Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros











Intervalo de año de publicación
1.
Vet Res ; 55(1): 102, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152462

RESUMEN

In Chile, Piscirickettsia salmonis contains two genetically isolated genogroups, LF-89 and EM-90. However, the impact of a potential co-infection with these two variants on Salmonid Rickettsial Septicemia (SRS) in Atlantic salmon (Salmo salar) remains largely unexplored. In our study, we evaluated the effect of P. salmonis LF-89-like and EM-90-like co-infection on post-smolt Atlantic salmon after an intraperitoneal challenge to compare changes in disease dynamics and host immune response. Co-infected fish had a significantly lower survival rate (24.1%) at 21 days post-challenge (dpc), compared with EM-90-like single-infected fish (40.3%). In contrast, all the LF-89-like single-infected fish survived. In addition, co-infected fish presented a higher presence of clinical lesions than any of the single-infected fish. The gene expression of salmon immune-related biomarkers evaluated in the head kidney, spleen, and liver showed that the EM-90-like isolate and the co-infection induced the up-regulation of cytokines (e.g., il-1ß, ifnγ, il8, il10), antimicrobial peptides (hepdicin) and pattern recognition receptors (PRRs), such as TLR5s. Furthermore, in serum samples from EM-90-like and co-infected fish, an increase in the total IgM level was observed. Interestingly, specific IgM against P. salmonis showed greater detection of EM-90-like antigens in LF-89-like infected fish serum (cross-reaction). These data provide evidence that P. salmonis LF-89-like and EM-90-like interactions can modulate SRS disease dynamics in Atlantic salmon, causing a synergistic effect that increases the severity of the disease and the mortality rate of the fish. Overall, this study contributes to achieving a better understanding of P. salmonis population dynamics.


Asunto(s)
Coinfección , Enfermedades de los Peces , Piscirickettsia , Infecciones por Piscirickettsiaceae , Salmo salar , Animales , Piscirickettsia/fisiología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/inmunología , Infecciones por Piscirickettsiaceae/veterinaria , Infecciones por Piscirickettsiaceae/microbiología , Coinfección/veterinaria , Coinfección/microbiología , Coinfección/inmunología , Chile , Sepsis/veterinaria , Sepsis/microbiología , Sepsis/inmunología
2.
Front Immunol ; 15: 1191966, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655253

RESUMEN

NK-lysin is a potent antimicrobial peptide (AMP) with antimicrobial activity against bacteria, fungi, viruses, and parasites. NK-lysin is a type of granulysin, a member of the saposin-like proteins family first isolated from a pig's small intestine. In previous work, for the first time, we identified four variants of nk-lysin from Atlantic salmon (Salmo salar) using EST sequences. In the present study, we reported and characterized two additional transcripts of NK-lysin from S. salar. Besides, we evaluated the tissue distribution of three NK-lysins from S. salar and assessed the antimicrobial, hemolytic, and immunomodulatory activities and signaling pathways of three NK-lysin-derived peptides. The synthetic peptides displayed antimicrobial activity against Piscirickettsia salmonis (LF-89) and Flavobacterium psychrophilum. These peptides induced the expression of immune genes related to innate and adaptive immune responses in vitro and in vivo. The immunomodulatory activity of the peptides involves the mitogen-activated protein kinases-mediated signaling pathway, including p38, extracellular signal-regulated kinase 1/2, and/or c-Jun N-terminal kinases. Besides, the peptides modulated the immune response induced by pathogen-associated molecular patterns (PAMPs). Our findings show that NK-lysin could be a highly effective immunostimulant or vaccine adjuvant for use in fish aquaculture.


Asunto(s)
Péptidos Antimicrobianos , Proteínas de Peces , Proteolípidos , Salmo salar , Animales , Péptidos Antimicrobianos/metabolismo , Péptidos Antimicrobianos/farmacología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Proteínas de Peces/metabolismo , Proteínas de Peces/farmacología , Inmunidad Innata , Proteolípidos/metabolismo , Proteolípidos/farmacología , Salmo salar/inmunología , Transducción de Señal
3.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612511

RESUMEN

Piscirickettsia salmonis is the pathogen that most affects the salmon industry in Chile. Large quantities of antibiotics have been used to control it. In search of alternatives, we have developed [Cu(NN1)2]ClO4 where NN1 = 6-((quinolin-2-ylmethylene)amino)-2H-chromen-2-one. The antibacterial capacity of [Cu(NN1)2]ClO4 was determined. Subsequently, the effect of the administration of [Cu(NN1)2]ClO4 on the growth of S. salar, modulation of the immune system and the intestinal microbiota was studied. Finally, the ability to protect against a challenge with P. salmonis was evaluated. The results obtained showed that the compound has an MIC between 15 and 33.9 µg/mL in four isolates. On the other hand, the compound did not affect the growth of the fish; however, an increase in the transcript levels of IFN-γ, IL-12, IL-1ß, CD4, lysozyme and perforin was observed in fish treated with 40 µg/g of fish. Furthermore, modulation of the intestinal microbiota was observed, increasing the genera of beneficial bacteria such as Lactobacillus and Bacillus as well as potential pathogens such as Vibrio and Piscirickettsia. Finally, the treatment increased survival in fish challenged with P. salmonis by more than 60%. These results demonstrate that the compound is capable of protecting fish against P. salmonis, probably by modulating the immune system and the composition of the intestinal microbiota.


Asunto(s)
Antiinfecciosos , Infecciones por Piscirickettsiaceae , Salmo salar , Animales , Cobre , Infecciones por Piscirickettsiaceae/tratamiento farmacológico , Infecciones por Piscirickettsiaceae/veterinaria , Antibacterianos/farmacología
4.
Fish Shellfish Immunol ; 144: 109219, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37952850

RESUMEN

Based on the structural knowledge of TLR5 surface and using blind docking platforms, peptides derived from a truncated HMGB1 acidic tail from Salmo salar was designed as TLR5 agonistic. Additionally, a template peptide with the native N-terminal of the acidic tail sequence as a reference was included (SsOri). Peptide binding poses complexed on TLR5 ectodomain model from each algorithm were filtrated based on docking scoring functions and predicted theoretical binding affinity of the complex. The best peptides, termed 6WK and 5LWK, were selected for chemical synthesis and experimental functional assay. The agonist activity by immunoblotting and immunocytochemistry was determined following the NF-κBp65 phosphorylation (p-NF-κBp65) and the nuclear translocation of the NF-κBp65 subunit from the cytosol, respectively. HeLa cells stably expressing a S. salar TLR5 chimeric form (TLR5c7) showed increased p-NF-κBp65 levels regarding extracts from flagellin-treated cells. No statistically significant differences (p > 0.05) were found in the detected p-NF-κBp65 levels between cellular extracts treated with peptides or flagellin by one-way ANOVA. The image analysis of NF-κBp65 immunolabeled cells obtained by confocal microscopy showed increased nuclear NF-κBp65 co-localization in cells both 5LWK and flagellin stimulated, while 6WK and SsOri showed less effect on p65 nuclear translocation (p < 0.05). Also, an increased transcript expression profile of proinflammatory cytokines such as TNFα, IL-1ß, and IL-8 in HKL cells isolated from Salmo salar was evidenced in 5LWK - stimulated by RT-PCR analysis. Overall, the result indicates the usefulness of novel peptides as a potential immunostimulant in S. salar.


Asunto(s)
Proteína HMGB1 , Salmo salar , Animales , Humanos , Receptor Toll-Like 5/genética , Receptor Toll-Like 5/metabolismo , Flagelina/farmacología , Flagelina/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Células HeLa , FN-kappa B/metabolismo , Cola (estructura animal) , Citocinas/genética , Citocinas/metabolismo
5.
J Fish Dis ; 46(12): 1337-1342, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37675858

RESUMEN

Recently, we showed that Atlantic salmon vaccinated against Piscirickettsia salmonis lose their protection upon coinfection with Caligus rogercresseyi (sea lice). However, the causes of the overriding effect of C. rogercresseyi infection have not been elucidated, and the molecular basis of the cellular and humoral immune responses upon C. rogercresseyi infection has not been described for vaccinated salmon. Therefore, we studied changes in the transcription of immune genes in vaccinated Atlantic salmon that were experimentally challenged by co-infecting them with C. rogercresseyi and P. salmonis. In general, coinfection treatments showed immune gene expression similar to treatments with a single P. salmonis infection, showing a decreased cellular response. However, a high variance was found between individual fish in the case of crucial cellular immune genes, with a few fish reacting overwhelmingly highly compared to the majority. This supports our previous findings on vaccination response variation and reinforces the idea that vaccination failures in the field might be caused by an overwhelming amount of vaccinated fish that display a deficient immune response to the infection.


Asunto(s)
Coinfección , Copépodos , Enfermedades de los Peces , Phthiraptera , Piscirickettsia , Salmo salar , Animales , Copépodos/fisiología , Coinfección/veterinaria , Inmunidad
6.
Fish Shellfish Immunol ; 140: 108975, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37488040

RESUMEN

The parr-smolt transformation in salmonids involves a critical period characterized by systemic changes associated with the fish's immune response. In this context, as a dietary ingredient in functional diets, microalgae offer an alternative due to their nutritional and bioactive compounds that could strengthen the immune status. This study evaluated the effect of a diet supplemented with Schizochytrium spp and Nannochloropsis gaditana on the expression of genes associated with the antibacterial response. Additionally, the study assessed the effect on the leukocyte population and erythrocyte maturity in Salmo salar blood. Fish were fed for 30 days with a microalgal mixture (1:1) at a 10% inclusion. Each diet was randomly assigned to a tank using a completely randomized design (CRD) with four replications. Each tank was stocked with 70 Atlantic salmon fingerlings with an initial mean weight of 78.87 ± 0.84. Transcription levels were quantified and analyzed by qRT-PCR from cell isolates and mucus tissue. Furthermore, cell count and identification of leukocytes and classification of cellular maturity of erythrocytes using a neural network with a multilayer perceptron (MLP) were performed. Our results showed a significant (p < 0.05) increase in fold change expression of C3 (2.54 ± 0.65) and NK-Lysine (6.84 ± 0.94) in erythrocytes of microalgae-supplemented fish. Moreover, a significant increase of 1.59 and 2.35 times in monocytes and immature erythrocytes, respectively, was observed in the same group of fish (p < 0.05). This study's results indicate that dual microalgae (Schizochytrium spp and N. gaditana) supplementation can increase innate humoral antibacterial components, particularly in erythrocyte tissue, and increase phagocytic cells and immature erythrocytes in S. salar blood.


Asunto(s)
Microalgas , Salmo salar , Estramenopilos , Animales , Dieta/veterinaria , Inmunidad Innata , Eritrocitos , Antibacterianos , Alimentación Animal/análisis
7.
Genes (Basel) ; 14(5)2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37239346

RESUMEN

Salmon aquaculture is constantly threatened by pathogens that impact fish health, welfare, and productivity, including the sea louse Caligus rogercresseyi. This marine ectoparasite is mainly controlled through delousing drug treatments that have lost efficacy. Therein, strategies such as salmon breeding selection represent a sustainable alternative to produce fish with resistance to sea lice. This study explored the whole-transcriptome changes in Atlantic salmon families with contrasting resistance phenotypes against lice infestation. In total, 121 Atlantic salmon families were challenged with 35 copepodites per fish and ranked after 14 infestation days. Skin and head kidney tissue from the top two lowest (R) and highest (S) infested families were sequenced by the Illumina platform. Genome-scale transcriptome analysis showed different expression profiles between the phenotypes. Significant differences in chromosome modulation between the R and S families were observed in skin tissue. Notably, the upregulation of genes associated with tissue repairs, such as collagen and myosin, was found in R families. Furthermore, skin tissue of resistant families showed the highest number of genes associated with molecular functions such as ion binding, transferase, and cytokine activity, compared with the susceptible. Interestingly, lncRNAs differentially modulated in the R/S families are located near genes associated with immune response, which are upregulated in the R family. Finally, SNPs variations were identified in both salmon families, where the resistant ones showed the highest number of SNPs variations. Remarkably, among the genes with SPNs, genes associated with the tissue repair process were identified. This study reported Atlantic salmon chromosome regions exclusively expressed in R or S Atlantic salmon families' phenotypes. Furthermore, due to the presence of SNPs and high expression of tissue repair genes in the resistant families, it is possible to suggest mucosal immune activation associated with the Atlantic salmon resistance to sea louse infestation.


Asunto(s)
Infestaciones por Piojos , Salmo salar , Animales , Transcriptoma/genética , Salmo salar/genética , Piel/parasitología , Fenotipo
8.
Front Immunol ; 14: 1187209, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187753

RESUMEN

Nutritional immunity regulates the homeostasis of micronutrients such as iron, manganese, and zinc at the systemic and cellular levels, preventing the invading microorganisms from gaining access and thereby limiting their growth. Therefore, the objective of this study was to evaluate the activation of nutritional immunity in specimens of Atlantic salmon (Salmo salar) that are intraperitoneally stimulated with both live and inactivated Piscirickettsia salmonis. The study used liver tissue and blood/plasma samples on days 3, 7, and 14 post-injections (dpi) for the analysis. Genetic material (DNA) of P. salmonis was detected in the liver tissue of fish stimulated with both live and inactivated P. salmonis at 14 dpi. Additionally, the hematocrit percentage decreased at 3 and 7 dpi in fish stimulated with live P. salmonis, unchanged in fish challenged with inactivated P. salmonis. On the other hand, plasma iron content decreased during the experimental course in fish stimulated with both live and inactivated P. salmonis, although this decrease was statistically significant only at 3 dpi. Regarding the immune-nutritional markers such as tfr1, dmt1, and ireg1 were modulated in the two experimental conditions, compared to zip8, ft-h, and hamp, which were down-regulated in fish stimulated with live and inactivated P. salmonis during the course experimental. Finally, the intracellular iron content in the liver increased at 7 and 14 dpi in fish stimulated with live and inactivated P. salmonis, while the zinc content decreased at 14 dpi under both experimental conditions. However, stimulation with live and inactivated P. salmonis did not alter the manganese content in the fish. The results suggest that nutritional immunity does not distinguish between live and inactivated P. salmonis and elicits a similar immune response. Probably, this immune mechanism would be self-activated with the detection of PAMPs, instead of a sequestration and/or competition of micronutrients by the living microorganism.


Asunto(s)
Piscirickettsia , Salmo salar , Animales , Manganeso , Piscirickettsia/genética , Hierro
9.
Animals (Basel) ; 14(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38200828

RESUMEN

Maintaining the high overall health of farmed animals is a central tenant of their well-being and care. Intense animal crowding in aquaculture promotes animal morbidity especially in the absence of straightforward methods for monitoring their health. Here, we used bacterial 16S ribosomal RNA gene sequencing to measure bacterial population dynamics during P. salmonis infection. We observed a complex bacterial community consisting of a previously undescribed core pathobiome. Notably, we detected Aliivibrio wodanis and Tenacibaculum dicentrarchi on the skin ulcers of salmon infected with P. salmonis, while Vibrio spp. were enriched on infected gills. The prevalence of these co-occurring networks indicated that coinfection with other pathogens may enhance P. salmonis pathogenicity.

10.
Microorganisms ; 12(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38257891

RESUMEN

Furunculosis, caused by Aeromonas salmonicida, poses a significant threat to both salmonid and non-salmonid fish in diverse aquatic environments. This study explores the genomic intricacies of re-emergent A. salmonicida outbreaks in Atlantic salmon (Salmo salar). Previous clinical cases have exhibited pathological characteristics, such as periorbital hemorrhages and gastrointestinal abnormalities. Genomic sequencing of three Chilean isolates (ASA04, ASA05, and CIBA_5017) and 25 previously described genomes determined the pan-genome, phylogenomics, insertion sequences, and restriction-modification systems. Unique gene families have contributed to an improved understanding of the psychrophilic and mesophilic clades, while phylogenomic analysis has been used to identify mesophilic and psychrophilic strains, thereby further differentiating between typical and atypical psychrophilic isolates. Diverse insertion sequences and restriction-modification patterns have highlighted genomic structural differences, and virulence factor predictions can emphasize exotoxin disparities, especially between psychrophilic and mesophilic strains. Thus, a novel plasmid was characterized which emphasized the role of plasmids in virulence and antibiotic resistance. The analysis of antibiotic resistance factors revealed resistance against various drug classes in Chilean strains. Overall, this study elucidates the genomic dynamics of re-emergent A. salmonicida and provides novel insights into their virulence, antibiotic resistance, and population structure.

11.
Pathogens ; 11(11)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36422619

RESUMEN

Infectious pancreatic necrosis (IPN), caused by IPNV, affects several species of farmed fish, particularly Atlantic salmon, and is responsible for significant economic losses in salmon aquaculture globally. Despite the introduction of genetically resistant farmed Atlantic salmon and vaccination strategies in the Chilean salmon industry since 2019, the number of IPN outbreaks has been increasing in farmed Atlantic salmon in the freshwater phase. This study examined gross and histopathological lesions of IPNV-affected fish, as well as the IPNV nucleotide sequence encoding the VP2 protein in clinical cases. The mortality reached 0.4% per day, and the cumulative mortality was from 0.4 to 3.5%. IPNV was isolated in the CHSE-214 cell line and was confirmed by RT-PCR, and VP2 sequence analysis. The analyzed viruses belong to IPNV genotype 5 and have 11 mutations in their VP2 protein. This is the first report of IPN outbreaks in farmed Atlantic salmon genetically resistant to IPNV in Chile. Similar outbreaks were previously reported in Scotland and Norway during 2018 and 2019, respectively. This study highlights the importance of maintaining a comprehensive surveillance program in conjunction with the use of farmed Atlantic salmon genetically resistant to IPNV.

12.
Vaccines (Basel) ; 10(11)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36366383

RESUMEN

Due to the reduced efficacy of delousing drugs used for sea lice control in salmon aquaculture, fish vaccines have emerged as one of the most sustainable strategies in animal health. Herein, the availability of C. rogercresseyi and Salmo salar genomes increases the capability of identifying new candidate antigens for lice vaccines using RNA sequencing and computational tools. This study aimed to evaluate the effects of two recombinant antigens characterized as peritrophin and cathepsin proteins on the transcriptome profiling of Atlantic salmon during a sea lice infestation. Four experimental groups were used: Peritrophin, cathepsin, and peritrophin/cathepsin (P/C), and PBS as the control. C. rogercresseyi female, S. salar head kidney, and skin tissue samples were sampled at 25 days post-infestation (dpi) for Illumina sequencing and RNA-seq analysis. Differential gene expression, gene ontology, and chromosomal expression analyses were performed. Furthermore, the dual RNA-seq analysis approach was performed to simultaneously explore host and pathogen transcriptomes, identifying functional associations for vaccine design. The morphometry of female sea lice exposed to immunized fish was also evaluated. The RNA-Seq analysis exhibited prototype-dependent transcriptome modulation, showing a conspicuous competition for metal ions during the infestation. Moreover, Dual RNA-seq analysis revealed vaccine-dependent gene patterns in both the host and the pathogen. Notably, significant morphometric differences between lice collected from immunized and control fish were observed, where cathepsin and P/C showed 57% efficacy. This study showed the potential of two proteins as lice vaccines for the salmon industry, suggesting novel molecular mechanisms between host-parasite interactions.

13.
Biology (Basel) ; 11(7)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36101374

RESUMEN

In Atlantic salmon, vaccines have failed to control and prevent Piscirickettsiosis, for reasons that remain elusive. In this study, we report the efficacy of two commercial vaccines developed with the Piscirickettsia salmonis isolates AL100005 and AL 20542 against another two genogroups which are considered highly and ubiquitously prevalent in Chile: LF-89 and EM-90. Two cohabitation trials were performed to mimic field conditions and vaccine performance: (1) post-smolt fish were challenged with a single infection of LF-89, (2) adults were coinfected with EM-90, and a low level coinfection of sea lice. In the first trial, the vaccine delayed smolt mortalities by two days; however, unvaccinated and vaccinated fish did not show significant differences in survival (unvaccinated: 60.3%, vaccinated: 56.7%; p = 0.28). In the second trial, mortality started three days later for vaccinated fish than unvaccinated fish. However, unvaccinated and vaccinated fish did not show significant differences in survival (unvaccinated: 64.6%, vaccinated: 60.2%, p = 0.58). Thus, we found no evidence that the evaluated vaccines confer effective protection against the genogroups LF-89 and EM-90 of P. salmonis with estimated relative survival proportions (RPSs) of -9% and -12%, respectively. More studies are necessary to evaluate whether pathogen heterogeneity is a key determinant of the lack of vaccine efficacy against P. salmonis.

14.
Toxins (Basel) ; 14(8)2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-36006237

RESUMEN

Despite the invaluable role of anesthetics as a tool for ensuring animal welfare in stressful situations, there is currently a lack of anesthetic drugs that meet the requirements of intensive aquaculture. In response to the growing interest in anesthetic substances of natural origin, this study evaluated the physiological and health impact of an anesthetic based on an extract of the microalga Heterosigma akashiwo on juvenile salmon (Salmo salar) exposed for a period of 72 h. To simulate a condition closer to reality where fish are subjected to stimuli (e.g., transport), the animals were exposed to 50 mg L-1 of algal extract and to physical stress. Functional, physiological, and histological parameters were evaluated in blood and tissues at different sampling periods (0, 24, and 72 h). There was no mortality and the induction and recovery times observed were within the established criteria for anesthetic efficacy. The anesthetic extract did not induce any side effects, such as stress or metabolic damage, indicating that this extract is a viable option for supporting fish welfare during deleterious events. This study provides information to support that the anesthetic extract tested, derived from H. akashiwo, is a promising candidate drug for operations requiring sedation (e.g., Salmonid transport).


Asunto(s)
Anestésicos , Salmo salar , Anestésicos/farmacología , Animales , Acuicultura , Extractos Vegetales , Estrés Fisiológico
15.
Vaccines (Basel) ; 10(7)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35891227

RESUMEN

The sea louse Caligus rogercresseyi genome has opened the opportunity to apply the reverse vaccinology strategy for identifying antigens with potential effects on lice development and its application in sea lice control. This study aimed to explore the efficacy of three sea lice vaccines against the early stage of infestation, assessing the transcriptome modulation of immunized Atlantic salmon. Therein, three experimental groups of Salmo salar (Atlantic salmon) were vaccinated with the recombinant proteins: Peritrophin (prototype A), Cathepsin (prototype B), and the mix of them (prototype C), respectively. Sea lice infestation was evaluated during chalimus I-II, the early-infective stages attached at 7-days post infestation. In parallel, head kidney and skin tissue samples were taken for mRNA Illumina sequencing. Relative expression analyses of genes were conducted to identify immune responses, iron transport, and stress responses associated with the tested vaccines during the early stages of sea lice infection. The vaccine prototypes A, B, and C reduced the parasite burden by 24, 44, and 52% compared with the control group. In addition, the RNA-Seq analysis exhibited a prototype-dependent transcriptome modulation. The high expression differences were observed in genes associated with metal ion binding, molecular processes, and energy production. The findings suggest a balance between the host's inflammatory response and metabolic process in vaccinated fish, increasing their transcriptional activity, which can alter the early host-parasite interactions. This study uncovers molecular responses produced by three vaccine prototypes at the early stages of infestation, providing new knowledge for sea lice control in the salmon aquaculture.

16.
Pharmaceuticals (Basel) ; 15(6)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35745571

RESUMEN

In this work, two microencapsulation techniques were used to protect and improve the absorption of emamectin benzoate (EB), which is an antiparasitic drug used to control Caligus rogercresseyi. EB has a low aqueous solubility, which affects its absorption in the intestine of Salmo salar. Microparticles were produced by spray drying and ionic gelation, using Soluplus® (EB−SOL) and sodium alginate (EB−ALG) as polymers, respectively. Studies were conducted on dissolution/permeation, apparent permeability (Papp), apparent solubility (Sapp), and absorption using synthetic and biological membranes. Based on these results, the amount of EB in the microparticles needed to achieve a therapeutic dose was estimated. The EB−ALG microparticles outperformed both EB−SOL and free EB, for all parameters analyzed. The results show values of 0.45 mg/mL (80.2%) for dissolution/permeation, a Papp of 6.2 mg/mL in RS−L, an absorption of 7.3% in RS, and a Sapp of 53.1% in EM medium. The EB−ALG microparticles decrease the therapeutic dose necessary to control the parasite, with values of 3.0−2 mg/mL and 1.1−2 mg/mL for EB in EM and RS, respectively. The Korsmeyer−Peppas kinetic model was the best model to fit the EB−ALG and EB−SOL dissolution/permeation experiments. In addition, some of our experimental results using synthetic membranes are similar to those obtained with biological membranes, which suggests that, for some parameters, it is possible to replace biological membranes with synthetic membranes. The encapsulation of EB by ionic gelation shows it is a promising formulation to increase the absorption of the poorly soluble drug. In contrast, the spray-dried microparticles produced using Soluplus® result in even less dissolution/permeation than free EB, so the technique cannot be used to improve the solubility of EB.

17.
Front Immunol ; 13: 849752, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35493529

RESUMEN

The innate immune system can limit the growth of invading pathogens by depleting micronutrients at a cellular and tissue level. However, it is not known whether nutrient depletion mechanisms discriminate between living pathogens (which require nutrients) and pathogen-associated molecular patterns (PAMPs) (which do not). We stimulated SHK-1 cells with different PAMPs (outer membrane vesicles of Piscirickettsia salmonis "OMVs", protein extract of P. salmonis "TP" and lipopolysaccharides of P. salmonis "LPS") isolated from P. salmonis and evaluated transcriptional changes in nutritional immunity associated genes. Our experimental treatments were: Control (SHK-1 stimulated with bacterial culture medium), OMVs (SHK-1 stimulated with 1µg of outer membrane vesicles), TP (SHK-1 stimulated with 1µg of total protein extract) and LPS (SHK-1 stimulated with 1µg of lipopolysaccharides). Cells were sampled at 15-, 30-, 60- and 120-minutes post-stimulation. We detected increased transcription of zip8, zip14, irp1, irp2 and tfr1 in all three experimental conditions and increased transcription of dmt1 in cells stimulated with OMVs and TP, but not LPS. Additionally, we observed generally increased transcription of ireg-1, il-6, hamp, irp1, ft-h and ft-m in all three experimental conditions, but we also detected decreased transcription of these markers in cells stimulated with TP and LPS at specific time points. Our results demonstrate that SHK-1 cells stimulated with P. salmonis PAMPs increase transcription of markers involved in the transport, uptake, storage and regulation of micronutrients such as iron, manganese and zinc.


Asunto(s)
Moléculas de Patrón Molecular Asociado a Patógenos , Salmón , Animales , Línea Celular , Lipopolisacáridos/farmacología , Macrófagos , Micronutrientes , Piscirickettsia
18.
Animals (Basel) ; 12(9)2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35565600

RESUMEN

A variety of long-term stress conditions may exist in fish cultivation, some of which are so severe that fish can no longer reestablish homeostasis. In teleost fish, the brain and gastrointestinal tract integrate signals that include the perception of stress factors regulating physiological responses, such as social stress by fish population density, where peripheral and central signals, such as peptide hormones, are the main regulators. Therefore, we proposed in this study to analyze the effect of different stock densities (SD) in the gene expression of brain neuropeptide Y (NPY) and calcitonin gene-related peptide (CGRP), together with the gastrointestinal peptide hormones leptin (Lep), vasointestinal peptide (VIP), and protachykinin-1 (Prk-1) in Salmo salar post-smolt. The coding sequence of S. salar VIP and Prk-1 precursors were firstly cloned and characterized. Then, the mRNA expression of these genes, together with the NPY, Lep, and CGRP genes, were evaluated in post-smolts kept at 11 Kg/m3, 20 Kg/m3, and 40 Kg/m3. At 14 days of culture, the brain CGRP and liver leptin mRNA levels increased three and tenfold in the post-smolt salmons kept at the highest SD, respectively. The high levels of leptin were kept during all the fish culture experiments. In addition, the highest expression of intestine VIP mRNA was obtained on Day 21 in the group of 40 Kg/m3 returning to baseline on Day 40. In terms of stress biochemical parameters, cortisol levels were increased in the 20 Kg/m3 and 40 Kg/m3 groups on Day 40 and were the highest in the 20 Kg/m3 group on Day 14. This study provides new insight into the gastrointestinal signals that could be affected by chronic stress induced by high stock density in fish farming. Thus, the expression of these peptide hormones could be used as molecular markers to improve production practices in fish aquaculture.

19.
Fish Shellfish Immunol ; 125: 120-127, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35537671

RESUMEN

The intensive salmon farming is associated with massive outbreaks of infections. The use of antibiotics for their prevention and control is related to damage to the environment and human health. Antimicrobial peptides (AMPs) have been proposed as an alternative to the use of antibiotics for their antimicrobial and immunomodulatory activities. However, one of the main challenges for its massive clinical application is the high production cost and the complexity of chemical synthesis. Thus, recombinant DNA technology offers a more sustainable, scalable, and profitable option. In the present study, using an AMPs function prediction methodology, we designed a chimeric peptide consisting of sequences derived from cathelicidin fused with the immunomodulatory peptide derived from flagellin. The designed peptide, CATH-FLA was produced by recombinant expression using an easy pre-purification system. The chimeric peptide was able to induce IL-1ß and IL-8 expression in Salmo salar head kidney leukocytes, and prevented Piscirickettsia salmonis-induced cytotoxicity in SHK-1 cells. These results suggest that pre-purification of a recombinant AMP-based chimeric peptide designed in silico allow obtaining a peptide with immunomodulatory activity in vitro. This could solve the main obstacle of AMPs for massive clinical applications.


Asunto(s)
Enfermedades de los Peces , Piscirickettsia , Infecciones por Piscirickettsiaceae , Salmo salar , Animales , Antibacterianos , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/prevención & control , Flagelina , Riñón Cefálico , Piscirickettsia/genética , Infecciones por Piscirickettsiaceae/veterinaria , Salmón
20.
Front Cell Infect Microbiol ; 12: 845661, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372121

RESUMEN

Bacterial cell envelopes play a critical role in host-pathogen interactions. Macromolecular components of these structures have been closely linked to the virulence of pathogens. Piscirickettsia salmonis is a relevant salmonid pathogen with a worldwide distribution. This bacterium is the etiological agent of piscirickettsiosis, a septicemic disease that causes a high economic burden, especially for the Chilean salmon farming industry. Although P. salmonis has been discovered long ago, its pathogenicity and virulence mechanisms are not completely understood. In this work, we present a genetic approach for producing in-frame deletion mutants on genes related to the biosynthesis of membrane-associated polysaccharides. We provide a detailed in vitro phenotype description of knock-out mutants on wzx and wcaJ genes, which encode predicted lipopolysaccharide (LPS) flippase and undecaprenyl-phosphate glucose phosphotransferase enzymes, respectively. We exhibit evidence that the wzx mutant strain carries a defect in the probably most external LPS moiety, while the wcaJ mutant proved to be highly susceptible to the bactericidal action of serum but retained the ability of biofilm production. Beyond that, we demonstrate that the deletion of wzx, but not wcaJ, impairs the virulence of P. salmonis in an intraperitoneally infected Atlantic salmon, Salmo salar, model of piscirickettsiosis. Our findings support a role for LPS in the virulence of P. salmonis during the onset of piscirickettsiosis.


Asunto(s)
Enfermedades de los Peces , Salmo salar , Animales , Enfermedades de los Peces/microbiología , Lipopolisacáridos , Piscirickettsia , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA