Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Autophagy ; : 1-2, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38899611

RESUMEN

Dysregulation of melanin homeostasis is implicated in causing skin pigmentation disorders, such as melasma due to hyperpigmentation and vitiligo due to hypopigmentation. Although the synthesis of melanin has been well studied, the removal of the formed skin pigment requires more research. We determined that ß-mangostin, a plant-derived metabolite, induces the degradation of already-formed melanin in the mouse B16F10 cell line. The whitening effect of ß-mangostin is mediated by macroautophagy/autophagy, as it was abolished by the knockdown of ATG5 or RB1CC1/FIP200, and by treatment with 3-methyladenine, a phosphatidylinositol 3-kinase complex inhibitor. However, the exact autophagy mechanism of melanosome degradation remains unknown. Selective autophagy for a specific cellular organelle requires specific E3-ligases and autophagic receptors for the target organelle. In this study, an E3-ligase, RCHY1, and an autophagy receptor, OPTN (optineurin), were identified as being essential for melanophagy in the ß-mangostin-treated B16F10 cell line. As per our knowledge, this is the first report of a specific mechanism for the degradation of melanosomes, the target organelle of melanophagy. These findings are expected to broaden the scope of melanin homeostasis research and can be exploited for the development of therapeutics for skin pigmentation disorders.

2.
Proc Natl Acad Sci U S A ; 121(14): e2318039121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38536750

RESUMEN

Melanosomes are specific organelles dedicated to melanin synthesis and accumulation in melanocytes. Autophagy is suggestively involved in melanosome degradation, although the potential underlying molecular mechanisms remain elusive. In selective autophagy, autophagy receptors and E3-ligases are the key factors conferring cargo selectivity. In B16F10 cells, ß-mangostin efficiently induced melanosome degradation without affecting other organelles such as mitochondria, peroxisomes, and the endoplasmic reticulum. Among various autophagy receptors, optineurin (OPTN) contributes TANK-binding kinase 1 (TBK1)-dependently to melanosome degradation and its knockdown inhibited ß-mangostin-mediated melanosome degradation. OPTN translocation to melanosomes was dependent on its ubiquitin-binding domain. Moreover, OPTN-mediated TBK1 activation and subsequent TBK1-mediated S187 OPTN phosphorylation were essential for melanosome degradation. ß-mangostin increased K63-linked melanosome ubiquitination. Finally, the E3-ligase RCHY1 knockdown inhibited the melanosome ubiquitination required for OPTN- and TBK1-phosphorylation as well as melanosome degradation. This study suggests that melanophagy, melanosome-selective autophagy, contributes to melanosome degradation, and OPTN and RCHY1 are an essential autophagy receptor and a E3-ligase, respectively, conferring cargo selectivity in melanophagy.


Asunto(s)
Autofagia , Melanosomas , Melanosomas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Xantonas , Melanoma Experimental , Animales , Ratones
3.
J Biol Chem ; 299(10): 105157, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37579947

RESUMEN

Noncanonical base pairing between four guanines (G) within single-stranded G-rich sequences leads to formation of а G-quartet. Self-stacking of G-quartets results in a columnar four-stranded DNA structure known as the G-quadruplex (G4 or G4-DNA). In cancer cells, G4-DNA regulates multiple DNA-dependent processes, including transcription, replication, and telomere function. How G4s function in neurons is poorly understood. Here, we performed a genome-wide gene expression analysis (RNA-Seq) to identify genes modulated by a G4-DNA ligand, pyridostatin (PDS), in primary cultured neurons. PDS promotes stabilization of G4 structures, thus allowing us to define genes directly or indirectly responsive to G4 regulation. We found that 901 genes were differentially expressed in neurons treated with PDS out of a total of 18,745 genes with measured expression. Of these, 505 genes were downregulated and 396 genes were upregulated and included gene networks regulating p53 signaling, the immune response, learning and memory, and cellular senescence. Within the p53 network, the E3 ubiquitin ligase Pirh2 (Rchy1), a modulator of DNA damage responses, was upregulated by PDS. Ectopically overexpressing Pirh2 promoted the formation of DNA double-strand breaks, suggesting a new DNA damage mechanism in neurons that is regulated by G4 stabilization. Pirh2 downregulated DDX21, an RNA helicase that unfolds G4-RNA and R-loops. Finally, we demonstrated that Pirh2 increased G4-DNA levels in the neuronal nucleolus. Our data reveal the genes that are responsive to PDS treatment and suggest similar transcriptional regulation by endogenous G4-DNA ligands. They also connect G4-dependent regulation of transcription and DNA damage mechanisms in neuronal cells.

4.
Mol Carcinog ; 62(3): 293-302, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36342357

RESUMEN

Dihydroartemisinin (DHA) has recently attracted increasing attention for its low toxicity and high antitumor activity. DHA has been reported to have synergistic anticancer effects with a variety of drugs in the clinic; however, the molecular mechanism by which DHA inhibits tumorigenesis and improves oxaliplatin cytotoxicity in colon cancer cells is still not well understood. In this study, we found that DHA can inhibit cell proliferation and colony formation in a dose-dependent manner. Prohibitin 2 (PHB2) is a potential target by which DHA exerts its antitumor and cytotoxic effects. The function and molecular mechanism of PHB2 in colon cancer tumorigenesis were fully studied to determine the regulatory mechanism between DHA and PHB2. We found that PHB2, a mitochondrial inner membrane scaffold protein, has a higher expression level in colon cancer tissues than in adjacent nontumor tissues and is mainly localized in mitochondria. Overexpression of PHB2 can promote cell proliferation and colony formation in vitro and accelerate tumor growth in vivo. We also found that the expression level of PHB2 was inversely related to the cytotoxicity of DHA and oxaliplatin in colon cancer cells. The molecular mechanism of PHB2 in tumorigenesis and cancer therapy was further studied. The results showed that 20 µM DHA can downregulate PHB2 expression in a ubiquitylation-dependent manner and subsequently block PHB2-induced RCHY1 upregulation and p53 and p21 downregulation. In this process, RCHY1 is necessary for PHB2 to play a tumor-promoting role. Thus, PHB2 and RCHY1 are effective targets for colon cancer therapy, and DHA has synergistic anticancer effects with oxaliplatin via promoting PHB2 degradation in colon cancer cells.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Humanos , Oxaliplatino/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Transducción de Señal , Neoplasias del Colon/tratamiento farmacológico , Carcinogénesis , Línea Celular Tumoral , Ubiquitina-Proteína Ligasas
5.
Cells ; 11(9)2022 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-35563824

RESUMEN

The p53-dependent ubiquitin ligase Pirh2 regulates a number of proteins involved in different cancer-associated processes. Targeting the p53 family proteins, Chk2, p27Kip1, Twist1 and others, Pirh2 participates in such cellular processes as proliferation, cell cycle regulation, apoptosis and cellular migration. Thus, it is not surprising that Pirh2 takes part in the initiation and progression of different diseases and pathologies including but not limited to cancer. In this review, we aimed to summarize the available data on Pirh2 regulation, its protein targets and its role in various diseases and pathological processes, thus making the Pirh2 protein a promising therapeutic target.


Asunto(s)
Proteína p53 Supresora de Tumor , Ubiquitina-Proteína Ligasas , Puntos de Control del Ciclo Celular , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
6.
Animals (Basel) ; 11(11)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34827998

RESUMEN

Ubiquitin ligase (E3) plays a versatile role in gonadal development and spermatogenesis in mammals, while its function in fish is little reported. In this study, a Z-chromosome linked ubiquitin ligase rchy1 in C. semilaevis (Cs-rchy1) was cloned and characterized. The full-length cDNA was composed of 1962 bp, including 551 bp 5'UTR, 736 bp 3'UTR, and 675 bp ORF encoding a 224-amino-acid (aa) protein. Cs-rchy1 was examined among seven different tissues and found to be predominantly expressed in gonads. In testis, Cs-rchy1 could be detected from 40 days post hatching (dph) until 3 years post hatching (yph), but there was a significant increase at 6 months post hatching (mph). In comparison, the expression levels in ovary were rather stable among different developmental stages. In situ hybridization showed that Cs-rchy1 was mainly localized in germ cells, that is, spermatid and spermatozoa in testis and stage I, II and III oocytes in ovary. In vitro RNA interference found that Cs-rchy1 knockdown resulted in the decline of sox9 and igf1 in ovarian cell line and down-regulation of cyp19a in the testicular cell line. These data suggested that Cs-rchy1 might participate in gonadal differentiation and gametogenesis, via regulating steroid hormone synthesis.

7.
Front Cell Dev Biol ; 9: 675939, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33968945

RESUMEN

The potential to overcome resistance to proteasome inhibitors is greatly related with ubiquitin-proteasome system during multiple myeloma (MM) treatment process. The constitutive photomorphogenic 1 (RFWD2), referred to an E3 ubiquitin ligase, has been identified as an oncogene in multiple cancers, yet important questions on the role of RFWD2 in MM biology and treatment remain unclear. Here we demonstrated that MM patients with elevated RFWD2 expression achieved adverse outcome and drug resistance by analyzing gene expression profiling. Moreover, we proved that RFWD2 participated in the process of cell cycle, cell growth and death in MM by mass spectrometry analysis. In vitro study indicated that inducible knockdown of RFWD2 hindered cellular growth and triggered apoptosis in MM cells. Mechanism study revealed that RFWD2 controlled MM cellular proliferation via regulating the degradation of P27 rather than P53. Further exploration unveiled that RFWD2 meditated P27 ubiquitination via interacting with RCHY1, which served as an E3 ubiquitin ligase of P27. Finally, in vivo study illustrated that blocking RFWD2 in BTZ-resistant MM cells overcame the drug resistance in a myeloma xenograft mouse model. Taken together, these findings provide compelling evidence for prompting that targeting RFWD2 may be an effective strategy to inhibit cellular proliferation and overcome drug resistance to proteasome inhibitor in MM.

8.
Mol Cell ; 81(10): 2112-2122.e7, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33909987

RESUMEN

Incompletely synthesized nascent chains obstructing large ribosomal subunits are targeted for degradation by ribosome-associated quality control (RQC). In bacterial RQC, RqcH marks the nascent chains with C-terminal alanine (Ala) tails that are directly recognized by proteasome-like proteases, whereas in eukaryotes, RqcH orthologs (Rqc2/NEMF [nuclear export mediator factor]) assist the Ltn1/Listerin E3 ligase in nascent chain ubiquitylation. Here, we study RQC-mediated proteolytic targeting of ribosome stalling products in mammalian cells. We show that mammalian NEMF has an additional, Listerin-independent proteolytic role, which, as in bacteria, is mediated by tRNA-Ala binding and Ala tailing. However, in mammalian cells Ala tails signal proteolysis indirectly, through a pathway that recognizes C-terminal degrons; we identify the CRL2KLHDC10 E3 ligase complex and the novel C-end rule E3, Pirh2/Rchy1, as bona fide RQC pathway components that directly bind to Ala-tailed ribosome stalling products and target them for degradation. As Listerin mutation causes neurodegeneration in mice, functionally redundant E3s may likewise be implicated in molecular mechanisms of neurodegeneration.


Asunto(s)
Alanina/metabolismo , Mamíferos/metabolismo , Proteolisis , Ribosomas/metabolismo , Animales , Antígenos de Neoplasias/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Receptores de Citocinas/metabolismo , Proteínas Salivales Ricas en Prolina/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
9.
Biochem Biophys Res Commun ; 521(1): 37-41, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31630802

RESUMEN

HDAC2, one of the class I histone deacetylase regulates epigenetic landscape through histone modification. Because HDAC2 is overexpressed in many cancers, cancer therapeutics against HDAC2 have been developed. Here we show novel mechanism of HDAC2 regulation by E3 ligase RCHY1. We found inverse correlation RCHY1 and HDAC2 levels in tumor tissue from six independent dataset using meta-analysis. Ectopic expression of RCHY1 decreased the level of HDAC2 from cancer cells including p53 wildtype, mutant and null cells. In addition, HDAC2 was increased by RCHY1 knockdown. RCHY1 directly interacts with HDAC2. Ectopic expression of wild type but not RING mutant RCHY1 increased HDAC2 levels. These data provide an evidence that RCHY1 negatively regulates HDAC2.


Asunto(s)
Histona Desacetilasa 2/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Células Cultivadas , Histona Desacetilasa 2/genética , Humanos , Ratones , Ratones Desnudos
10.
Cancer Manag Res ; 11: 7577-7585, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31496812

RESUMEN

BACKGROUND: Although Hippo/Yes-associated protein (YAP) signaling plays crucial roles in radiation sensitivity and resistance of multiple kinds of cancers, its role in the radiation sensitivity of glioma cells remains unclear. The present study aimed to reveal Hippo/YAP role in the radiation sensitivity of glioma cells. METHODS: Glioma U251 cells were administrated with different doses of irradiation. Cell Counting Kit-8 (CCK-8) and flow cytometry assays were used to assess cell viability and apoptosis. Co-immunoprecipitation (co-IP) assay was used to assess the interactions between proteins. RESULTS: The results showed that irradiation exposure significantly inhibited cell viability and induced cell apoptosis in a dose-dependent manner, as well as decreased YAP1 expression via enhancing RCHY1-mediated YAP1 protein degradation. In addition, we observed that downregulation of YAP1 or RCHY1 weakened the role of irradiation exposure in cell viability inhibition and apoptosis promotion. CONCLUSION: Collectively, this study emphasizes the vital role of Hippo/YAP signaling in radiation sensitivity of glioma, that RCHY1-mediated YAP1 protein downregulation is a main mechanism accounting for radiation-induced glioma cell apoptosis. Our study may enrich the theoretical basis of Hippo/YAP signaling as a new target for improving radiation sensitivity in glioma.

11.
Proc Natl Acad Sci U S A ; 113(35): E5192-201, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27519799

RESUMEN

Highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) has developed strategies to inhibit host immune recognition. We identify cellular E3 ubiquitin ligase ring-finger and CHY zinc-finger domain-containing 1 (RCHY1) as an interacting partner of the viral SARS-unique domain (SUD) and papain-like protease (PL(pro)), and, as a consequence, the involvement of cellular p53 as antagonist of coronaviral replication. Residues 95-144 of RCHY1 and 389-652 of SUD (SUD-NM) subdomains are crucial for interaction. Association with SUD increases the stability of RCHY1 and augments RCHY1-mediated ubiquitination as well as degradation of p53. The calcium/calmodulin-dependent protein kinase II delta (CAMK2D), which normally influences RCHY1 stability by phosphorylation, also binds to SUD. In vivo phosphorylation shows that SUD does not regulate phosphorylation of RCHY1 via CAMK2D. Similarly to SUD, the PL(pro)s from SARS-CoV, MERS-CoV, and HCoV-NL63 physically interact with and stabilize RCHY1, and thus trigger degradation of endogenous p53. The SARS-CoV papain-like protease is encoded next to SUD within nonstructural protein 3. A SUD-PL(pro) fusion interacts with RCHY1 more intensively and causes stronger p53 degradation than SARS-CoV PL(pro) alone. We show that p53 inhibits replication of infectious SARS-CoV as well as of replicons and human coronavirus NL63. Hence, human coronaviruses antagonize the viral inhibitor p53 via stabilizing RCHY1 and promoting RCHY1-mediated p53 degradation. SUD functions as an enhancer to strengthen interaction between RCHY1 and nonstructural protein 3, leading to a further increase in in p53 degradation. The significance of these findings is that down-regulation of p53 as a major player in antiviral innate immunity provides a long-sought explanation for delayed activities of respective genes.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Síndrome Respiratorio Agudo Grave/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Virales/metabolismo , Sitios de Unión/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas/genética , Regulación hacia Abajo , Interacciones Huésped-Patógeno , Humanos , Unión Proteica , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Síndrome Respiratorio Agudo Grave/genética , Síndrome Respiratorio Agudo Grave/virología , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/genética , Replicación Viral/genética
12.
Genes Cancer ; 7(11-12): 383-393, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28191284

RESUMEN

The product of RCHY1 human gene, Pirh2, is a RING-finger containing E3 ligase that modifies p53 with ubiquitin residues resulting in its subsequent degradation in proteasomes. Transcription of RCHY1 is regulated by p53 itself thus forming a negative regulatory feedback loop. Functionally, by eliminating p53, Pirh2 facilitates tumorigenesis. However, the role of Pirh2 in cancer cells lacking p53 is yet not well understood. Therefore, we decided to elucidate the role of Pirh2 in p53-negative human non-small cell lung carcinoma cells, H1299. We found that ectopic expression of Pirh2 enhanced cell proliferation, resistance to doxorubicin, and increased migration potential. Ablation of Pirh2 by specific shRNA reversed these phenotypes. Mechanistically, Pirh2 increased mRNA and protein levels of the c-Myc oncogene. The bioinformatics data indicate that co-expression of both c-Myc and Pirh2 strongly correlated with poor survival of lung cancer patients. Collectively, our results suggest that Pirh2 can be considered as a potential pharmacological target for developing anticancer therapies to treat p53-negative cancers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA