Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.182
Filtrar
1.
J Med Imaging (Bellingham) ; 12(Suppl 1): S13003, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39055549

RESUMEN

Purpose: Use of mechanical imaging (MI) as complementary to digital mammography (DM), or in simultaneous digital breast tomosynthesis (DBT) and MI - DBTMI, has demonstrated the potential to increase the specificity of breast cancer screening and reduce unnecessary biopsies compared with DM. The aim of this study is to investigate the increase in the radiation dose due to the presence of an MI sensor during simultaneous image acquisition when automatic exposure control is used. Approach: A radiation dose study was conducted on clinically available breast imaging systems with and without an MI sensor present. Our estimations were based on three approaches. In the first approach, exposure values were compared in paired clinical DBT and DBTMI acquisitions in 97 women. In the second approach polymethyl methacrylate (PMMA) phantoms of various thicknesses were used, and the average glandular dose (AGD) values were compared. Finally, a rectangular PMMA phantom with a 45 mm thickness was used, and the AGD values were estimated based on air kerma measurements with an electronic dosemeter. Results: The relative increase in exposure estimated from digital imaging and communications in medicine headers when using an MI sensor in clinical DBTMI was 11.9 % ± 10.4 . For the phantom measurements of various thicknesses of PMMA, the relative increases in the AGD for DM and DBT measurements were, on average, 10.7 % ± 3.1 and 11.4 % ± 3.0 , respectively. The relative increase in the AGD using the electronic dosemeter was 11.2 % ± < 0.001 in DM and 12.2 % ± < 0.001 in DBT. The average difference in dose between the methods was 11.5 % ± 3.3 . Conclusions: Our measurements suggest that the use of simultaneous breast radiography and MI increases the AGD by an average of 11.5 % ± 3.3 . The increase in dose is within the acceptable values for mammography screening recommended by European guidelines.

2.
Eur J Radiol ; 178: 111607, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39033690

RESUMEN

OBJECTIVE: To demonstrate the value of using 50 keV virtual monochromatic images with deep learning image reconstruction (DLIR) in low-dose dual-energy CT enterography (CTE). METHODS: In this prospective study, 114 participants (62 % M; 41.9 ± 16 years) underwent dual-energy CTE. The early-enteric phase was performed using standard-dose (noise index (NI): 8) and images were reconstructed at 70 keV and 50 keV with 40 % strength ASIR-V (ASIR-V40%). The late-enteric phase used low-dose (NI: 12) and images were reconstructed at 50 keV with ASIR-V40%, and DLIR at medium (DLIR-M) and high strength (DLIR-H). Image standard deviation (SD), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), edge-rise-slope (ERS) were computed. The quantitative comb sign score was calculated for the 27 patients with Crohn's disease. The subjective noise, image contrast, display of rectus artery were scored using a 5-point scale by two radiologists blindly. RESULTS: Effective dose was reduced by 50 % (P < 0.001) in the late-enteric phase to 3.26 mSv. The lower-dose 50 keV-DLIR-H images (SD:17.7 ± 0.5HU) had similar image noise (P = 0.97) as the standard-dose 70 keV-ASIR-V40% images (SD:17.7 ± 0.73HU), but with higher (P < 0.001) SNR, CNR, ERS and quantitative comb sign score (5.7 ± 0.17, 1.8 ± 0.12, 156.04 ± 5.21 and 5.05 ± 0.73, respectively). Furthermore, the lower-dose 50 keV-DLIR-H images obtained the highest score in the rectus artery visibility (4.27 ± 0.6). CONCLUSIONS: The 50 keV images in dual-energy CTE with DLIR provides high-quality images, with a 50 % reduction in radiation dose. Images with high contrast and density resolutions significantly enhance the diagnostic confidence of Crohn's disease and are essential for the clinical development of individualized treatment plans.

3.
Appl Radiat Isot ; 212: 111423, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38981165

RESUMEN

The dose effect of radiation has long been a topic of concern, but the molecular mechanism behind it is still unclear. In this study, dried pea seeds were irradiated with 252Cf fission neutron source. Through analyzing the transcriptome and proteome of M1 generation pea (Pisum sativum L.) leaves, we studied the molecular rule and mechanism of neutron dose effect. Our results showed three important rules of global gene expression in the studied dose range. The rule closely related to the neutron absorbed dose at the transcription and translation levels is: the greater the difference in neutron absorbed dose between two radiation treatment groups, the greater the difference in differential expression between the two groups and the control group. We also obtained important sensitive metabolic pathways of neutron radiation, as well as related key genes. Furthermore, the overall molecular regulation mechanism of dose effect was revealed based on the main functional items obtained. Our research results can be applied to appropriate radiation dose estimation and agricultural production practice.

4.
F1000Res ; 13: 683, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962690

RESUMEN

Background: Recent innovations are making radiology more advanced for patient and patient services. Under the immense burden of radiology practice, Artificial Intelligence (AI) assists in obtaining Computed Tomography (CT) images with less scan time, proper patient placement, low radiation dose (RD), and improved image quality (IQ). Hence, the aim of this study was to evaluate and compare the positioning accuracy, RD, and IQ of AI-based automatic and manual positioning techniques for CT kidney ureters and bladder (CT KUB). Methods: This prospective study included 143 patients in each group who were referred for computed tomography (CT) KUB examination. Group 1 patients underwent manual positioning (MP), and group 2 patients underwent AI-based automatic positioning (AP) for CT KUB examination. The scanning protocol was kept constant for both the groups. The off-center distance, RD, and quantitative and qualitative IQ of each group were evaluated and compared. Results: The AP group (9.66±6.361 mm) had significantly less patient off-center distance than the MP group (15.12±9.55 mm). There was a significant reduction in RD in the AP group compared with that in the MP group. The quantitative image noise (IN) was lower, with a higher signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in the AP group than in the MP group (p<0.05). Qualitative IQ parameters such as IN, sharpness, and overall IQ also showed significant differences (p< 0.05), with higher scores in the AP group than in the MP group. Conclusions: The AI-based AP showed higher positioning accuracy with less off-center distance (44%), which resulted in 12% reduction in RD and improved IQ for CT KUB imaging compared with MP.

5.
Acad Radiol ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38969575

RESUMEN

RATIONALE AND OBJECTIVES: To assess image quality and radiation dose of ultra-high-pitch CT pulmonary angiography (CTPA) with free-breathing technique for diagnosis of pulmonary embolism using a photon-counting detector (PCD) CT compared to matched energy-integrating detector (EID)-based single-energy CTPA. MATERIALS AND METHODS: Fifty-one PCD-CTPAs were prospectively compared to 51 CTPAs on a third-generation dual-source EID-CT. CTPAs were acquired with an ultra-high-pitch protocol with free-breathing technique (40 mL contrast medium, pitch 3.2) at 140 kV (PCD) and 70-100 kV (EID). Iodine maps were reconstructed from spectral PCD-CTPAs. Image quality of CTPAs and iodine maps was assessed independently by three radiologists. Additionally, CT attenuation numbers within pulmonary arteries as well as signal-to-noise and contrast-to-noise ratios (SNR, CNR) were compared. Administered radiation dose was compared. RESULTS: CT attenuation was higher in the PCD-group (all P < 0.05). CNR and SNR were higher in lobar pulmonary arteries in PCD-CTPAs (P < 0.05), whereas no difference was ascertained within the pulmonary trunk (P > 0.05). Image quality of PCD-CTPA was rated best by all readers (excellent/good image quality in 96.1% of PCD-CTPAs vs. 50.9% of EID-CTPAs). PCD-CT produced no non-diagnostic scans vs. three non-diagnostic (5.9%) EID-CTPAs. Radiation dose was lower with PCD-CT than with EID-CT (effective dose 1.33 ± 0.47 vs. 1.80 ± 0.82 mSv; all P < 0.05). CONCLUSION: Ultra-high-pitch CTPA with free-breathing technique with PCD-CT allows for superior image quality with significantly reduced radiation dose and full spectral information. With the ultra-high pitch, only PCD-CTPA enables reconstruction of iodine maps containing additional functional information.

