNA combined with suitable delivery methods to ensure RNAi efficacy against the target pest. In this study, we have optimized the design of plasmid DNA constructs to produce dsRNA biocontrols in Escherichia coli, by employing a wide range of alternative synthetic transcriptional terminators before measurement of dsRNA yield. We demonstrate that a 7.8-fold increase of dsRNA was achieved using triple synthetic transcriptional terminators within a dual T7 dsRNA production system compared to the absence of transcriptional terminators. Moreover, our data demonstrate that batch fermentation production dsRNA using multiple transcriptional terminators is scalable and generates significantly higher yields of dsRNA generated in the absence of transcriptional terminators at both small-scale batch culture and large-scale fermentation. In addition, we show that application of these dsRNA biocontrols expressed in E. coli cells results in increased insect mortality. Finally, novel mass spectrometry analysis was performed to determine the precise sites of transcriptional termination at the different transcriptional terminators providing important further mechanistic insight.

3.
Sci Rep ; 14(1): 16541, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39019908

RESUMEN

The red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier), also known as the Asian palm weevil, is an invasive pest that causes widespread damage to palm trees around the globe. As pheromone communication is crucial for their mass attack and survival on palm trees, the olfactory concept of pest control strategies has been widely explored recently. We aim to understand the molecular basis of olfaction in RPW by studying one of the key olfactory proteins in insect pheromone communication, sensory neuron membrane proteins (SNMPs). SNMPs belong to the CD36 (cluster of differentiation 36) family that perform two distinct olfactory roles in insects, either in pheromone (odorant) transfer to the odorant receptors (SNMP1) or in the pheromone clearing process (SNMP2). In this study, we performed antennal transcriptomic screening and identified six SNMPs, mapping them on the R. ferrugineus genome, and confirmed four distinct SNMPs. Both SNMP1 proteins in RPW, viz., RferSNMPu1 and RferSNMPu2, were mapped onto the same scaffold in different loci in the RPW genome. To further understand the function of these proteins, we first classified them using phylogenetic analysis and checked their tissue-specific expression patterns. Further, we measured the relative transcript abundance of SNMPs in laboratory-reared, field-collected adults and pheromone-exposure experiments, ultimately identifying RferSNMPu1 as a potential candidate for functional analysis. We mapped RferSNMPu1 expression in the antennae and found that expression patterns were similar in both sexes. We used RNAi-based gene silencing to knockdown RferSNMPu1 and tested the changes in the RPW responses to aggregation pheromone compounds, 4-methyl-5-nonanol (ferrugineol) and 4-methyl-5-nonanone (ferrugineone), and a kairomone, ethyl acetate using electroantennogram (EAG) recordings. We found a significant reduction in the EAG recordings in the RferSNMPu1 knockdown strain of adult RPWs, confirming its potential role in pheromone detection. The structural modelling revealed the key domains in the RferSNMPu1 structure, which could likely be involved in pheromone detection based on the identified ectodomain tunnels. Our studies on RferSNMPu1 with a putative role in pheromone detection provide valuable insight into understanding the olfaction in R. ferrugineus as well as in other Curculionids, as SNMPs are under-explored in terms of its functional role in insect olfaction. Most importantly, RferSNMPu1 can be used as a potential target for the olfactory communication disruption in the R. ferrugineus control strategies.


Asunto(s)
Proteínas de Insectos , Feromonas , Gorgojos , Animales , Gorgojos/metabolismo , Gorgojos/genética , Feromonas/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Antenas de Artrópodos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Masculino , Femenino , Silenciador del Gen , Filogenia , Células Receptoras Sensoriales/metabolismo
4.
Insects ; 15(7)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39057235

RESUMEN

Cytochrome P450 monooxygenases (CYP), crucial detoxification enzymes in insects, are involved in the metabolism of endogenous substances as well as the activation and degradation of exogenous compounds. In this study, T. castaneum was utilized to investigate the roles of TcCYP6K1 and TcCYP9F2 genes influencing in the trehalose metabolism pathway under high-CO2 stress. By predicting the functional sequences of TcCYP6K1 and TcCYP9F2 genes and analyzing their spatiotemporal expression patterns, it was discovered that both genes belong to the CYP3 group and exhibit high expression levels during the larval stage, decreasing during the pupal stage, while showing high expression in the fatty body, intestine, and malpighian tubules. Furthermore, following the knockdown of TcCYP6K1 and TcCYP9F2 genes in combination with treating larvae with 75% CO2, it was observed that larval mortality increased, and glycogen content significantly decreased, while trehalose content increased significantly. Additionally, membrane-bound trehalase enzyme activity declined, TPS gene expression was significantly upregulated, GS gene expression was significantly downregulated, and ATP content showed a marked decrease. In conclusion, CYP genes are critical responsive genes of T. castaneum to high CO2 levels, potentially impacting the insect's resistance to carbon dioxide through their involvement in the synthesis or breakdown of the carbohydrate metabolism pathway. These findings could serve as a theoretical basis for the utilization of novel pesticides in low-oxygen grain storage techniques and offer new insights for environmentally friendly pest control strategies in grain storage.

5.
Insects ; 15(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39057271

RESUMEN

Current Varroa mite management strategies rely heavily on the use of pesticides, adversely affecting honey bee health and leaving toxic residues in hive products. To explore the likelihood of RNAi technology being utilised as an alternative control method for pests like Varroa, the opinions of beekeepers on the use of this new biotechnology were obtained using a mixed-methodology approach. In-person surveys and focus groups using the Q method were conducted to discover the willingness of beekeepers to utilise Varroa-targeting RNAi treatments in their hives, and to gain feedback to inform decisions before the implementation of this new technology. Overall, the beekeepers saw potential in RNAi being used to control Varroa in their hives and were eager to have access to an alternative to pesticide treatments. Participants raised concerns about unknown long-term effects on bees and other non-target species, and the potential of an uninformed public preventing them from accessing a new Varroa treatment. While further research and discussion is needed before RNAi treatments for Varroa become commercially available, RNAi technology presents a promising, species-specific and non-toxic solution for Varroa management.

6.
Insects ; 15(7)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39057270

RESUMEN

Glutaredoxin (Grx) is a group of redox enzymes that control reactive oxygen species (ROS), traditionally defined as redox regulators. Recent research suggested that members of the Grx family may be involved in more biological processes than previously thought. Therefore, we cloned the AcGrx5 gene and identified its role in A. chinensis diapause. Sequence analysis revealed the ORF of AcGrx5 was 432 bp, encoding 143 amino acids, which was consistent with the homologous sequence of Halyomorpha halys. RT-qPCR results showed that AcGrx5 expression was the highest in the head, and compared with non-diapause conditions, diapause conditions significantly increased the expression of AcGrx5 in the developmental stages. Further, we found that 15 °C low-temperature stress significantly induced AcGrx5 expression, and the expression of antioxidant enzyme genes AcTrx2 and AcTrx-like were significantly increased after AcGrx5 knockdown. Following AcGrx5 silencing, there was a considerable rise in the levels of VC content, CAT activity, and hydrogen peroxide content, indicating that A. chinensis was exposed to high levels of reactive oxygen species. These results suggested that the AcGrx5 gene may play a key role in antioxidant defense.

7.
Pest Manag Sci ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984807

RESUMEN

BACKGROUND: Calliptamus italicus L. is a major pest in Xinjiang grassland. The diapause overwintering strategy is one of the important reasons for the large population of this pest. This study investigated the function of the genes associated with the release of diapause (DIB, JHE and CAM) in Calliptamus italicus by RNA interference (RNAi) technology to aid in its biological control. RESULTS: The expression levels of DIB and its downstream-associated genes (EcR and FTZ-F1) in the eggs injected with dsDIB for 12 h decreased by 96.6%, 55.8% and 81.8%, respectively. Diapause began to terminate on day 3, and development was almost complete on day 6. However, the head was significantly smaller. The expression levels of JHE and its downstream-associated genes (JHEH and VgR) at 48 h after dsJHE treatment decreased by 76.5%, 85.6% and 85.9%, respectively. The termination of diapause occured on day 3 of incubation. The development was basically complete on day 6, but the yolk had been incompletely absorbed. The expression of CAM and its downstream-associated genes (CAMK4 and MYL) at 24 h after dsCAM treatment decreased by 42.4%, 95.3% and 82.7%, respectively. Diapause termination was completed on day 4 for incubation, and development was abnormal on day 6. The absorption of yolk was incomplete. CONCLUSION: DIB, JHE and CAM can delay the diapause termination of Calliptamus italicus eggs to different degrees and can be developed as potential target genes for its biological control. © 2024 Society of Chemical Industry.

8.
J Basic Microbiol ; : e2400081, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39031701

RESUMEN

RNA interference (RNAi) has not been tested in the pandemic amphibian pathogen, Batrachochytrium dendrobatidis, but developing this technology could be useful to elucidate virulence mechanisms, identify therapeutic targets, and may present a novel antifungal treatment option for chytridiomycosis. To manipulate and decipher gene function, rationally designed small interfering RNA (siRNA) can initiate the destruction of homologous messenger RNA (mRNA), resulting in the "knockdown" of target gene expression. Here, we investigate whether siRNA can be used to manipulate gene expression in B. dendrobatidis via RNAi using differing siRNA strategies to target genes involved in glutathione and ornithine synthesis. To determine the extent and duration of mRNA knockdown, target mRNA levels were monitored for 24-48 h after delivery of siRNA targeting glutamate-cysteine ligase, with a maximum of ~56% reduction in target transcripts occurring at 36 h. A second siRNA design targeting glutamate-cysteine ligase also resulted in ~53% knockdown at this time point. siRNA directed toward a different gene target, ornithine decarboxylase, achieved 17% reduction in target transcripts. Although no phenotypic effects were observed, these results suggest that RNAi is possible in B. dendrobatidis, and that gene expression can be manipulated in this pathogen. We outline ideas for further optimization steps to increase knockdown efficiency to better harness RNAi techniques for control of B. dendrobatidis.

9.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39000423

RESUMEN

Methyl farnesoate epoxidase (MFE) is a gene encoding an enzyme related to the last step of juvenile hormone biosynthesis. Mn-MFE cDNA has a total length of 1695 bp and an open reading frame (ORF) length of 1482 bp, encoding 493 amino acids. Sequence analysis showed that its amino acid sequence has a PPGP hinge, an FGCG structural domain, and other structural domains specific to the P450 family of enzymes. Mn-MFE was most highly expressed in the hepatopancreas, followed by the ovary and gill, weakly expressed in heart and muscle tissue, and barely expressed in the eyestalk and cranial ganglion. Mn-MFE expression remained stable during the larval period, during which it mainly played a critical role in gonadal differentiation. Expression in the ovary was positively correlated and expression in the hepatopancreas was negatively correlated with ovarian development. In situ hybridization (ISH) showed that the signal was expressed in the oocyte, nucleus, cell membrane and follicular cells, and the intensity of expression was strongest at stage O-IV. The knockdown of Mn-MFE resulted in a significantly lower gonadosomatic index and percentage of ovaries past stage O-III compared to the control group. However, no differences were found in the cumulative frequency of molting between the experimental and control groups. Moreover, the analysis of ovarian tissue sections at the end of the experiment showed differences between groups in development speed but not in subcellular structure. These results demonstrate that Mn-MFE promotes the ovarian development of Macrobrachium nipponense adults but has no effect on molting.


Asunto(s)
Ovario , Palaemonidae , Animales , Ovario/metabolismo , Ovario/crecimiento & desarrollo , Femenino , Palaemonidae/genética , Palaemonidae/crecimiento & desarrollo , Palaemonidae/enzimología , Palaemonidae/metabolismo , Regulación del Desarrollo de la Expresión Génica , Secuencia de Aminoácidos , Filogenia , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Hepatopáncreas/metabolismo , Hepatopáncreas/crecimiento & desarrollo , Ácidos Grasos Insaturados
10.
Mol Cell ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39025072

RESUMEN

The RNA-induced silencing complex (RISC), which powers RNA interference (RNAi), consists of a guide RNA and an Argonaute protein that slices target RNAs complementary to the guide. We find that, for different guide-RNA sequences, slicing rates of perfectly complementary bound targets can be surprisingly different (>250-fold range), and that faster slicing confers better knockdown in cells. Nucleotide sequence identities at guide-RNA positions 7, 10, and 17 underlie much of this variation in slicing rates. Analysis of one of these determinants implicates a structural distortion at guide nucleotides 6-7 in promoting slicing. Moreover, slicing directed by different guide sequences has an unanticipated, 600-fold range in 3'-mismatch tolerance, attributable to guides with weak (AU-rich) central pairing requiring extensive 3' complementarity (pairing beyond position 16) to more fully populate the slicing-competent conformation. Together, our analyses identify sequence determinants of RISC activity and provide biochemical and conformational rationale for their action.

11.
Ann Med Surg (Lond) ; 86(7): 4042-4048, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38989236

RESUMEN

Osteoarthritis (OA) is a chronic disorder caused by degenerative changes in articular cartilage, which are mainly manifests as degeneration of cartilage, subchondral bone remodeling, as well as synovial inflammation. Over the next few decades, OA and its burden will continue to increase worldwide, posing a major public health challenge for the foreseeable future. Treatment for OA includes non-pharmacological, pharmacological, and surgical treatments. Existing conservative treatments and joint surgery can only alleviate the symptoms and cannot be cured, so new therapies for OA are urgently needed. Since advances in the understanding of OA pathophysiology, researchers have identified some potential therapeutic targets against degeneration of cartilage, subchondral bone remodeling and synovial inflammation, enabling development of the disease-modifying OA drugs (DMOADs). Additionally, a number of new technologies are also being investigated for treating OA, such as RNA interference (RNAi), CRISPR/Cas9 and PROTAC. The goal of this review is to describe the current development status of DMOADs and to discuss the potential of emerging therapeutic approaches for treating OA, thus providing a reference for OA treatments.

12.
Integr Zool ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016029

RESUMEN

Ticks can transmit many pathogens, including arboviruses, to their vertebrate hosts. Arboviruses must overcome or evade defense mechanisms during their passage from the tick gut to the hemolymph, salivary glands, and the feeding site in the host skin. This review summarizes current knowledge of defense mechanisms in specific tick tissues and at the feeding site in the host skin. We discuss the possible roles of these defense mechanisms in viral infection and transmission. The responses of tick salivary proteins to arbovirus infection are also discussed. This review provides information that may help accelerate research on virus-tick interactions.

13.
Pest Manag Sci ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007259

RESUMEN

BACKGROUND: The RNA interference (RNAi) efficiency of double-stranded RNA (dsRNA) delivery to insects by various methods is different and the reduced efficacy of feeding dsRNA is partly due to the presence of DNA/RNA non-specific endonuclease in the insect gut. However, the mechanism leading to the low RNAi efficiency of Nilaparvata lugens by feeding remains elusive. RESULTS: In this study, we identified a putatively DNA/RNA non-specific endonuclease gene in the N. lugens genome database that was highly expressed in the first nymphal instar and the midgut. Different expression levels of NldsRNase after feeding and injection suggested that NldsRNase might interfere with oral RNAi in N. lugens. A co-delivery RNAi strategy further revealed that the presence of NldsRNase reduces RNAi efficiency. In vitro dsRNA degradation experiments also showed that the stability of dsRNA was higher in a gut mixture from nymphs injected with dsNldsRNase. These results support the idea that the low oral RNAi response observed in N. lugens is likely due to the presence of NldsRNase. CONCLUSIONS: Our study provides insight into the differences in RNAi response between the injection and feeding of dsRNA in N. lugens and sheds light on the mechanisms underlying the reduced efficacy of RNAi via feeding. These findings may help to inform the development of more-effective RNAi-based strategies controlling N. lugens and other insect pests. © 2024 Society of Chemical Industry.

14.
Arch Toxicol ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012505

RESUMEN

Despite genome-wide association studies (GWAS) have identified more than 200 risk loci associated with colorectal cancer (CRC), the causal genes or risk variants within these loci and their biological functions remain not fully revealed. Recently, the genomic locus 19q13.2, with the lead SNP rs1800469 was identified as a crucial CRC risk locus in Asian populations. However, the functional mechanism of this region has not been fully elucidated. Here we employed an RNA interfering-based on-chip approach to screen for the genes essential for cell proliferation in the CRC risk locus 19q13.2. Notably, we found that RPS19 exhibited the most significant effect among the identified genes and acted as a critical oncogene facilitating CRC cell proliferation. Subsequently, combining integrative fine-mapping analysis and a large-scale population study consisting of 6027 cases and 6099 controls, we prioritized rs1025497 as a potential causal candidate for CRC risk, demonstrating that rs1025497[A] allele significantly reduced the risk of CRC (OR 0.70, 95% confidence interval = 0.56-0.83, P = 1.12 × 10-6), which was further validated in UK Biobank cohort comprising 5,313 cases and 21,252 controls. Mechanistically, we experimentally elucidated that variant rs1025497 might acted as an allele-specific silencer, inhibiting the expression level of oncogene RPS19 mediated by the transcription suppressive factor HBP1. Taken together, our sturdy unveils the significant role of RPS19 during CRC pathogenesis and delineates its distal regulatory mechanism mediated by rs1025497, advancing our understanding of the etiology of CRC and provided new insights into the personalized medicine of human cancer.

15.
Mol Ther Methods Clin Dev ; 32(3): 101280, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39015407

RESUMEN

Adeno-associated virus (AAV) vectors have become the leading platform for gene delivery in both preclinical research and therapeutic applications, making the production of high-titer AAV preparations essential. To date, most AAV-based studies use constitutive promoters (e.g., CMV, CAG), which are also active in human embryonic kidney (HEK)-293 producer cells, thus leading to the expression of the transgene already during production. Depending on the transgene's function, this might negatively impact producer cell performance and result in decreased AAV vector yields. Here, we evaluated a panel of diverse microRNA (miRNA)-based shRNA designs to identify a highly potent artificial miRNA for the transient suppression of transgenes during AAV production. Our results demonstrate that insertion of miRNA target sites into the 3' UTR of the transgene and simultaneous expression of the corresponding miRNA from the 3' UTR of conventional AAV production plasmids (rep/cap, pHelper) enabled efficient silencing of toxic transgene expression, thereby increasing AAV vector yields up to 240-fold. This strategy not only allows to maintain the traditional triple-transfection protocol, but also represents a universally applicable approach to suppress toxic transgenes, thereby boosting vector yields with so far unprecedented efficiency.

16.
Trends Microbiol ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39033069

RESUMEN

Cryptococcosis imposes a considerable burden on public health, and emerging drug responses to anticryptococcal drugs remain to be addressed. In this forum article we discuss the emerging drug responses of Cryptococcus, focusing on the critical nature of understanding such responses in order to improve the effectiveness of anticryptococcal therapeutics.

17.
Cells ; 13(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39056793

RESUMEN

During animal embryogenesis, one of the earliest specification events distinguishes extraembryonic (EE) from embryonic tissue fates: the serosa in the case of the insects. While it is well established that the homeodomain transcription factor Zen1 is the critical determinant of the serosa, the subsequent realization of this tissue's identity has not been investigated. Here, we examine serosal differentiation in the beetle Tribolium castaneum based on the quantification of morphological and morphogenetic features, comparing embryos from a Tc-zen1 RNAi dilution series, where complete knockdown results in amnion-only EE tissue identity. We assess features including cell density, tissue boundary morphology, and nuclear size as dynamic readouts for progressive tissue maturation. While some features exhibit an all-or-nothing outcome, other key features show dose-dependent phenotypic responses with trait-specific thresholds. Collectively, these findings provide nuance beyond the known status of Tc-Zen1 as a selector gene for serosal tissue patterning. Overall, our approach illustrates how the analysis of tissue maturation dynamics from live imaging extends but also challenges interpretations based on gene expression data, refining our understanding of tissue identity and when it is achieved.


Asunto(s)
Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Tribolium , Animales , Tribolium/genética , Tribolium/crecimiento & desarrollo , Membrana Serosa/metabolismo , Membrana Serosa/citología , Embrión no Mamífero/metabolismo , Embrión no Mamífero/citología , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Desarrollo Embrionario/genética
18.
Plant Cell Rep ; 43(8): 201, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048858

RESUMEN

KEY MESSAGE: Gene silencing of BcDCL genes improves gray mold disease control in the cultivated strawberry. Gene silencing technology offers new opportunities to develop new formulations or new pathogen-resistant plants for reducing impacts of agricultural systems. Recent studies offered the proof of concept that the symptoms of gray mold can be reduced by downregulating Dicer-like 1 (DCL1) and 2 (DCL2) genes of Botrytis cinerea. In this study, we demonstrate that both solutions based on dsRNA topical treatment and in planta expression targeting BcDCL1 and BcDCL2 genes can be used to control the strawberry gray mold, the most harmful disease for different fruit crops. 50, 70 and 100 ng µL-1 of naked BcDCL1/2 dsRNA, sprayed on plants of Fragaria x ananassa cultivar Romina in the greenhouse, displayed significant reduction of susceptibility, compared to the negative controls, but to a lesser extent than the chemical fungicide. Three independent lines of Romina cultivar were confirmed for their stable expression of the hairpin gene construct that targets the Bc-DCL1 and 2 sequences (hp-Bc-DCL1/2), and for the production of hp construct-derived siRNAs, by qRT-PCR and Northern blot analyses. In vitro and in vivo detached leaves, and fruits from the hp-Bc-DCL1/2 lines showed significantly enhanced tolerance to this fungal pathogen compared to the control. This decreased susceptibility was correlated to the reduced fungal biomass and the downregulation of the Bc-DCL1 and 2 genes in B. cinerea. These results confirm the potential of both RNAi-based products and plants for protecting the cultivated strawberry from B. cinerea infection, reducing the impact of chemical pesticides on the environment and the health of consumers.


Asunto(s)
Botrytis , Fragaria , Enfermedades de las Plantas , Interferencia de ARN , Fragaria/genética , Fragaria/microbiología , Botrytis/patogenicidad , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/genética , ARN Bicatenario/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistencia a la Enfermedad/genética
19.
Methods Mol Biol ; 2829: 91-107, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38951329

RESUMEN

RNA interference (RNAi) serves as an indispensable tool for gene function studies and has been substantiated through extensive research for its practical applications in the baculovirus expression vector system (BEVS). This chapter expands the RNAi toolkit in insect cell culture by including small interfering RNA (siRNA) in the protocol, in addition to the conventional use of double-stranded RNA (dsRNA). This chapter also brings attention to key design and reporting considerations, based on Minimum Information About an RNAi Experiment (MIARE) guidelines. Recommendations regarding online tools for dsRNA and siRNA design are provided, along with guidance on choosing suitable methods for measuring silencing outcomes.


Asunto(s)
Baculoviridae , Vectores Genéticos , Interferencia de ARN , ARN Bicatenario , ARN Interferente Pequeño , Animales , Baculoviridae/genética , ARN Bicatenario/genética , ARN Interferente Pequeño/genética , Vectores Genéticos/genética , Insectos/genética , Línea Celular , Células Sf9
20.
Bioorg Med Chem ; 110: 117825, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38954918

RESUMEN

To date, the US Food and Drug Administration (FDA) has approved six small interfering RNA (siRNA) drugs: patisiran, givosiran, lumasiran, inclisiran, vutrisiran, and nedosiran, serving as compelling evidence of the promising potential of RNA interference (RNAi) therapeutics. The successful implementation of siRNA therapeutics is improved through a combination of various chemical modifications and diverse delivery approaches. The utilization of chemically modified siRNA at specific sites on either the sense strand (SS) or antisense strand (AS) has the potential to enhance resistance to ribozyme degradation, improve stability and specificity, and prolong the efficacy of drugs. Herein, we provide comprehensive analyses concerning the correlation between chemical modifications and structure-guided siRNA design. Various modifications, such as 2'-modifications, 2',4'-dual modifications, non-canonical sugar modifications, and phosphonate mimics, are crucial for the activity of siRNA. We also emphasize the essential strategies for enhancing overhang stability, improving RISC loading efficacy and strand selection, reducing off-target effects, and discussing the future of targeted delivery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...