Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 319
Filtrar
1.
Heliyon ; 10(15): e35632, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170509

RESUMEN

As lithium-bearing minerals become critical raw materials for the field of energy storage and advanced technologies, the development of tools to accurately identify and differentiate these minerals is becoming essential for efficient resource exploration, mining, and processing. Conventional methods for identifying ore minerals often depend on the subjective observation skills of experts, which can lead to errors, or on expensive and time-consuming techniques such as Inductively Coupled Plasma Mass Spectrometry (ICP-MS) or Optical Emission Spectroscopy (ICP-OES). More recently, Raman Spectroscopy (RS) has emerged as a powerful tool for characterizing and identifying minerals due to its ability to provide detailed molecular information. This technique excels in scenarios where minerals have similar elemental content, such as petalite and spodumene, by offering distinct vibrational information that allows for clear differentiation between such minerals. Considering this case study and its particular relevance to the lithium-mining industry, this manuscript reports the development of an unsupervised methodology for lithium-mineral identification based on Raman Imaging. The deployed machine-learning solution provides accurate and interpretable results using the specific bands expected for each mineral. Furthermore, its robustness is tested with additional blind samples, providing insights into the unique spectral signatures and analytical features that enable reliable mineral identification.

2.
Nano Lett ; 24(33): 10016-10023, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39109676

RESUMEN

Food safety is vital to human health, necessitating the development of nondestructive, convenient, and highly sensitive methods for detecting harmful substances. This study integrates cellulose dissolution, aligned regeneration, in situ nanoparticle synthesis, and structural reconstitution to create flexible, transparent, customizable, and nanowrinkled cellulose/Ag nanoparticle membranes (NWCM-Ag). These three-dimensional nanowrinkled structures considerably improve the spatial-electromagnetic-coupling effect of metal nanoparticles on the membrane surface, providing a 2.3 × 108 enhancement factor for the surface-enhanced Raman scattering (SERS) effect for trace detection of pesticides in foods. Notably, the distribution of pesticides in the apple peel and pulp layers is visualized through Raman imaging, confirming that the pesticides penetrate the peel layer into the pulp layer (∼30 µm depth). Thus, the risk of pesticide ingestion from fruits cannot be avoided by simple washing other than peeling. This study provides a new idea for designing nanowrinkled structures and broadening cellulose utilization in food safety.


Asunto(s)
Celulosa , Inocuidad de los Alimentos , Nanopartículas del Metal , Plaguicidas , Espectrometría Raman , Celulosa/química , Plaguicidas/análisis , Plaguicidas/química , Nanopartículas del Metal/química , Espectrometría Raman/métodos , Plata/química , Malus/química , Humanos , Frutas/química , Nanotecnología/métodos , Propiedades de Superficie , Contaminación de Alimentos/análisis
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124623, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39002470

RESUMEN

Mitotic inhibitors are drugs commonly used in chemotherapy, but their nonspecific and indiscriminate distribution throughout the body after intravenous administration can lead to serious side effects, particularly on the cardiovascular system. In this context, our investigation into the mechanism of the cytotoxic effects on endothelial cells of mitotic inhibitors widely used in cancer treatment, such as paclitaxel (also known as Taxol) and Vinca alkaloids, holds significant practical implications. Understanding these mechanisms can lead to more targeted and less harmful cancer treatments. Human aorta endothelial cells (HAECs) were incubated with selected mitotic inhibitors in a wide range of concentrations close to those in human plasma during anticancer therapy. The analysis of single cells imaged by Raman spectroscopy allowed for visualization of the nuclear, cytoplasmic, and perinuclear areas to assess biochemical changes induced by the drug's action. The results showed significant changes in the morphology and molecular composition of the nucleus. Moreover, an effect of a given drug on the cytoplasm was observed, which can be related to its mechanism of action (MoA). Raman data supported by fluorescence microscopy measurements identified unique changes in DNA form and proteins and revealed drug-induced inflammation of endothelial cells. The primary goal of mitotic inhibitors is based on the impairment of tubulin formation and the inhibition of the mitosis process. While all three drugs affect microtubules and disrupt cell division, they do so through different MoA, i.e., Vinca alkaloids inhibit microtubule formation, whereas paclitaxel stabilizes microtubules. To sum up, the work shows how a specific drug can interact with endothelial cells.


