Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Structure ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39208793

RESUMEN

N-myristoyltransferases (NMTs) catalyze essential acylations of N-terminal alpha or epsilon amino groups of glycines or lysines. Here, we reveal that peptides tightly fitting the optimal glycine recognition pattern of human NMTs are potent prodrugs relying on a single-turnover mechanism. Sequence scanning of the inhibitory potency of the series closely reflects NMT glycine substrate specificity rules, with the lead inhibitor blocking myristoylation by NMTs of various species. We further redesigned the series based on the recently recognized lysine-myristoylation mechanism by taking advantage of (1) the optimal peptide chassis and (2) lysine side chain mimicry with unnatural enantiomers. Unlike the lead series, the inhibitory properties of the new compounds rely on the protonated state of the side chain amine, which stabilizes a salt bridge with the catalytic base at the active site. Our study provides the basis for designing first-in-class NMT inhibitors tailored for infectious diseases and alternative active site targeting.

2.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39125601

RESUMEN

In late 2019, the emergence of a novel coronavirus led to its identification as SARS-CoV-2, precipitating the onset of the COVID-19 pandemic. Many experimental and computational studies were performed on SARS-CoV-2 to understand its behavior and patterns. In this research, Molecular Dynamic (MD) simulation is utilized to compare the behaviors of SARS-CoV-2 and its Variants of Concern (VOC)-Alpha, Beta, Gamma, Delta, and Omicron-with the hACE2 protein. Protein structures from the Protein Data Bank (PDB) were aligned and trimmed for consistency using Chimera, focusing on the receptor-binding domain (RBD) responsible for ACE2 interaction. MD simulations were performed using Visual Molecular Dynamics (VMD) and Nanoscale Molecular Dynamics (NAMD2), and salt bridges and hydrogen bond data were extracted from the results of these simulations. The data extracted from the last 5 ns of the 10 ns simulations were visualized, providing insights into the comparative stability of each variant's interaction with ACE2. Moreover, electrostatics and hydrophobic protein surfaces were calculated, visualized, and analyzed. Our comprehensive computational results are helpful for drug discovery and future vaccine designs as they provide information regarding the vital amino acids in protein-protein interactions (PPIs). Our analysis reveals that the Original and Omicron variants are the two most structurally similar proteins. The Gamma variant forms the strongest interaction with hACE2 through hydrogen bonds, while Alpha and Delta form the most stable salt bridges; the Omicron is dominated by positive potential in the binding site, which makes it easy to attract the hACE2 receptor; meanwhile, the Original, Beta, Delta, and Omicron variants show varying levels of interaction stability through both hydrogen bonds and salt bridges, indicating that targeted therapeutic agents can disrupt these critical interactions to prevent SARS-CoV-2 infection.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Simulación de Dinámica Molecular , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Humanos , COVID-19/virología , COVID-19/metabolismo , Enlace de Hidrógeno , Sitios de Unión
3.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928023

RESUMEN

We analyzed the thermal stability of the BstHPr protein through the site-directed point mutation Lys62 replaced by Ala residue using molecular dynamics simulations at five different temperatures: 298, 333, 362, 400, and 450 K, for periods of 1 µs and in triplicate. The results from the mutant thermophilic BstHPrm protein were compared with those of the wild-type thermophilic BstHPr protein and the mesophilic BsHPr protein. Structural and molecular interaction analyses show that proteins lose stability as temperature increases. Mutant and wild-type proteins behave similarly up to 362 K. However, at 400 K the mutant protein shows greater structural instability, losing more buried hydrogen bonds and exposing more of its non-polar residues to the solvent. Therefore, in this study, we confirmed that the salt bridge network of the Glu3-Lys62-Glu36 triad, made up of the Glu3-Lys62 and Glu36-Lys62 ion pairs, provides thermal stability to the thermophilic BstHPr protein.


Asunto(s)
Simulación de Dinámica Molecular , Estabilidad Proteica , Enlace de Hidrógeno , Temperatura , Mutación , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sustitución de Aminoácidos , Conformación Proteica , Mutagénesis Sitio-Dirigida
4.
Proc Natl Acad Sci U S A ; 121(16): e2320416121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38588428

RESUMEN

Pores through ion channels rapidly transport small inorganic ions along their electrochemical gradients. Here, applying single-channel electrophysiology and mutagenesis to the archetypal muscle nicotinic acetylcholine receptor (AChR) channel, we show that a conserved pore-peripheral salt bridge partners with those in the other subunits to regulate ion transport. Disrupting the salt bridges in all five receptor subunits greatly decreases the amplitude of the unitary current and increases its fluctuations. However, disrupting individual salt bridges has unequal effects that depend on the structural status of the other salt bridges. The AChR ε- and δ-subunits are structurally unique in harboring a putative palmitoylation site near each salt bridge and bordering the lipid membrane. The effects of disrupting the palmitoylation sites mirror those of disrupting the salt bridges, but the effect of disrupting either of these structures depends on the structural status of the other. Thus, rapid ion transport through the AChR channel is maintained by functionally interdependent salt bridges linking the pore to the lipid membrane.


Asunto(s)
Receptores Colinérgicos , Receptores Nicotínicos , Receptores Nicotínicos/genética , Receptores Nicotínicos/química , Músculos , Transporte Iónico , Lípidos
5.
Biomolecules ; 14(4)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38672438

RESUMEN

Abnormal blood coagulation is a major health problem and natural anticoagulants from blood-feeding organisms have been investigated as novel therapeutics. NAPc2, a potent nematode-derived inhibitor of coagulation, has an unusual mode of action that requires coagulation factor Xa but does not inhibit it. Molecular dynamics simulations of NAPc2 and factor Xa were generated to better understand NAPc2. The simulations suggest that parts of NAPc2 become more rigid upon binding factor Xa and reveal that two highly conserved residues form an internal salt bridge that stabilises the bound conformation. Clotting time assays with mutants confirmed the utility of the salt bridge and suggested that it is a conserved mechanism for stabilising the bound conformation of secondary structure-poor protease inhibitors.


Asunto(s)
Anticoagulantes , Factor Xa , Simulación de Dinámica Molecular , Unión Proteica , Animales , Anticoagulantes/química , Anticoagulantes/farmacología , Factor Xa/metabolismo , Factor Xa/química , Nematodos/metabolismo , Nematodos/efectos de los fármacos , Humanos , Coagulación Sanguínea/efectos de los fármacos , Proteínas del Helminto/química , Proteínas del Helminto/metabolismo , Proteínas del Helminto/genética , Sitios de Unión
6.
J Biochem ; 176(1): 69-80, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38471515

RESUMEN

Schistosoma japonicum glutathione-S-transferase (SjGST), the so-called GST-tag, is one of the most widely used protein tags for the purification of recombinant proteins by affinity chromatography. Attachment of SjGST enables the purification of a protein of interest (POI) using commercially available glutathione-immobilizing resins. Here we produced an SjGST mutant pair that forms heterodimers by adjusting the salt bridge pairs in the homodimer interface of SjGST. An MD study confirmed that the SjGST mutant pair did not disrupt the heterodimer formation. The modified SjGST protein pair coexpressed in Escherichia coli was purified by glutathione-immobilized resin. The stability of the heterodimeric form of the SjGST mutant pair was further confirmed by size exclusion chromatography. Surface plasmon resonance measurements unveiled the selective formation of heterodimers within the pair, accompanied by a significant suppression of homodimerization. The heterodimeric SjGST exhibited enzymatic activity in assays employing a commercially available fluorescent substrate. By fusing one member of the heterodimeric SjGST pair with a fluorescent protein and the other with the POI, we were able to conveniently and sensitively detect protein-protein interactions using fluorescence spectroscopy in the pull-down assays. Thus, utilization of the heterodimeric SjGST would be a useful tag for protein science.