6.
Eur Radiol ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967660

RESUMEN

PURPOSE: To evaluate the quality of lung perfusion imaging obtained with photon-counting-detector CT (PCD-CT) in comparison with dual-source, dual-energy CT (DECT). METHODS: Seventy-one consecutive patients scanned with PCD-CT were compared to a paired population scanned with dual-energy on a 3rd-generation DS-CT scanner using (a) for DS-CT (Group 1): collimation: 64 × 0.6 × 2 mm; pitch: 0.55; (b) for PCD-CT (Group 2): collimation: 144 × 0.4 mm; pitch: 1.5; single-source acquisition. The injection protocol was similar in both groups with the reconstruction of perfusion images by subtraction of high- and low-energy virtual monoenergetic images. RESULTS: Compared to Group 1, Group 2 examinations showed: (a) a shorter duration of data acquisition (0.93 ± 0.1 s vs 3.98 ± 0.35 s; p < 0.0001); (b) a significantly lower dose-length-product (172.6 ± 55.14 vs 339.4 ± 75.64 mGy·cm; p < 0.0001); and (c) a higher level of objective noise (p < 0.0001) on mediastinal images. On perfusion images: (a) the mean level of attenuation did not differ (p = 0.05) with less subjective image noise in Group 2 (p = 0.049); (b) the distribution of scores of fissure visualization differed between the 2 groups (p < 0.0001) with a higher proportion of fissures sharply delineated in Group 2 (n = 60; 84.5% vs n = 26; 26.6%); (c) the rating of cardiac motion artifacts differed between the 2 groups (p < 0.0001) with a predominance of examinations rated with mild artifacts in Group 2 (n = 69; 97.2%) while the most Group 1 examinations showed moderate artifacts (n = 52; 73.2%). CONCLUSION: PCD-CT acquisitions provided similar morphologic image quality and superior perfusion imaging at lower radiation doses. CLINICAL RELEVANCE STATEMENT: The improvement in the overall quality of perfusion images at lower radiation doses opens the door for wider applications of lung perfusion imaging in clinical practice. KEY POINTS: The speed of data acquisition with PCD-CT accounts for mild motion artifacts. Sharply delineated fissures are depicted on PCD-CT perfusion images. High-quality perfusion imaging was obtained with a 52% dose reduction.

7.
Eur J Radiol ; 177: 111558, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964225

RESUMEN

PURPOSE: Cone-Beam CT (CBCT) is well established in orofacial diagnostic imaging and is currently expanding into musculoskeletal applications. This systematic review sought to update the knowledge base on radiation dose comparisons between imaging modalities in MSK imaging and consider how research studies have reported dose measures. METHODS: This review utilised a database search and an online literature tool. Studies with potential relevance were screened then before full text review, each performed by two independent reviewers, with a third independent reviewer available for conflicts. Data was extracted using a bespoke tool created within the literature tool. RESULTS: 21 studies were included in the review which compared CBCT with MSCT (13), conventional radiography (1), or both (7). 19 studies concluded that CBCT provided a reduced radiation dose when compared with MSCT: the factor of reduction ranging from 1.71 to 50 with an average of 12. Studies comparing CBCT to DR found DR to have an average dose reduction of 4.55. CONCLUSIONS: The claims that CBCT produces a lower radiation dose than MSCT is borne out with most studies confirming doses less than half that of MSCT. Fewer studies include DR as a comparator but confirm that CBCT results in a higher effective dose on average, with scope for CBCT to provide an equivalent radiation dose. This review highlighted a need for consistency in methodology when conducting studies which compare radiation dose across different technologies. Potential solutions lie outside the scope of this review, likely requiring multi-discipline approach to ensure a cohesive outcome.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Dosis de Radiación , Tomografía Computarizada de Haz Cónico/métodos , Humanos , Enfermedades Musculoesqueléticas/diagnóstico por imagen , Sistema Musculoesquelético/diagnóstico por imagen
8.
Front Oncol ; 14: 1325987, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988713

RESUMEN

Objective: To investigate the feasibility and evaluate the safety and effectiveness of Computed Tomography (CT) guided125I radioactive particle implantation for treating lymph node metastases in radioiodine-refractory differentiated thyroid cancer (RAIR-DTC). To verify the accuracy of the computerized three-dimensional treatment planning system (TPS) in treating lymph node metastasis using125I particle implantation at the dosimetric level. Methods: A retrospective analysis was conducted on 42 patients with RAIR-DTC and lymph node metastases who were admitted to the General Hospital of the Northern Theater Command between December 2016 and January 2019. During this analysis, physicians utilized preoperative CT images to design an intraoperative plan using TPS. The dosimetric parameters of the postoperative plan were then compared to the preoperative plan. Additionally, this study examined the changes in tumor size and tumor-related marker Thyroglobulin (Tg) values in patients at 2, 6, and 12 months after the operation. Results: The number of125I radioactive particles implanted in 42 patients was 226, with an average of 14.5 (range 2.0-30.0) particles implanted per lesion. The local remission rates were 97.62% (41/42), 88.10% (37/42), and 85.71% (36/42) at 2, 6, and 12 months postoperatively, respectively. The volume of the lesions was (4.44 ± 1.57) cm3, (4.20 ± 1.70) cm3, and (4.23 ± 1.77) cm3at 2, 6, and 12 months after treatment, respectively, which significantly decreased from the preoperative baseline level of (6.87 ± 1.67) cm3(t-values: 9.466, 9.923, 7.566, all P<0.05). The Tg levels were 15.95 (5.45, 73.93) µg/L, 8.90 (2.20, 39.21) µg/L, and 6.00 (1.93, 14.18) µg/L at 2, 6, and 12 months after treatment, respectively, which were significantly lower than the preoperative baseline levels of 53.50 (20.94, 222.92) µg/L (Z values: -5.258, -5.009, -4.987, all P < 0.001). Postoperatively, Delivered to 90% of the GTV(D90) was slightly lower than the prescribed dose in 95.23% (40/42) of patients, but the difference was not statistically significant [(12,378.8 ± 3,182.0), (12,497.8 ± 1,686.4) cGy; t=0.251, P>0.05], and postoperative dose parameters delivered to 100% of the gross tumor volume (GTV)(D100) (6,881.5 ± 1,381.8) cGy, the volume percentages of GTV receiving 150% of the prescribed dose(V150) (58.5 ± 18.40)%) were lower than the preoperative plan D100 (8,085.8 ± 2,330.0) cGy, V150 (66.5 ± 17.70)%; t-value=8.913 and 3.032, both P<0.05; the remaining indicators were not significantly different from the preoperative plan (the differences in the number of implanted particles, Planning Target Volume(PTV), the volume percentages of GTV receiving 100% of the prescribed dose(V100), Homogeneity Index(HI)were not statistically significant (t/Z = -0.593, -1.604, 1.493, -0.663, all P>0.05). Conclusion: Referring to the TPS preoperative plan, the125I particle implantation therapy for RAIR-DTC lymph node metastasis can achieve the expected dose distribution, ensuring precise short-term local tumor control efficacy.

9.
Proc Natl Acad Sci U S A ; 121(28): e2321770121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38950370

RESUMEN

Solar particle events (SPEs) are short-lived bursts of high-energy particles from the solar atmosphere and are widely recognized as posing significant economic risks to modern society. Most SPEs are relatively weak and have minor impacts on the Earth's environment, but historic records contain much stronger SPEs which have the potential to alter atmospheric chemistry, impacting climate and biological life. The impacts of such strong SPEs would be far more severe when the Earth's protective geomagnetic field is weak, such as during past geomagnetic excursions or reversals. Here, we model the impacts of an extreme SPE under different geomagnetic field strengths, focusing on changes in atmospheric chemistry and surface radiation using the atmosphere-ocean-chemistry-climate model SOCOL3-MPIOM and the radiation transfer model LibRadtran. Under current geomagnetic conditions, an extreme SPE would increase NOx concentrations in the polar stratosphere and mesosphere, causing reductions in extratropical stratospheric ozone lasting for about a year. In contrast, with no geomagnetic field, there would be a substantial increase in NOx throughout the entire atmosphere, resulting in severe stratospheric ozone depletion for several years. The resulting ground-level ultraviolet (UV) radiation would remain elevated for up to 6 y, leading to increases in UV index up to 20 to 25% and solar-induced DNA damage rates by 40 to 50%. The potential evolutionary impacts of past extreme SPEs remain an important question, while the risks they pose to human health in modern conditions continue to be underestimated.

10.
J Med Imaging (Bellingham) ; 11(4): 044003, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39035051

RESUMEN

Purpose: Monitoring radiation dose and time parameters during radiological interventions is crucial, especially in neurointerventional procedures, such as aneurysm treatment with embolization coils. The algorithm presented detects the presence of these embolization coils in medical images. It establishes a bounding box as a reference for automated collimation, with the primary objective being to enhance the efficiency and safety of neurointerventional procedures by actively optimizing image quality while minimizing patient dose. Methods: Two distinct methodologies are evaluated in our study. The first involves deep learning, employing the Faster R-CNN model with a ResNet-50 FPN as a backbone and a RetinaNet model. The second method utilizes a classical blob detection approach, serving as a benchmark for comparison. Results: We performed a fivefold cross-validation, and our top-performing model achieved mean mAP@75 of 0.84 across all folds on validation data and mean mAP@75 of 0.94 on independent test data. Since we use an upscaled bounding box, achieving 100% overlap between ground truth and prediction is not necessary. To highlight the real-world applications of our algorithm, we conducted a simulation featuring a coil constructed from an alloy wire, effectively showcasing the implementation of automatic collimation. This resulted in a notable reduction in the dose area product, signifying the reduction of stochastic risks for both patients and medical staff by minimizing scatter radiation. Additionally, our algorithm assists in avoiding extreme brightness or darkness in X-ray angiography images during narrow collimation, ultimately streamlining the collimation process for physicians. Conclusion: To our knowledge, this marks the initial attempt at an approach successfully detecting embolization coils, showcasing the extended applications of integrating detection results into the X-ray angiography system. The method we present has the potential for broader application, allowing its extension to detect other medical objects utilized in interventional procedures.

11.
Eur Heart J Imaging Methods Pract ; 2(1): qyae060, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39045197

RESUMEN

Aims: To determine whether paediatric congenital heart disease (CHD) patients with epicardial cardiac implantable electronic devices (CIEDs) receive high cumulative effective doses (CEDs) of ionizing radiation from medical imaging tests. Methods and results: We compared 28 paediatric CHD patients with epicardial CIEDs (cases) against 40 patients with no CIED matched by age at operation, sex, surgical era, and CHD diagnosis (controls). We performed a retrospective review of radiation exposure from medical imaging exams between 2006 and 2022. Radiation dose from computed tomography (CT) and X-ray radiography was calculated using the National Cancer Institute Radiation Dosimetry Tool. We performed univariate analysis to compare the CED between the two groups. In the case subgroup, we convened experts' review to adjudicate the prevalence of CT exams that should have been performed with magnetic resonance imaging (MRI) in the absence of a CIED. Children (median age 2.5 years at implant) with CIEDs received significantly higher median CED compared with matched controls (6.90 vs. 1.72 mSv, P = 0.0018). In cases, expert adjudication showed that 80% of the CT exams would have been performed with MRI in the absence of a CIED. This resulted, on average, a five-fold increase in the effective dose (ED) from post-lead implant CTs. Conclusion: Paediatric CHD patients with CIED received four times higher CED than matched controls. Improved access to medical imaging tests without ionizing radiation, such as MRI, could potentially reduce the ED in CIED patients by up to five times.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38992198

RESUMEN

PURPOSE: Quantitative digital subtraction angiography (qDSA) has been proposed to quantify blood velocity for monitoring treatment progress during blood flow altering interventions. The method requires high frame rate imaging [~ 30 frame per second (fps)] to capture temporal dynamics. This work investigates performance of qDSA in low radiation dose acquisitions to facilitate clinical translation. MATERIALS AND METHODS: Velocity quantification accuracy was evaluated at five radiation dose rates in vitro and in vivo. Angiographic technique ranged from 30 fps digital subtraction angiography ( 29.3 ± 1.7 mGy / s at the interventional reference point) down to a 30 fps protocol at 23% higher radiation dose per frame than fluoroscopy ( 1.1 ± 0.2 mGy / s ). The in vitro setup consisted of a 3D-printed model of a swine hepatic arterial tree connected to a pulsatile displacement pump. Five different flow rates (3.5-8.8 mL/s) were investigated in vitro. Angiography-based fluid velocity measurements were compared across dose rates using ANOVA and Bland-Altman analysis. The experiment was then repeated in a swine study (n = 4). RESULTS: Radiation dose rate reductions for the lowest dose protocol were 99% and 96% for the phantom and swine study, respectively. No significant difference was found between angiography-based velocity measurements at different dose rates in vitro or in vivo. Bland-Altman analysis found little bias for all lower-dose protocols (range: [- 0.1, 0.1] cm/s), with the widest limits of agreement ([- 3.3, 3.5] cm/s) occurring at the lowest dose protocol. CONCLUSIONS: This study demonstrates the feasibility of quantitative blood velocity measurements from angiographic images acquired at reduced radiation dose rates.

13.
Appl Radiat Isot ; 212: 111440, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39018816

RESUMEN

The sensitivity to ionizing radiation is increasing by age of development for some malignant tumors. Therefore, children have higher risk to radiation induced tumors due the high cellular rate of proliferation and long lifespan probability. The risk is also increase with increase the effective and organ doses. Computed tomography (CT) exposed pediatric patients to higher radiation dose during multiphase image acquisition, repeated exams, for follow-up procedures. This research intended to estimate the radiogenic risks and effective radiation doses resulted from CT enhanced contrast for abdomen and pelvis. 126 (66 (62.3%) males, 60 (47.7%) females) pediatric patients underwent CT enhanced abdominal examination at Medical Imaging Department at King Khalid Hospital and Prince Sultan Center for Health Services, Alkharj, Saudi Arabia. The average and range of pediatric age (years) is 11.6 ± 5.0 (0.1-17). The mean, standard deviation, and range of the volume CT air kerma index (CVOL (mGy) and the air kerma length product (PKL, mGy.cm) were 9.8 ± 9.4 (2.1-45.8) and 1795 (221-3150) per abdominopelvic procedure, respectively. The mean and range of the effective dose (mSv) per procedure are 26.9 (2.4-59.1). The effective dose is higher compared to the most previously published studies. The effective dose per pediatric abdomen and pelvis with contrast procedure suggest that the patient dose is not optimized yet. Because the chest and pelvis region contain sensitive organs that are irradiated repeatedly, dose optimization is crucial.

14.
J Appl Clin Med Phys ; : e14467, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042480

RESUMEN

PURPOSE: Currently, precise patient body weight (BW) at the time of diagnostic imaging cannot always be used for radiation dose management. Various methods have been explored to address this issue, including the application of deep learning to medical imaging and BW estimation using scan parameters. This study develops and evaluates machine learning-based BW prediction models using 11 features related to radiation dose obtained from computed tomography (CT) scans. METHODS: A dataset was obtained from 3996 patients who underwent positron emission tomography CT scans, and training and test sets were established. Dose metrics and descriptive data were automatically calculated from the CT images or obtained from Digital Imaging and Communications in Medicine metadata. Seven machine-learning models and three simple regression models were employed to predict BW using features such as effective diameter (ED), water equivalent diameter (WED), and mean milliampere-seconds. The mean absolute error (MAE) and correlation coefficient between the estimated BW and the actual BW obtained from each BW prediction model were calculated. RESULTS: Our results found that the highest accuracy was obtained using a light gradient-boosting machine model, which had an MAE of 1.99 kg and a strong positive correlation between estimated and actual BW (ρ = 0.972). The model demonstrated significant predictive power, with 73% of patients falling within a ±5% error range. WED emerged as the most relevant dose metric for BW estimation, followed by ED and sex. CONCLUSIONS: The proposed machine-learning approach is superior to existing methods, with high accuracy and applicability to radiation dose management. The model's reliance on universal dose metrics that are accessible through radiation dose management software enhances its practicality. In conclusion, this study presents a robust approach for BW estimation based on CT imaging that can potentially improve radiation dose management practices in clinical settings.

15.
Emerg Radiol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38955874

RESUMEN

PURPOSE: To evaluate patient and procedure-related factors contributing to the radiation dose, cumulative fluoroscopy time (CFT), and procedural time (PT) of Arterial Embolization (AE) for suspected active bleeding. METHODS: Data on patients who underwent AE for suspected bleeding was retrospectively gathered between January 2019 and April 2022. Data collected included the dependent variables consisting of dose-area product (DAP), CFT, PT, and independent variables consisting of demographic, bleeding-specific, and procedure-specific parameters. All statistical computations were performed in SPSS statistics. The alpha value was set at 0.05. RESULTS: Data from a total of 148 AE were collected with an average patient's age of 61.06 ± 21.57 years. Higher DAP was independently associated with male sex (p < 0.002), age ranges between 46 and 65 years (p = 0.019) and > 66 years (p = 0.027), BMI above 30 (p = 0.016), attending with less than 10 years of experience (p = 0.01), and bleeding in the abdomen and pelvis (p = 0.027). Longer CFT was independently associated with attending with less than 10 years of experience (p < 0.001), having 2 (p = 0.004) or > 3 (p = 0.005) foci of bleed, and age between 46 and 65 years (p = 0.007) and ≥ 66 years (p = 0.017). Longer PT was independently associated with attending with less than 10 years of experience (p < 0.001) and having 2 (p = 0.014) or > 3 (p = 0.005) foci of bleed. CONCLUSION: The interventionist experience influenced radiation dose, CFT and PT. Dose was also affected by patients' sex, age, BMI, as well as bleeding location. CFT was also affected by patients' age, and both CFT and PT were also affected by the number of bleeding foci. These findings highlight the multifaceted factors that affect radiation dose and procedural time, emphasizing the importance of interventionist expertise, patient's age, sex, BMI, location and number of bleeds.

16.
Cancer Biol Ther ; 25(1): 2371632, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38946404

RESUMEN

To investigate the impact of the effective radiation dose to immune cells (EDIC) and gross tumor volume (GTV) on lymphopenia and survival in patients with locally advanced esophageal squamous cell carcinoma (LAESCC). Between January 2013 and December 2020, 272 LAESCC patients were treated with definitive radiotherapy in two institutions. Based on radiation doses to the lungs, heart, and body region scanned, EDIC was calculated as an equal uniform dose to the total blood considering blood flow and fraction effect. The radiotherapy plan was used to calculate the GTVs. Lymphopenia was graded based on the lowest lymphocyte count during RT. The overall survival (OS), progress-free survival (PFS), and local recurrence-free survival (LRFS) were analyzed statistically. The lowest lymphocyte count was significantly correlated with EDIC (r= -0.389, p < .001) and GTV (r= -0.211, p < .001). Lymphopenia, EDIC, and GTV are risk factors for patients with ESCC. In a Kaplan-Meier analysis with EDIC and GTV as stratification factors, lymphopenia was not associated with OS in the EDIC>12.9 Gy group (p = .294)and EDIC ≤ 12.9 Gy group, and it was also not associated with OS in GTV>68.8 cm3 group (p = .242) and GTV ≤ 68.8 cm3 group(p = .165). GTV and EDIC had an impact on the relationship between lymphopenia and OS in patients with LAESCC undergoing definitive RT. Poorer OS, PFS, and LRFS are correlated with lymphopenia, higher EDIC, and larger GTV.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Linfopenia , Humanos , Linfopenia/etiología , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/mortalidad , Carcinoma de Células Escamosas de Esófago/radioterapia , Masculino , Femenino , Persona de Mediana Edad , Neoplasias Esofágicas/mortalidad , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/radioterapia , Anciano , Adulto , Estudios Retrospectivos , Pronóstico , Anciano de 80 o más Años , Carga Tumoral , Recuento de Linfocitos , Dosificación Radioterapéutica
17.
Radiat Oncol J ; 42(2): 104-115, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38946072

RESUMEN

Several recent studies have investigated the use of hypofractionated radiotherapy (HFRT) for various cancers. However, HFRT for non-small cell lung cancer (NSCLC) with or without concurrent chemotherapy is not yet widely used because of concerns about serious side effects and the lack of evidence for improved treatment results. Investigations of HFRT with concurrent chemotherapy in NSCLC have usually been performed in single-arm studies and with a small number of patients, so there are not yet sufficient data. Therefore, the Korean Society for Radiation Oncology Practice Guidelines Committee planned this review article to summarize the evidence on HFRT so far and provide it to radiation oncology clinicians. In summary, HFRT has demonstrated promising results, and the reviewed data support its feasibility and comparable efficacy for the treatment of locally advanced NSCLC. The incidence and severity of esophageal toxicity have been identified as major concerns, particularly when treating large fraction sizes. Strategies, such as esophagus-sparing techniques, image guidance, and dose constraints, may help mitigate this problem and improve treatment tolerability. Continued research and clinical trials are essential to refine treatment strategies, identify optimal patient selection criteria, and enhance therapeutic outcomes.

18.
J Pharm Bioallied Sci ; 16(Suppl 2): S1795-S1797, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882804

RESUMEN

Background: Dental imaging plays a crucial role in diagnosis and treatment planning, with cone-beam computed tomography (CBCT) and medical computed tomography (CT) being two common modalities. This study aims to compare the radiation doses associated with CBCT and medical CT imaging in dental applications to assess their relative safety and efficacy. Materials and Methods: We conducted a retrospective study using data from 100 patients who underwent both CBCT and medical CT scans for dental purposes. The radiation doses were measured in terms of dose-length product (DLP) for medical CT and dose-area product (DAP) for CBCT. The effective dose (ED) was calculated using appropriate conversion factors. Patient demographics, scan parameters, and radiation doses were recorded and analyzed. Results: The results indicated that the mean DLP for medical CT scans was 220 mGycm, whereas the mean DAP for CBCT scans was 150 mGycm². The corresponding mean effective doses for medical CT and CBCT were 2.5 mSv and 1.8 mSv, respectively. The radiation dose from CBCT was found to be approximately 28% lower than that from medical CT. Conclusion: This study demonstrates that CBCT imaging for dental applications results in significantly lower radiation doses compared to medical CT. While both modalities provide valuable diagnostic information, the choice of imaging technique should consider the balance between diagnostic quality and radiation exposure, especially for pediatric and high-risk patients. Dental practitioners should be aware of the potential dose reduction benefits associated with CBCT when appropriate for the clinical scenario.

19.
J Radiol Prot ; 44(2)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38834053

RESUMEN

A Monte Carlo (MC) programme was written using the dose point kernel method to calculate doses in the roof zone of a building from nearby releases of radioactive gases. A Gaussian Plume Model (GPM) was parameterised to account for near-field building effects on plume spread and reflection from the roof. Rooftop recirculation zones and building-generated plume spread effects were accounted in a novel Dual Gaussian Plume (DGP) formulation used with the MC model, which allowed for the selection of angle of approach flow, plume release height in relation to the building and position of the release point in relation to the leading edge of the building. Three-dimensional wind tunnel concentration field data were used for the parameterisation. The MC code used the parameterised concentration field to calculate the contributions to effective dose from inhalation, cloud immersion from positron/beta particles, and gamma-ray dose for a wide range of receptor dose positions in the roof zone, including receptor positions at different heights above the roof. Broad trends in predicted radiation dose with angle of approach flow, release position in relation to the building and release height are shown. Alternative approaches for the derivation of the concentration field are discussed.


Asunto(s)
Contaminantes Radiactivos del Aire , Método de Montecarlo , Dosis de Radiación , Distribución Normal , Contaminantes Radiactivos del Aire/análisis , Monitoreo de Radiación/métodos , Contaminación del Aire Interior/análisis , Humanos , Simulación por Computador
20.
J Med Phys ; 49(1): 1-5, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828064

RESUMEN

Purpose: To calculate the contribution of absorbed dose by organs in the biokinetics of Tc-99m when used for radiodiagnosis of the adult male heart employing a Matlab program. Methods: The absorbed self-dose of the adult male heart and absorbed dose by organs in the biokinetics of the heart when administering Tc-99m are estimated using the MIRD formalism and the Cristy-Eckerman representation, which have been employed to develop the algorithm in Matlab. Results: The results indicate that electron capture emissions of 1.446 (mGy/MBq) and Auger electrons of 0.062 (mGy/MBq) are entirely directed towards the target organ (heart) and contribute 29.33% and 1.25% respectively to its total dose. Additionally, the dosimetric contributions of biokinetic organs correspond to characteristic radiation emissions and gamma photons at 2.578 (mGy/MBq) for Tc-99m, representing 52.29% of its total dose. Conclusion: These dosimetric contributions are significant in estimating the total absorbed dose by the heart in adult males and should not be disregarded.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...