Asunto(s)
Aorta , Células Endoteliales , Mitosis , Espectrometría Raman , Humanos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Aorta/efectos de los fármacos , Aorta/citología , Mitosis/efectos de los fármacos , Paclitaxel/farmacología , Antimitóticos/farmacología , Células Cultivadas , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo
4.
Biosensors (Basel) ; 14(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39056600

RESUMEN

Despite extensive research efforts, cancer continues to stand as one of the leading causes of death on a global scale. To gain profound insights into the intricate mechanisms underlying cancer onset and progression, it is imperative to possess methodologies that allow the study of cancer cells at the single-cell level, focusing on critical parameters such as cell morphology, metabolism, and molecular characteristics. These insights are essential for effectively discerning between healthy and cancerous cells and comprehending tumoral progression. Recent advancements in microscopy techniques have significantly advanced the study of cancer cells, with Raman microspectroscopy (RM) emerging as a particularly powerful tool. Indeed, RM can provide both biochemical and spatial details at the single-cell level without the need for labels or causing disruptions to cell integrity. Moreover, RM can be correlated with other microscopy techniques, creating a synergy that offers a spectrum of complementary insights into cancer cell morphology and biology. This review aims to explore the correlation between RM and other microscopy techniques such as confocal fluoresce microscopy (CFM), atomic force microscopy (AFM), digital holography microscopy (DHM), and mass spectrometry imaging (MSI). Each of these techniques has their own strengths, providing different perspectives and parameters about cancer cell features. The correlation between information from these various analysis methods is a valuable tool for physicians and researchers, aiding in the comprehension of cancer cell morphology and biology, unraveling mechanisms underlying cancer progression, and facilitating the development of early diagnosis and/or monitoring cancer progression.


Asunto(s)
Neoplasias , Espectrometría Raman , Humanos , Microscopía de Fuerza Atómica
5.
Sci Rep ; 14(1): 16626, 2024 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025939

RESUMEN

Glucose is the main source of energy for the human brain. This paper presents a non-invasive technique to study metabolic changes caused by glucose in human brain cell lines. In this paper we present the spectroscopic characterization of human normal brain (NHA; astrocytes) and human cancer brain (CRL-1718; astrocytoma and U-87 MG; glioblastoma) control cell lines and cell lines upon supplementation with glucose. Based on Raman techniques we have identified biomarkers that can monitor metabolic changes in lipid droplets, mitochondria and nucleus caused by glucose. We have studied the vibrations at 750 cm-1, 1444 cm-1, 1584 cm-1 and 1656 cm-1 as a function of malignancy grade. We have compared the concentration of cytochrome, lipids and proteins in the grade of cancer aggressiveness in normal and cancer human brain cell lines. Chemometric analysis has shown that control normal, control cancer brain cell lines and normal and cancer cell lines after supplementation with glucose can be distinguished based on their unique vibrational properties. PLSDA (Partial Least Squares Discriminant Analysis) and ANOVA tests have confirmed the main role of cytochromes, proteins and lipids in differentiation of control human brain cells and cells upon supplementation with glucose. We have shown that Raman techniques combined with chemometric analysis provide additional insight to monitor the biology of astrocytes, astrocytoma and glioblastoma after glucose supplementation.


Asunto(s)
Neoplasias Encefálicas , Glucosa , Espectrometría Raman , Humanos , Espectrometría Raman/métodos , Glucosa/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Encéfalo/metabolismo , Encéfalo/patología , Astrocitos/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patología
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124680, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38963950