Asunto(s)
Cromatografía de Afinidad , Glutatión Transferasa , Schistosoma japonicum , Schistosoma japonicum/enzimología , Glutatión Transferasa/metabolismo , Glutatión Transferasa/química , Glutatión Transferasa/aislamiento & purificación , Glutatión Transferasa/genética , Animales , Cromatografía de Afinidad/métodos , Multimerización de Proteína , Proteínas del Helminto/metabolismo , Proteínas del Helminto/química , Proteínas del Helminto/genética , Proteínas del Helminto/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Modelos Moleculares
7.
Small ; 20(30): e2311255, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38415816

RESUMEN

Multicellular organisms demonstrate a hierarchical organization where multiple cells collectively form tissues, thereby enabling higher-order cooperative functionalities beyond the capabilities of individual cells. Drawing inspiration from this biological organization, assemblies of multiple protocells are developed to create novel functional materials with emergent higher-order cooperative functionalities. This paper presents new artificial tissues derived from multiple vesicles, which serve as protocellular models. These tissues are formed and manipulated through non-covalent interactions triggered by a salt bridge. Exhibiting pH-sensitive reversible formation and destruction under neutral conditions, these artificial vesicle tissues demonstrate three distinct higher-order cooperative functionalities: transportation of large cargoes, photo-induced contractions, and enhanced survivability against external threats. The rapid assembly and disassembly of these artificial tissues in response to pH variations enable controlled mechanical task performance. Additionally, the self-healing property of these artificial tissues indicates robustness against external mechanical damage. The research suggests that these vesicles can detect specific pH environments and spontaneously assemble into artificial tissues with advanced functionalities. This leads to the possibility of developing intelligent materials with high environmental specificity, particularly for applications in soft robotics.


Asunto(s)
Ingeniería de Tejidos , Concentración de Iones de Hidrógeno , Ingeniería de Tejidos/métodos , Células Artificiales/química
8.
J Biomol Struct Dyn ; : 1-14, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38419322

RESUMEN

As a leading contender in the study of luminescence, nanoluciferase has recently attracted attention and proven effective in a wide variety of research areas. Although numerous attempts have been made to improve activity, there has yet to be a thorough exploration of further possibilities to improve thermostability. In this study, protein engineering in tandem with molecular dynamics simulation at various temperatures (300 K, 400 K, 450 K and 500 K) was used to improve our understanding of nanoluciferase dynamics and identification of factors that could significantly enhance the thermostability. Based on these, three novel mutations have been narrowed down, which were hypothesised to improve thermostability. Root mean square deviation and root mean square fluctuation studies confirmed higher stability of mutant at high temperature. Solvent-accessible surface area and protein unfolding studies revealed a decreased tendency of mutant to unfold at higher temperatures. Further free energy landscape and principal component analysis was adapted to get deeper insights into the thermodynamic and structural behavior of these proteins at elevated temperature. Thus, this study provides a deeper insight into the dynamic factors for thermostability and introduces a novel, enhanced nanoluciferase candidate with potential use in industry.Communicated by Ramaswamy H. Sarma.

9.
Biochim Biophys Acta Proteins Proteom ; 1872(1): 140971, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37935252

RESUMEN

Glutaredoxin 3 (Grx3), a redox protein with a thioredoxin-fold structure, maintains structural integrity and glutathione (GSH) binding capabilities across varying habitat temperatures. The cis-Pro loop, essential for GSH binding, relies on the Arg-Asp salt bridge (α2-α3) and Gln-His hydrogen bond (ß3-ß4) for its conformation. In some psychrophilic Grx3 variants, Arg in α2 is replaced with Tyr, and His in ß4 is replaced with Phe. This study examines the roles of these bonds in Grx3's structure, function, and cold adaptation, using SpGrx3 from the Arctic bacterium Sphingomonas sp. Despite its cold habitat, SpGrx3 maintains the Arg51-Asp69 salt bridge and Gln56-His63 hydrogen bond. The R51Y substitution disrupts the α2-α3 salt bridge, while the H63F and H63Y substitutions hinder the salt bridge through cation-π interactions with Arg51, involving Phe63/Tyr63, thereby enhancing flexibility. Conversely, mutations that disrupt the hydrogen bond (Q56A, H63A, and H63F) reduce thermal stability. In the psychrophilic Grx3 configuration A48T/R51Y/H63F, a Thr48-Gln56 hydrogen bond stabilizes the cis-Pro loop, enhancing flexibility by disrupting both bonds. Furthermore, all mutants exhibit reduced α-helical content and catalytic efficiency. In summary, the highly conserved Arg51-Asp69 salt bridge and Gln56-His63 hydrogen bond are crucial for stabilizing the cis-Pro loop and catalytic activity in SpGrx3. His63 is favored as it avoids cation-π interactions with Arg51, unlike Phe63/Tyr63. Psychrophilic Grx3 variants have adapted to cold environments by reducing GSH binding and increasing structural flexibility. These findings deepen our understanding of the structural conservation in Grx3 for GSH binding and the critical alterations required for cold adaptation.


Asunto(s)
Glutarredoxinas , Sphingomonas , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Sphingomonas/genética , Secuencia de Aminoácidos , Glutatión/metabolismo , Cationes
10.
Food Chem X ; 20: 100888, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38144803

RESUMEN

The 1,4-α-glucan branching enzyme (GBE, EC 2.4.1.18) has garnered considerable attention for its ability to increase the degree of branching of starch and retard starch digestion, which has great industrial applications. Previous studies have reported that the N-terminal domain plays an important role in the expression and stability of GBEs. To further increase the catalytic ability of Gt-GBE, we constructed five mutants in the N-terminal domain: L19R, L19K, L25R, L25K, and L25A. Specific activities of L25R and L25A were increased by 28.46% and 23.46%, respectively, versus the wild-type Gt-GBE. In addition, the α-1,6-glycosidic linkage ratios of maltodextrin samples treated with L25R and L25A increased to 5.71%, which were significantly increased by 19.96% compared with that of the wild-type Gt-GBE. The results of this study suggest that the N-terminal domain selective modification can improve enzyme catalytic activity, thus further increasing the commercial application of enzymes in food and pharmaceutical industries.

11.
J Biomol Struct Dyn ; : 1-16, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38147414

RESUMEN

Malate dehydrogenase (MDH) exists in multimeric form in normal and extreme solvent conditions where residues of the interface are involved in specific interactions. The interface salt-bridge (ISB) and its microenvironment (ME) residues may have a crucial role in the stability and specificity of the interface. To gain insight into this, we have analyzed 218 ISBs from 42 interfaces of 15 crystal structures along with their sequences. Comparative analyses demonstrate that the ISB strength is ∼30 times greater in extremophilic cases than that of the normal one. To this end, the interface residue propensity, ISB design and pair selection, and ME-residue's types, i.e., type-I and type-II, are seen to be intrinsically involved. Although Type-I is a common type, Type-II appears to be extremophile-specific, where the net ME-residue count is much lower with an excessive net ME-energy contribution, which seems to be a novel interface compaction strategy. Furthermore, the interface strength can be enhanced by selecting the desired mutant from the net-energy profile of all possible mutations of an unfavorable ME-residue. The study that applies to other similar systems finds applications in protein-protein interaction and protein engineering.Communicated by Ramaswamy H. Sarma.

12.
Biochim Biophys Acta Gen Subj ; 1867(12): 130490, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37844739

RESUMEN

BACKGROUND: The yeast S. cerevisiae preferably metabolizes glucose through aerobic glycolysis. Glucose transport is facilitated by multiple hexose transporters (Hxts), and their expression and activity are tightly regulated by multiple mechanisms. However, detailed structural and functional analyses of Hxts remain limited, largely due to the lack of crystal structure. METHODS: Homology modeling was used to build a 3D structural model for the yeast glucose transporter Hxt1 and investigate the effects of site directed mutations on Hxt1 stability and glucose transport activity. RESULTS: The conserved salt bridge-forming residues observed in the human Glut4 and the yeast glucose receptor Rgt2 were identified within and between the two 6-transmembrane spanning segments of Hxt1. Most of the RGT2 mutations that disrupt the salt bridge networks were known to cause constitutive signal generation, whereas the corresponding substitutions in HXT1 were shown to decrease Hxt1 stability. While substitutions of the two residues in the salt bridge 2 in Glut4-E329Q and E393D-were reported to abolish glucose transport, the equivalent substitutions in Hxt1 (D382Q and E454D) did not affect Hxt1 glucose transport activity. CONCLUSIONS: Substitutions of equivalent salt bridge-forming residues in Hxt1, Rgt2, and Glut4 are predicted to lock them in an inward-facing conformation but lead to different functional consequences. GENERAL SIGNIFICANCE: The salt bridge networks in yeast and human glucose transporters and yeast glucose receptors may play different roles in maintaining their structural and functional integrity.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Glucosa/metabolismo
13.
J Struct Biol ; 215(4): 108031, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37758155

RESUMEN

Two homologous cytochromes c', SBCP and SVCP, from deep-sea Shewanella benthica and Shewanella violacea respectively exhibit only nine surface amino acid substitutions, along with one at the N-terminus. Despite the small sequence difference, SBCP is thermally more stable than SVCP. Here, we examined the thermal stability of SBCP variants, each containing one of the nine substituted residues in SVCP, and found that the SBCP K87V variant was the most destabilized. We then determined the X-ray crystal structure of the SBCP K87V variant at a resolution of 2.1 Å. The variant retains a four-helix bundle structure similar to the wild-type, but notable differences are observed in the hydration structure around the mutation site. Instead of forming of the intrahelical salt bridge between Lys-87 and Asp-91 in the wild-type, a clathrate-like hydration around Val-87 through a hydrogen bond network with the nearby amino acid residues is observed. This network potentially enhances the ordering of surrounding water molecules, leading to an entropic destabilization of the protein. These results suggest that the unfavorable hydrophobic hydration environment around Val-87 and the inability to form the Asp-91-mediated salt bridge contribute to the observed difference in stability between SBCP and SVCP. These findings will be useful in future protein engineering for controlling protein stability through the manipulation of surface intrahelical salt bridges.


Asunto(s)
Citocromos c' , Citocromos c , Citocromos c/química , Citocromos c/genética , Citocromos c/metabolismo , Citocromos c'/metabolismo , Conformación Proteica , Estabilidad Proteica
14.
Chembiochem ; 24(21): e202300373, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37639367

RESUMEN

Polyethylene terephthalate (PET) is one of the most widely used plastics, and the accumulation of PET poses a great threat to the environment. IsPETase can degrade PET rapidly at moderate temperatures, but its application is greatly limited by the low stability. Herein, molecular dynamics (MD) simulations combined with a sequence alignment strategy were adopted to introduce salt bridges into the flexible region of IsPETase to improve its thermal stability. In the designed variants, the Tm values of IsPETaseI168R/S188D and IsPETaseI168R/S188E were 7.4 and 8.7 °C higher than that of the wild type, respectively. The release of products degraded by IsPETaseI168R/S188E was 4.3 times that of the wild type. Tertiary structure characterization demonstrated that the structure of the variants IsPETaseI168R/S188D and IsPETaseI168R/S188E became more compact. Extensive MD simulations verified that a stable salt bridge was formed between the residue R168 and D186 in IsPETaseI168R/S188D , while in IsPETaseI168R/S188E an R168-D186-E188 salt bridge network was observed. These results confirmed that the proposed computation-based salt bridge design strategy could efficiently generate variants with enhanced thermal stability for the long-term degradation of PET, which would be helpful for the design of enzymes with improved stability.


Asunto(s)
Simulación de Dinámica Molecular , Tereftalatos Polietilenos , Tereftalatos Polietilenos/química , Temperatura , Alineación de Secuencia , Hidrolasas/metabolismo
15.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119539, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37479188

RESUMEN

Previous studies have shown that cytoplasmic K+ release and the associated E2 â†’ E1 conformational change of the Na+,K+-ATPase is a major rate-determining step of the enzyme's ion pumping cycle and hence a prime site of acute regulatory intervention. From the ionic strength dependence of the enzyme's distribution between the E2 and E1 states, it has also been found that E2 is stabilized by an electrostatic attraction. Any disruption of this electrostatic attraction would, thus, have profound effects on the rate of ion pumping. The aim of this paper is to identify the location of this interaction. Using enhanced-sampling molecular dynamics simulations with a predicted N-terminal structure added to the X-ray crystal structure of the Na+,K+-ATPase, a previously postulated salt bridge between Lys32 and Glu233 (rat sequence numbering) of the enzyme's α-subunit can be excluded. The residues never approach closely enough to form a salt bridge. In contrast, strong interactions with anionic lipid head groups were seen. To investigate the possibility of a protein-lipid interaction experimentally, the surface charge density of Na+,K+-ATPase-containing membrane fragments was estimated from zeta potential measurements to be 0.019 (± 0.001) C m-2. This is in good agreement with the charge density previously determined to be responsible for stabilization of the E2 state of 0.023 (± 0.009) C m-2 and the membrane charge density estimated here from published electron-microscopic images of 0.018C m-2. The results are, therefore, consistent with an interaction of the Na+,K+-ATPase α-subunit N-terminus with negatively-charged lipid head groups of the neighbouring cytoplasmic membrane surface as the origin of the electrostatic interaction stabilising the E2 state.


Asunto(s)
Simulación de Dinámica Molecular , ATPasa Intercambiadora de Sodio-Potasio , Animales , Ratas , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Conformación Proteica , Membrana Celular/metabolismo , Sodio/metabolismo , Lípidos
16.
Molecules ; 28(12)2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37375241

RESUMEN

In contrast to the well-studied canonical regulatory mechanisms, the way by which the recently discovered Src N-terminal regulatory element (SNRE) modulates Src activity is not yet well understood. Phosphorylation of serine and threonine residues modulates the charge distribution along the disordered region of the SNRE and may affect a fuzzy complex with the SH3 domain that is believed to act as an information transduction element. The pre-existing positively charged sites can interact with the newly introduced phosphate groups by modulating their acidity, introducing local conformational restrictions, or by coupling various phosphosites into a functional unit. In this paper, we use pH-dependent NMR measurements combined with single point mutations to identify the interactions of basic residues with physiologically important phosphorylated residues and to characterize the effect of these interactions in neighbor residues, thus providing insight into the electrostatic network in the isolated disordered regions and in the entire SNRE. From a methodological point of view, the linear relationships observed between the mutation-induced pKa changes of the phosphate groups of phosphoserine and phosphothreonine and the pH-induced chemical shifts of the NH groups of these residues provide a very convenient alternative to identify interacting phosphate groups without the need to introduce point mutations on specific basic residues.


Asunto(s)
Proteínas Proto-Oncogénicas pp60(c-src) , Dominios Homologos src , Fosforilación , Fosfoserina , Serina
17.
Biophys Chem ; 300: 107062, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37302360

RESUMEN

In an effort to unravel the unknown "binary switch" mechanisms underlying the "histone code" hypothesis of gene silencing and activation, we study the dynamics of Heterochromatin Protein 1 (HP1). We find in the literature that when HP1 is bound to tri-methylated Lysine9 (K9me3) of histone-H3 through an aromatic cage consisting of two tyrosines and one tryptophan, it is evicted upon phosphorylation of Serine10 (S10phos) during mitosis. In this work, the kick-off intermolecular interaction of the eviction process is proposed and described in detail on the basis of quantum mechanical calculations: specifically, an electrostatic interaction competes with the cation-π interaction and draws away K9me3 from the aromatic cage. An arginine, abundant in the histonic environment, can form an intermolecular "complex salt bridge" with S10phos and dislodge HP1. The study attempts to reveal the role of phosphorylation of Ser10 on the H3 tail in atomic detail.


Asunto(s)
Homólogo de la Proteína Chromobox 5 , Histonas , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Fosforilación , Unión Proteica , Humanos
18.
Protein Expr Purif ; 210: 106320, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37301245

RESUMEN

The native Cry4Aa δ-endotoxin produced exclusively in Bacillus thuringiensis during sporulation as a ∼130-kDa inactive protoxin is confined within the parasporal crystalline inclusion that dissolves at alkaline pH in the midgut lumen of mosquito larvae. Here, the recombinant Cry4Aa toxin over-expressed in Escherichia coli at 30 °C as an alkaline-solubilizable inclusion was found inevitably lost during isolation from the cell lysate (pH ∼6.5) of which host cells were pre-suspended in distilled water (pH ∼5.5). When 100 mM KH2PO4 (pH 5.0) was used as host cell-suspending buffer, the cell lysate's pH became more acidic (pH 5.5), allowing the expressed protoxin to be entirely retained in the form of crystalline inclusion rather than a soluble form, and thus high-yield recovery of the partially purified inclusion was obtained. Upon dialysis of the alkaline-solubilized protoxin against the KH2PO4 buffer, the protoxin precipitate was efficiently recovered and still exhibited high toxicity to Aedes aegypti mosquito larvae. Additionally, the precipitated protoxin was completely resolubilized in 50 mM Na2CO3 buffer (pH 9.0) and proteolytically processed by trypsin to produce the 65-kDa activated toxin comprising ∼47- and ∼20-kDa fragments. In silico structural analysis suggested that His154, His388, His536 and His572 were involved in a dissolution of the Cry4Aa inclusion at pH 6.5, conceivably through interchain salt bridge breakage. Altogether, such an optimized protocol described herein was effective for the preparation of alkaline-solubilizable inclusions of the recombinant Cry4Aa toxin in large amounts (>25 mg per liter culture) that would pave the way for further structure-function relationship studies of different Cry toxins.


Asunto(s)
Bacillus thuringiensis , Animales , Bacillus thuringiensis/genética , Bacillus thuringiensis/química , Escherichia coli/genética , Diálisis Renal , Endotoxinas/genética , Larva , Proteínas Hemolisinas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/química
19.
Front Chem ; 11: 1205654, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37206195

RESUMEN

[This corrects the article DOI: 10.3389/fchem.2022.883093.].

20.
Proteins ; 91(10): 1417-1426, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37232507

RESUMEN

This paper aims to understand the binding strategies of a nanobody-protein pair by studying known complexes. Rigid body protein-ligand docking programs produce several complexes, called decoys, which are good candidates with high scores of shape complementarity, electrostatic interactions, desolvation, buried surface area, and Lennard-Jones potentials. However, the decoy that corresponds to the native structure is not known. We studied 36 nanobody-protein complexes from the single domain antibody database, sd-Ab DB, http://www.sdab-db.ca/. For each structure, a large number of decoys are generated using the Fast Fourier Transform algorithm of the software ZDOCK. The decoys were ranked according to their target protein-nanobody interaction energies, calculated by using the Dreiding Force Field, with rank 1 having the lowest interaction energy. Out of 36 protein data bank (PDB) structures, 25 true structures were predicted as rank 1. Eleven of the remaining structures required Ångstrom size rigid body translations of the nanobody relative to the protein to match the given PDB structure. After the translation, the Dreiding interaction (DI) energies of all complexes decreased and became rank 1. In one case, rigid body rotations as well as translations of the nanobody were required for matching the crystal structure. We used a Monte Carlo algorithm that randomly translates and rotates the nanobody of a decoy and calculates the DI energy. Results show that rigid body translations and the DI energy are sufficient for determining the correct binding location and pose of ZDOCK created decoys. A survey of the sd-Ab DB showed that each nanobody makes at least one salt bridge with its partner protein, indicating that salt bridge formation is an essential strategy in nanobody-protein recognition. Based on the analysis of the 36 crystal structures and evidence from existing literature, we propose a set of principles that could be used in the design of nanobodies.


Asunto(s)
Proteínas , Programas Informáticos , Unión Proteica , Proteínas/química , Algoritmos , Análisis de Fourier , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA