RESUMEN
Sympathetic vasomotor activity is significantly increased in renovascular hypertension. Renal denervation (DnX) has emerged as a novel therapy for resistant hypertension to drug therapy. However, the underlying mechanisms regarding the reduction in blood pressure (BP) after DnX remain unclear. Thus, the aim of this study was to evaluate the effects of DnX of a clipped kidney on the baseline and baroreceptor reflex control of post-ganglionic sympathetic activity to the contralateral kidney (rSNA) and lumbar (lSNA) nerves in Goldblatt hypertensive rats (2K1C). Renal denervation of an ischaemic kidney (DxX - all visible bundles of nerves were dissected - 10% phenol) was performed 5weeks after clipping (gap width: 0.2mm). Ten days after DnX, BP was significantly reduced (16%) in the 2K1C compared with the undenervated 2K1C (p<0.05). DnX significantly reduced basal rSNA (control group (CT): 110±8, n=14; 2K1C: 150±8, n=12; 2K1C DnX: 89±7, spikes per second (spikes/s); p<0.05, n=8) and lSNA (CT: 137±8, n=8; 2K1C: 202±7, n=11; 2K1C DnX: 131±7, spikes/s; p<0.05, n=8) only in 2K1C rats. DnX significantly improved the arterial baroreceptor sensitivity of rSNA (CT: -2.3±0.2, n=11; 2K1C: -0.7±0.1, n=8; 2K1C DnX: -1.5±0.2, spikes/s/mmHg; p<0.05, n=5) and heart rate for tachycardic response (CT: -3.9±0.5, n=7; 2K1C: -1.9±0.1, n=8; 2K1C DnX: -3.3±0.4, bpm/mmHg; p<0.05, n=8), but not for lSNA in 2K1C rats. The results show that DnX normalized baseline sympathetic vasomotor activity to the lumbar and renal nerves, followed by a differential improvement in the arterial baroreceptor sensitivity. Whether the baroreceptor function sensitivity improvement induced by DnX is a cause or a consequence of BP reduction remains to be determined.
Asunto(s)
Barorreflejo/fisiología , Hipertensión Renovascular/fisiopatología , Riñón/inervación , Presorreceptores/fisiología , Potenciales de Acción , Animales , Presión Sanguínea/fisiología , Desnervación , Modelos Animales de Enfermedad , Frecuencia Cardíaca/fisiología , Isquemia/fisiopatología , Riñón/fisiopatología , Masculino , Ratas Wistar , Sistema Nervioso Simpático/fisiopatologíaRESUMEN
Serotonergic mechanisms have an important function in the central control of circulation. Here, the acute effects of three selective serotonin (5-HT) reuptake inhibitors (SSRIs) on autonomic and cardiorespiratory variables were measured in rats. Although SSRIs require 2-3 weeks to achieve their full antidepressant effects, it has been shown that they cause an immediate inhibition of 5-HT reuptake. Seventy male Wistar rats were anesthetized with urethane and instrumented to record blood pressure, heart rate, renal sympathetic nerve activity (RSNA), and respiratory frequency. At lower doses, the acute cardiovascular effects of fluoxetine, paroxetine and sertraline administered intravenously were insignificant and variable. At middle and higher doses, a general pattern was observed, with significant reductions in sympathetic nerve activity. At 10 min, fluoxetine (3 and 10 mg/kg) reduced RSNA by -33±4.7 and -31±5.4%, respectively, without changes in blood pressure; 3 and 10 mg/kg paroxetine reduced RSNA by -35±5.4 and -31±5.5%, respectively, with an increase in blood pressure +26.3±2.5; 3 mg/kg sertraline reduced RSNA by -59.4±8.6%, without changes in blood pressure. Sympathoinhibition began 5 min after injection and lasted approximately 30 min. For fluoxetine and sertraline, but not paroxetine, there was a reduction in heart rate that was nearly parallel to the sympathoinhibition. The effect of these drugs on the other variables was insignificant. In conclusion, acute peripheral administration of SSRIs caused early autonomic cardiovascular effects, particularly sympathoinhibition, as measured by RSNA. Although a peripheral action cannot be ruled out, such effects are presumably mostly central.
Asunto(s)
Animales , Masculino , Fluoxetina/administración & dosificación , Riñón/efectos de los fármacos , Paroxetina/administración & dosificación , Inhibidores Selectivos de la Recaptación de Serotonina/administración & dosificación , Sertralina/administración & dosificación , Sistema Nervioso Simpático/efectos de los fármacos , Antidepresivos/administración & dosificación , Antidepresivos/farmacología , Presión Arterial/efectos de los fármacos , Barorreflejo/efectos de los fármacos , Fenómenos Fisiológicos Cardiovasculares/efectos de los fármacos , Fluoxetina/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Riñón/inervación , Riñón/cirugía , Paroxetina/farmacología , Ratas Wistar , Frecuencia Respiratoria/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Sertralina/farmacología , Signos Vitales/efectos de los fármacosRESUMEN
The maintenance of extracellular Na+ and Cl- concentrations in mammals depends, at least in part, on renal function. It has been shown that neural and endocrine mechanisms regulate extracellular fluid volume and transport of electrolytes along nephrons. Studies of sex hormones and renal nerves suggested that sex hormones modulate renal function, although this relationship is not well understood in the kidney. To better understand the role of these hormones on the effects that renal nerves have on Na+ and Cl- reabsorption, we studied the effects of renal denervation and oophorectomy in female rats. Oophorectomized (OVX) rats received 17β-estradiol benzoate (OVE, 2.0 mg·kg-1·day-1, sc) and progesterone (OVP, 1.7 mg·kg-1·day-1, sc). We assessed Na+ and Cl- fractional excretion (FENa+ and FECl- , respectively) and renal and plasma catecholamine release concentrations. FENa+ , FECl- , water intake, urinary flow, and renal and plasma catecholamine release levels increased in OVX vs control rats. These effects were reversed by 17β-estradiol benzoate but not by progesterone. Renal denervation did not alter FENa+ , FECl- , water intake, or urinary flow values vs controls. However, the renal catecholamine release level was decreased in the OVP (236.6±36.1 ng/g) and denervated rat groups (D: 102.1±15.7; ODE: 108.7±23.2; ODP: 101.1±22.1 ng/g). Furthermore, combining OVX + D (OD: 111.9±25.4) decreased renal catecholamine release levels compared to either treatment alone. OVE normalized and OVP reduced renal catecholamine release levels, and the effects on plasma catecholamine release levels were reversed by ODE and ODP replacement in OD. These data suggest that progesterone may influence catecholamine release levels by renal innervation and that there are complex interactions among renal nerves, estrogen, and progesterone in the modulation of renal function.
Asunto(s)
Animales , Femenino , Catecolaminas , Cloro/metabolismo , Estrógenos/fisiología , Riñón/inervación , Progesterona/fisiología , Sodio/metabolismo , Peso Corporal/fisiología , Catecolaminas/sangre , Desnervación , Tasa de Filtración Glomerular/fisiología , Riñón/metabolismo , Ovariectomía , Ratas Wistar , Equilibrio Hidroelectrolítico/fisiologíaRESUMEN
Obstructive apnea (OA) can exert significant effects on renal sympathetic nerve activity (RSNA) and hemodynamic parameters. The present study focuses on the modulatory actions of RSNA on OA-induced sodium and water retention. The experiments were performed in renal-denervated rats (D; N = 9), which were compared to sham (S; N = 9) rats. Mean arterial pressure (MAP) and heart rate (HR) were assessed via an intrafemoral catheter. A catheter was inserted into the bladder for urinary measurements. OA episodes were induced via occlusion of the catheter inserted into the trachea. After an equilibration period, OA was induced for 20 s every 2 min and the changes in urine, MAP, HR and RSNA were recorded. Renal denervation did not alter resting MAP (S: 113 ± 4 vs D: 115 ± 4 mmHg) or HR (S: 340 ± 12 vs D: 368 ± 11 bpm). An OA episode resulted in decreased HR and MAP in both groups, but D rats showed exacerbated hypotension and attenuated bradycardia (S: -12 ± 1 mmHg and -16 ± 2 bpm vs D: -16 ± 1 mmHg and 9 ± 2 bpm; P < 0.01). The basal urinary parameters did not change during or after OA in S rats. However, D rats showed significant increases both during and after OA. Renal sympathetic nerve activity in S rats increased (34 ± 9 percent) during apnea episodes. These results indicate that renal denervation induces elevations of sodium content and urine volume and alters bradycardia and hypotension patterns during total OA in unconscious rats.