RESUMEN

The present work focuses on the investigation of the thermal stability and structural integrity of amorphous alumina coatings intended for use as protective coatings on cladding tubes in Generation IV nuclear reactors, specifically in the Lead-cooled Fast Reactor (LFR) type. High-temperature Raman spectroscopy and high-temperature X-ray diffraction analyses were carried out up to 1050 °C on a 5 µm coating deposited by the pulsed laser deposition (PLD) technique on a 316L steel substrate. The experiments involved the in-situ examination of structural changes in the material under increasing temperature, along with ex-situ Raman imaging of the surface and cross-section of the coating after thermal treatments of different lengths. As it was expected, the presence of α-alumina was detected with the addition of other polymorphs, γ- and θ-Al2O3, found in the material after longer high-temperature exposure. The use of two structural analysis methods and two lasers excitation wavelengths with Raman spectroscopy allowed us to detect all the mentioned phases despite different mode activity. Alumina analysis was based on the emission spectra, while substrate oxidation products were identified through the structural bands. The experiments depicted a dependence of the phase composition of oxidation products and alumina's degree of crystallization on the length of the treatment. Nevertheless, the observed structural changes did not occur rapidly, and the coating's integrity remained intact. Moreover, oxidation signs occurred locally at temperatures exceeding the LFR reactor's working temperature, confirming the material's great potential as a protective coating in the operational conditions of LFR nuclear reactors.

7.
J Hazard Mater ; 474: 134782, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38824781

RESUMEN

For a plastic syringe, a stopper at the end of plunger is usually made of polydimethylsiloxane (PDMS, and co-ingredients). To reduce friction and prevent leakage between the stopper and barrel, short chain polymer of liquid PDMS is also used as lubricant. Consequently, an injection process can release solid PDMS debris from the stopper and barrel, and liquid PDMS droplets from the lubricant, both of which are confirmed herein as solid and liquid micro(nano)plastics. From molecular spectrum perspective to directly visualise those micro(nano)plastics, Raman imaging was employed to analyse hundreds-to-thousands of spectra (hyper spectrum or hyperspectral matrix) and significantly enhance signal-to-noise ratio. From morphology perspective to provide high resolution of image, scanning electron microscopy (SEM) was engaged to cross-check with Raman images and increase assignment / quantification certainty. The weak Raman imaging signal of nanoplastics was extracted using image deconvolution algorithm to remove the background noise and average the signal variation. To increase the result's representativeness and avoid quantification bias, multiple syringes were tested and multiple areas were randomly scanned toward statistical results. It was estimated that thousands of microplastics and millions of nanoplastics of solid/liquid PDMS might be injected when using a plastic syringe of 1 mL. Overall, Raman imaging (along with algorithm and SEM) can be helpful for further research on micro(nano)plastics, and it should be cautious to use plastic syringe due to the increasing concern on the emerging contamination of not only solid but also liquid micro(nano)plastics.

8.
Nano Lett ; 24(28): 8595-8601, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38869082

RESUMEN

Protein imaging aids diagnosis and drug development by revealing protein-drug interactions or protein levels. However, the challenges of imaging multiple proteins, reduced sensitivity, and high reliance on specific protein properties such as Raman peaks or refractive index hinder the understanding. Here, we introduce multiprotein colorful imaging through Raman signal classification. Our method utilized machine learning-assisted classification of Raman signals, which are the distinctive features of label-free proteins. As a result, three types of proteins could be imaged simultaneously. In addition, we could quantify individual proteins from a mixture of multiple proteins over a wide detection range (10 fg/mL-1 µg/mL). These results showed a 1000-fold improvement in sensitivity and a 30-fold increase in the upper limit of detection compared to existing methods. These advances will enhance our understanding of biology and facilitate the development of disease diagnoses and treatments.


Asunto(s)
Espectrometría Raman , Espectrometría Raman/métodos , Animales , Bovinos , Albúmina Sérica Bovina/química , Color , Microfluídica , Receptores ErbB/química , Antígeno Carcinoembrionario/química , Modelos Moleculares , Conformación Molecular
9.
Appl Spectrosc ; : 37028241258105, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38835219

RESUMEN

We demonstrate single-shot standoff hyperspectral Raman imaging of liquid diisopropyl methylphosphonate at a standoff distance of 1 m using two different techniques: multi-bandpass filter imaging (MBFI) and fiber-bundle imaging spectroscopy (FBIS). We find that MBFI has good spatial resolution, but poor spectral resolution, due to the limitations of commercially available bandpass filters. On the other hand, we find FBIS to have excellent spectral resolution, but limited spatial resolution due to the relatively small number of fibers in a bundle. For FBIS, we also determine, for a 1 m standoff distance, a minimum pump fluence of 10 mJ/cm2 to obtain good single-shot spectra.

10.
Protoplasma ; 261(5): 1051-1071, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38703269

RESUMEN

Microalgae are the richest source of natural carotenoids-accessory photosynthetic pigments used as natural antioxidants, safe colorants, and nutraceuticals. Microalga Bracteacoccus aggregatus IPPAS C-2045 responds to stresses, including high light, with carotenogenesis-gross accumulation of secondary carotenoids (the carotenoids structurally and energetically uncoupled from photosynthesis). Precise mechanisms of cytoplasmic transport and subcellular distribution of the secondary carotenoids under stress are still unknown. Using multimodal imaging combining micro-Raman imaging (MRI), fluorescent lifetime (τ) imaging (FLIM), and transmission electron microscopy (TEM), we monitored ultrastructural and biochemical rearrangements of B. aggregatus cells during the stress-induced carotenogenesis. MRI revealed a decline in the diversity of molecular surrounding of the carotenoids in the cells compatible with the relocation of the bulk of the carotenoids in the cell from functionally and structurally heterogeneous photosynthetic apparatus to the more homogenous lipid matrix of the oleosomes. Two-photon FLIM highlighted the pigment transformation in the cell during the stress-induced carotenogenesis. The structures co-localized with the carotenoids with shorter τ (mainly chloroplast) shrunk, whereas the structures harboring secondary carotenoids with longer τ (mainly oleosomes) expanded. These changes were in line with the ultrastructural data (TEM). Fluorescence of B. aggregatus carotenoids, either in situ or in acetone extracts, possessed a surprisingly long lifetime. We hypothesize that the extension of τ of the carotenoids is due to their aggregation and/or association with lipids and proteins. The propagation of the carotenoids with prolonged τ is considered to be a manifestation of the secondary carotenogenesis suitable for its non-invasive monitoring with multimodal imaging.


Asunto(s)
Carotenoides , Microalgas , Estrés Fisiológico , Carotenoides/metabolismo , Microalgas/metabolismo
11.
FEBS Lett ; 598(16): 1981-1988, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38740560

RESUMEN

Free interconversion of cytochrome C (CytC) between native ferrous (Cyt-FeII) and oxidized ferric (CytC-FeIII) states is necessary to maintain the respiratory function of mitochondria. Disturbances in CytC-FeIII to total CytC ratio may indicate mitochondrial dysfunction and apoptosis. Thus, tracking CytC oxidation state delivers important information about cellular physiology. In this work, we propose a novel methodology based on resonance Raman (rR) imaging optimized uniquely to track and qualitatively analyze the transition of Cyt-FeII to CytC-FeIII within live cells without affecting their morphology. None of the commonly used excitation lines allows such clear-cut differentiation, contrary to the 405 nm applied in this work. The presented methodology provides a novel pathway in the label-free detection of ferrous and ferric heme proteins.


Asunto(s)
Citocromos c , Oxidación-Reducción , Espectrometría Raman , Espectrometría Raman/métodos , Citocromos c/metabolismo , Humanos , Mitocondrias/metabolismo , Animales
12.
Environ Technol Innov ; 34: 103622, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38706940

RESUMEN

The fast and reliable detection of micron-sized plastic particles from the natural marine environment is an important topic that is mostly addressed using spontaneous Raman spectroscopy. Due to the long (>tens of ms) integration time required to record a viable Raman signal, measurements are limited to a single point per microplastic particle or require very long acquisition times (up to tens of hours). In this work, we develop, validate, and demonstrate a compressive Raman technology using binary spectral filters and single-pixel detection that can image and classify six types of marine microplastic particles over an area of 1 mm2 with a pixel dwell time down to 1.75 ms/pixel and a spatial resolution of 1 µm. This is x10-100 faster than reported in previous studies.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124388, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38795525

RESUMEN

Raman spectroscopy is a well-established method for chemical identification, with a wide variety of applications. The two major limitations are that fluorescence can hamper detection, and that Raman imaging is slow; it typically takes multiple hours to measure even a small surface area. We have developed a multimodal setup that mitigates these limitations. The setup has a point-scanning mode that allows for time-gated as well as continuous Raman spectroscopy, and both modes use an 80 MHz, 532 nm excitation laser with up to 20 W of power. The fluorescence suppression capabilities of the setup were demonstrated by comparing time-gated to continuous detection of a Dracaena leaf. Raman bands showed a 4-8 times improvement in signal-to-background ratio, and one band that was invisible in the continuous measurement, became visible in the time-gated measurement. The setup also has a 4-band simultaneously detected wide-field mode. Using a set of beam splitters, the Raman signal from the sample is split. This signal is imaged onto four separate cameras, each with a specific band-pass filter. The wide-field data were processed using principal component analysis with k-means clustering. To illustrate the wide-field capabilities of the setup, a 1mm2 sample containing aspirin, caffeine and paracetamol was measured using 10 W excitation power. A 10-second measurement enabled identification of the compounds, and a 1-second measurement showed promising results. This brings the setup close to real-time imaging, showing great potential for applications in quality control or for measuring samples that change over time.

14.
Toxics ; 12(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38787108

RESUMEN

The contamination of food by microplastics has garnered widespread attention, particularly concerning the health risks associated with small-sized microplastics. However, detecting these smaller microplastics in food poses challenges attributed to the complexity of food matrices and instrumental and method limitations. Here, we employed Raman imaging for visualization and identification of polystyrene particles synthesized in polymerization reactions, ranging from 400 to 2600 nm. We successfully developed a quantitative model of particle size and concentration for polystyrene, exhibiting excellent fit (R2 of 0.9946). We established procedures for spiked flavored yogurt using synthesized polystyrene, providing fresh insights into microplastic extraction efficiency. Recovery rates calculated from models validated the method's feasibility. In practical applications, the assessment of the size, type, shape, and quantity of microplastics in unspiked flavored yogurt was conducted. The most common polymers found were polystyrene, polypropylene, and polyethylene, with the smallest polystyrene sizes ranging from 1 to 10 µm. Additionally, we conducted exposure assessments of microplastics in branded flavored yogurt. This study established a foundation for developing a universal method to quantify microplastics in food, covering synthesis of standards, method development, validation, and application.

15.
Trends Cancer ; 10(6): 557-570, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38575412

RESUMEN

Advances in label-free optical imaging offer a promising avenue for brain cancer assessment, providing high-resolution, real-time insights without the need for radiation or exogeneous agents. These cost-effective and intricately detailed techniques overcome the limitations inherent in magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET) scans by offering superior resolution and more readily accessible imaging options. This comprehensive review explores a variety of such methods, including photoacoustic imaging (PAI), optical coherence tomography (OCT), Raman imaging, and IR microscopy. It focuses on their roles in the detection, diagnosis, and management of brain tumors. By highlighting recent advances in these imaging techniques, the review aims to underscore the importance of label-free optical imaging in enhancing early detection and refining therapeutic strategies for brain cancer.


Asunto(s)
Neoplasias Encefálicas , Técnicas Fotoacústicas , Tomografía de Coherencia Óptica , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Tomografía de Coherencia Óptica/métodos , Técnicas Fotoacústicas/métodos , Imagen Óptica/métodos , Espectrometría Raman/métodos , Animales
16.
Sci Rep ; 14(1): 8681, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622196

RESUMEN

Archaeological wood can be preserved in waterlogged conditions. Due to their degradation in the ground, these archaeological remains are endangered after their discovery, since they decay irretrievably during drying. Conservation measures are used to preserve waterlogged archaeological objects, maintaining their shape and character as much as possible. However, different methods have been developed leading to varying results. This study compares their effectiveness in order to clarify their mode of action. The methods including alcohol-ether resin, lactitol/trehalose, melamine formaldehyde, polyethylene glycol impregnation prior to freeze-drying, saccharose and silicone oil were assessed by analysing mass changes and volume stability using structured-light 3D scanning. The state of the conserved wood samples including the spatial distribution of the conservation agent was examined using synchrotron micro-computed tomography. Raman spectroscopy was used to observe the agent´s spatial distribution within the cells. The findings demonstrated that melamine formaldehyde stabilises the degraded cell walls. The lumens are void, as in the case with alcohol-ether resin, while polyethylene glycol, silicone oil, saccharose and lactitol/trehalose also occupy the lumens. It is assumed that the drying method has an effect on the distribution of the solidifying agent. The knowledge gained affords insights into the mechanism of conservation methods, which in turn accounts for the varied outcomes. It also allows conclusions to be drawn about the condition and stability of conserved museum objects and serves as a starting point for the further development of conservation methods.

17.
J Hazard Mater ; 471: 134403, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38669922

RESUMEN

The concern over plastic contamination has led to bans on plastic shopping bags, often replaced by paper ones. However, logos painted or printed on paper bags may still contain plastics, as investigated herein. In some logos, for example, white pigment of titanium dioxide (TiO2) nanoparticles are bound with plastic binder onto the cellulose surface of the paper. This hybrid of plastic and nanoparticle is examined using scanning electron microscope (SEM) to characterise morphology physically, and Raman imaging to identify and visualise them chemically. Raman imaging scans the sample to separate images and identify not only plastic but also the co-formulated pigment. The scan generates a hyperspectral matrix containing hundreds to thousands of spectra, and subsequent analysis can enhance the signal-to-noise ratio. Decoding the hyperspectral matrix using chemometrics like principal component analysis (PCA) can effectively map plastic and pigment separately with increased certainty. The image can be further refined through 3-dimensional surface fitting for deconvolution, providing direct visualisation of the plastic-nanoparticle hybrid at a density of approximately 7.3 million particles per square millimetre. Overall, caution should be exercised when using paper bags, as they may not be entirely free of plastics. Raman imaging proves to be an effective method for identifying and visualising complex components, including plastics and nanoparticles. ENVIRONMENTAL IMPLICATION: The concern over plastic contamination has led to bans on plastic shopping bags, replaced by paper alternatives. However, some logos on paper bags may still contain plastics, which is investigated to confirm the presence of plastic-nanoparticle hybrid using SEM and Raman imaging. By employing decoding algorithms such as PCA to separately map plastic and pigment, and utilising 3D surface fitting to deconvolute the image, the hybrid plastic-nanoparticle is estimated at a density of approximately 7.3 million particles per square millimetre. It's important to exercise caution and not assume these items are plastic-free. This aspect of plastics may have been overlooked as another potential source of contamination.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124242, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581725

RESUMEN

The regular overconsumption of high-energy food (rich in lipids and sugars) results in elevated nutrient absorption in intestine and consequently excessive accumulation of lipids in many organs e.g.: liver, adipose tissue, muscles. In the long term this can lead to obesity and obesity-associated diseases e.g. type 2 diabetes, non-alcoholic fatty liver disease, cardiovascular disease, inflammatory bowel disease (IBD). In the presented paper based on RI data we have proved that Raman maps can be used successfully for subcellular structures visualization and analysis of fatty acids impact on morphology and chemical composition of human colon single cells - normal and cancer. Based on Raman data we have investigated the changes related to endoplasmic reticulum, mitochondria, lipid droplets and nucleus. Analysis of ratios calculated based on Raman bands typical for proteins (1256, 1656 cm-1), lipids (1304, 1444 cm-1) and nucleic acids (750 cm-1) has confirmed for endoplasmic reticulum the increased activity of this organelle in lipoproteins synthesis upon FAs supplementation; for LDs the changes of desaturation of accumulated lipids with the highest unsaturation level for CaCo-2 cells upon EPA supplementation; for mitochondria the stronger effect of FAs supplementation was observed for CaCo-2 cells confirming the increased activity of this organelle responsible for energy production necessary for tumor development; the weakest impact of FAs supplementation was observed for nucleus for both types of cells and both types of acids. Fluorescence imaging was used for the investigations of changes in LDs/ER morphology. Our measurements have shown the increased area of LDs/ER for CaCo-2 cancer cells, and the strongest effect was noticed for CaCo-2 cells upon EPA supplementation. The increased participation of lipid structures for all types of cells upon FAs supplementation has been confirmed also by AFM studies. The lowest YM values have been observed for CaCo-2 cells including samples treated with FAs.


Asunto(s)
Neoplasias del Colon , Ácido Eicosapentaenoico , Espectrometría Raman , Humanos , Ácido Eicosapentaenoico/farmacología , Ácido Eicosapentaenoico/química , Células CACO-2 , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Ácido Linoleico/farmacología , Ácido Linoleico/química , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Microscopía Fluorescente
19.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38674093

RESUMEN

Altered metabolism of lipids is a key factor in many diseases including cancer. Therefore, investigations into the impact of unsaturated and saturated fatty acids (FAs) on human body homeostasis are crucial for understanding the development of lifestyle diseases. In this paper, we focus on the impact of palmitic (PA), linoleic (LA), and eicosapentaenoic (EPA) acids on human colon normal (CCD-18 Co) and cancer (Caco-2) single cells using Raman imaging and spectroscopy. The label-free nature of Raman imaging allowed us to evaluate FAs dynamics without modifying endogenous cellular metabolism. Thanks to the ability of Raman imaging to visualize single-cell substructures, we have analyzed the changes in chemical composition of endoplasmic reticulum (ER), mitochondria, lipid droplets (LDs), and nucleus upon FA supplementation. Analysis of Raman band intensity ratios typical for lipids, proteins, and nucleic acids (I1656/I1444, I1444/I1256, I1444/I750, I1304/I1256) proved that, using Raman mapping, we can observe the metabolic pathways of FAs in ER, which is responsible for the uptake of exogenous FAs, de novo synthesis, elongation, and desaturation of FAs, in mitochondria responsible for energy production via FA oxidation, in LDs specialized in cellular fat storage, and in the nucleus, where FAs are transported via fatty-acid-binding proteins, biomarkers of human colon cancerogenesis. Analysis for membranes showed that the uptake of FAs effectively changed the chemical composition of this organelle, and the strongest effect was noticed for LA. The spectroscopy studies have been completed using XTT tests, which showed that the addition of LA or EPA for Caco-2 cells decreases their viability with a stronger effect observed for LA and the opposite effect observed for PA. For normal cells, CCD-18 Co supplementation using LA or EPA stimulated cells for growing, while PA had the opposite impact.


Asunto(s)
Neoplasias del Colon , Ácidos Grasos , Análisis de la Célula Individual , Espectrometría Raman , Humanos , Espectrometría Raman/métodos , Análisis de la Célula Individual/métodos , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Ácidos Grasos/metabolismo , Células CACO-2 , Metabolismo de los Lípidos , Colon/metabolismo , Colon/patología , Gotas Lipídicas/metabolismo , Mitocondrias/metabolismo , Retículo Endoplásmico/metabolismo
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124173, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38520957

RESUMEN

Acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) are the two most common hematologic malignancies, challenging to treat and associated with high recurrence and mortality rates. This work aims to identify specific Raman biomarkers of ALL cells with the KMT2A gene rearrangement (KMT2A-r), representing a highly aggressive subtype of childhood leukemia with a poor prognosis. The proposed approach combines the sensitivity and specificity of Raman spectroscopy with machine learning and allows us to distinguish not only myelo- and lymphoblasts but also discriminate B-cell precursor (BCP) ALL with KMT2A-r from other blasts of BCP-ALL. We have found that KMT2A-r ALL cells fixed with 0.5% glutaraldehyde exhibit a unique spectroscopic profile that enables us to identify this subtype from other leukemias and normal cells. Therefore, a rapid and label-free method was developed to identify ALL blasts with KMT2A-r based on the ratio of the two Raman bands assigned to phenylalanine - 1040 and 1008 cm-1. This is the first time that a particular group of leukemic cells has been identified in a label-free way. The identified biomarker can be used as a screening method in diagnostic laboratories or non-reference medical centers.


Asunto(s)
Leucemia Mieloide Aguda , Proteína de la Leucemia Mieloide-Linfoide , Humanos , Proteína de la Leucemia Mieloide-Linfoide/genética , Espectrometría Raman , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Biomarcadores , Células Madre Hematopoyéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA