Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(18)2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39336383

RESUMEN

The energy transported by the electric current that circulates a thermoelectric element (TE) varies with position due to the Joule and Thomson effects. The Thomson effect may enhance or compensate the Joule effect. A method for measuring the Thomson coefficient of a TE is presented. This method is based on the total compensation of the Joule and Thomson effects. The electric current then flows without delivering power to the TE or absorbing power from it. For a TE, the global Thomson/Joule compensation ratio Φ¯T/J is defined as the ratio of the power absorbed by the current due to the Thomson effect and the power delivered by the current to the TE due to the Joule effect. It can be expressed as Φ¯T/J=I0/I, where I is the electric current and I0 is the zero-power current, a quantity that is proportional to the average Thomson coefficient. When I=I0, the Thomson effect exactly compensates the Joule effect and the net power delivered by the current to the TE is zero. Since the power delivered by the current is related to the temperature distribution, temperature measurements for currents around I0 can be used as the basis for a measurement technique of the Thomson coefficient. With varying current, the difference between the temperature at the center of the TE and the mean temperature between its extremes reverses its sign at the zero-power current, I=I0. This observation suggests the possibility of measuring the Thomson coefficient, but a quantitative analysis is needed. With calculations using the constant transport coefficients model for Bi2Te0.94Se0.063 and Bi0.25Sb0.752Te3, it is theoretically shown that a null temperature detector with a sensitivity of the order of 1 mK allows for the accurate determination of the Thomson coefficient.

2.
Sci Rep ; 14(1): 8668, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622176

RESUMEN

The advent of digital technology has revolutionized the way we keep track of time. Digital watches have become an essential part of our daily lives and provide us with accurate and reliable time measurement. However, battery reliability is a long-standing issue in the digital watch industry. Batteries require frequent replacement and are a major source of waste. To solve this problem, a digital watch that runs on a lithium-polymer battery that is recharged by a voltage generated by a thermoelectric generator (TEG) placed on the hand. The proposed model uses TEG1-19913 that generates power in the range of 11.5 W to 14.5 W with hot end basking at 250 °C and a cold end between 30 °C and 50 °C. The TEG voltage is used to charge the lithium polymer battery, eliminating the need for conventional charging methods. The watch is designed to be compact and lightweight, so it can be worn comfortably for extended periods of time. The TEG is integrated into the watch strap and ensures that it is constantly in contact with the skin. The lithium-polymer battery used in the watch is a high-performance rechargeable battery that has high energy density and long life. In summary, the proposed digital watch is an innovative ecological solution to the problems associated with traditional battery-powered watches. The compact and light design of the watch combined with the energy-efficient display makes it a convenient and efficient timekeeping device.

3.
Adv Sci (Weinh) ; 11(18): e2308543, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447187

RESUMEN

Transverse thermoelectric generation converts temperature gradient in one direction into an electric field perpendicular to that direction and is expected to be a promising alternative in creating simple-structured thermoelectric modules that can avoid the challenging problems facing traditional Seebeck-effect-based modules. Recently, large transverse thermopower has been observed in closed circuits consisting of magnetic and thermoelectric materials, called the Seebeck-driven transverse magneto-thermoelectric generation (STTG). However, the closed-circuit structure complicates its broad applications. Here, STTG is realized in the simplest way to combine magnetic and thermoelectric materials, namely, by stacking a magnetic layer and a thermoelectric layer together to form a bilayer. The transverse thermopower is predicted to vary with changing layer thicknesses and peaks at a much larger value under an optimal thickness ratio. This behavior is verified in the experiment, through a series of samples prepared by depositing Fe-Ga alloy thin films of various thicknesses onto n-type Si substrates. The measured transverse thermopower reaches 15.2 ± 0.4 µV K-1, which is a fivefold increase from that of Fe-Ga alloy and much larger than the current room temperature record observed in Weyl semimetal Co2MnGa. The findings highlight the potential of combining magnetic and thermoelectric materials for transverse thermoelectric applications.

4.
Adv Mater ; 36(21): e2312137, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38350009

RESUMEN

Manipulation of directional magnon propagation, known as magnon spin current, is essential for developing magnonic devices featuring nonvolatile functionalities and ultralow power consumption. Magnon spin current can usually be modulated by magnetic field or current-induced spin torques. However, these approaches may lead to energy dissipation due to Joule heating. Electric-field switching of magnon spin current without charge current is highly preferred but challenging to realize. By integrating magnonic and piezoelectric materials, the manipulation of the magnon spin current generated by the spin Seebeck effect in the ferrimagnetic insulator Gd3Fe5O12 (GdIG) film on a piezoelectric substrate is demonstrated. Reversible electric-field switching of magnon polarization without applied charge current is observed. Through strain-mediated magnetoelectric coupling, the electric field induces the magnetic compensation transition between two magnetic states of the GdIG, resulting in its magnetization reversal and the simultaneous switching of magnon spin current. This work establishes a prototype material platform that paves the way for developing magnon logic devices characterized by all electric field reading and writing and reveals the underlying physics principles of their functions.

5.
ACS Nano ; 18(9): 7223-7240, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38394644

RESUMEN

The magnon propagation length, ⟨ξ⟩, of a ferro-/ferrimagnet (FM) is one of the key factors that controls the generation and propagation of thermally driven magnonic spin current in FM/heavy metal (HM) bilayer based spincaloritronic devices. For the development of a complete physical picture of thermally driven magnon transport in FM/HM bilayers over a wide temperature range, it is of utmost importance to understand the respective roles of temperature-dependent Gilbert damping (α) and effective magnetic anisotropy (Keff) in controlling the temperature evolution of ⟨ξ⟩. Here, we report a comprehensive investigation of the temperature-dependent longitudinal spin Seebeck effect (LSSE), radio frequency transverse susceptibility, and broad-band ferromagnetic resonance measurements on Tm3Fe5O12 (TmIG)/Pt bilayers grown on different substrates. We observe a significant drop in the LSSE voltage below 200 K independent of TmIG film thickness and substrate choice. This is attributed to the noticeable increases in effective magnetic anisotropy field, HKeff (∝Keff) and α that occur within the same temperature range. From the TmIG thickness dependence of the LSSE voltage, we determined the temperature dependence of ⟨ξ⟩ and highlighted its correlation with the temperature-dependent HKeff and α in TmIG/Pt bilayers, which will be beneficial for the development of rare-earth iron garnet based efficient spincaloritronic nanodevices.

6.
ACS Appl Mater Interfaces ; 15(46): 53697-53713, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37939351

RESUMEN

Recently, Heusler alloy-based spin gapless semiconductors (SGSs) with high Curie temperature (TC) and sizable spin polarization have emerged as potential candidates for tunable spintronic applications. We report comprehensive investigation of the temperature-dependent ANE and intrinsic longitudinal spin Seebeck effect (LSSE) in CoFeCrGa thin films grown on MgO substrates. Our findings show that the anomalous Nernst coefficient for the MgO/CoFeCrGa (95 nm) film is ≈1.86 µV K-1 at room temperature, which is nearly 2 orders of magnitude higher than that of the bulk polycrystalline sample of CoFeCrGa (≈0.018 µV K-1) and almost 3 orders of magnitude higher than that of the half-metallic ferromagnet La1-xNaxMnO3 (≈0.005 µV K-1) but comparable to that of the magnetic Weyl semimetal Co2MnGa thin film (≈2-3 µV K-1). Furthermore, the LSSE coefficient for our MgO/CoFeCrGa (95 nm)/Pt (5 nm) heterostructure is ≈20.5 nV K-1 Ω-1 at room temperature, which is twice larger than that of the half-metallic ferromagnetic La0.7Sr0.3MnO3 thin films (≈9 nV K-1 Ω-1). We show that both ANE and LSSE coefficients follow identical temperature dependences and exhibit a maximum at ≈225 K, which is understood as the combined effects of inelastic magnon scatterings and reduced magnon population at low temperatures. Our analyses not only indicate that the extrinsic skew scattering is the dominating mechanism for ANE in these films but also provide critical insights into the functional form of the observed temperature-dependent LSSE at low temperatures. Furthermore, by employing radio frequency transverse susceptibility and broad-band ferromagnetic resonance in combination with the LSSE measurements, we establish a correlation among the observed LSSE signal, magnetic anisotropy, and Gilbert damping of the CoFeCrGa thin films, which will be beneficial for fabricating tunable and highly efficient Heusler alloy-based spin caloritronic nanodevices.

7.
Nanomaterials (Basel) ; 13(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37686996

RESUMEN

The dc Josephson current is generated from phase difference between two superconductors separated by a mesoscopic thin film (Josephson junction) without external bias voltage. In the presence of a temperature gradient across the superconductors, a thermal phase is induced under the condition of open circuit. This is very similar to the Seebeck effect in the usual thermoelectric effect, and the thermal phase is thus named as thermophase Seebeck coefficient (TPSC). Here we find obvious enhancement and sign change of the TPSC unique to the Josephson junction composing of two superconductors connected to a semiconductor quantum dot (QD), which is additionally side-coupled to a nanowire hosting Majorana bound states (MBSs), the system denoted by S-MQD-S. These result arise from the newly developed states near the Fermi level of the superconductors due to the QD-MBS hybridization when the dot level is within the superconducting gap. The sign change of the TPSC provides a strong evidence of the existence of MBSs, and is absent if the QD is coupled to regular fermion, such as another QD (system denoted by S-DQD-S). We show that the magnitude and sign of the TPSC are sensitive to the physical quantities including interaction strength between the QD and MBSs, direct overlap between the MBSs, system equilibrium temperature, as well as hopping amplitude between the QD and the superconductors. The obtained results are explained with the help of the current-carrying density of the states (CCDOS), and may be useful in interdisciplinary research areas of Josephson and Majorana physics.

8.
Nano Lett ; 23(17): 7890-7896, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37602760

RESUMEN

Generating pure spin currents is very desirable in spintronics, as it provides a promising way to substantially reduce Joule heating and achieve ultrahigh integration density. However, to date, most spintronic devices exhibit spin currents that are accompanied by charge currents. The generation of pure spin currents on the nanoscale, particularly at the single-molecule level, remains challenging. Here, we propose that by exploiting our recently reported bipolar magnetic molecules (BMMs) as the core component of single-molecule devices, where the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) come from different spin channels, the generation of pure spin currents can be easily realized via the spin Seebeck effect (SSE) with applied temperature gradient. Moreover, the spin Seebeck coefficient can be modulated over a wide range by applying an external gate voltage. The proposal is verified through first-principles calculations on two BMM-based molecular junctions.

9.
J Phys Condens Matter ; 35(37)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37276861

RESUMEN

In recent years, researchers have shown great interest in organic thermoelectric materials that are economical, efficient, lightweight, and environmentally friendly. With advancements in experimental measurement techniques and theoretical calculations, investigations of the thermoelectric properties of molecular devices have become feasible. To regulate the thermoelectric properties of molecular devices, many strategies have been proposed. In this work, we review the theoretical analytical and experimental research methods used to study these properties. We then focus on two tuning strategies, side substitution, and quantum interface effects, which have demonstrated significant improvements in the thermoelectric performance of molecular devices. Finally, we discuss the challenges faced in experimental and theoretical studies and the future prospects of molecular thermoelectric devices.

10.
J Comput Chem ; 44(23): 1875-1883, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37224190

RESUMEN

This article presents detailed structural, electronic, magnetic, and thermoelectric properties of two experimentally existing isostructural variant perovskite compounds Tl2 NbX6 (X = Cl, Br) with the help of first principles calculations. As per requirement of stability in the device applications, the structural and thermodynamic stabilities were, respectively verified by tolerance factor and negative formation energies. The structural parameters in ferromagnetic phase were calculated and found in close agreement with the available experimental results. The electronic nature was found as half metallic from spin polarized calculations of electronic band structures and density of states, where the semiconductor nature was found in the spin down states and metallic nature in the spin up states. The magnetic moments of both the compounds were calculated as 1 µB majorly contributed by Nb atom. The Boltzmann transport theory was implemented via BoltzTraP for calculating the spin resolved thermoelectric parameters, such as Seebeck coefficient, electronic and thermal conductivities, and figure of merit. Overall, both the compounds were found suitable for use in spintronics and spin Seebeck effect for energy applications.

11.
Adv Sci (Weinh) ; 10(16): e2207506, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36995070

RESUMEN

Growing concentration on the novel information processing technology and low-cost, flexible materials make the spintronics and organic materials appealing for the future interdisciplinary investigations. Organic spintronics, in this context, has arisen and witnessed great advances during the past two decades owing to the continuous innovative exploitation of the charge-contained spin polarized current. Albeit with such inspiring facts, charge-absent spin angular momentum flow, namely pure spin currents (PSCs) are less probed in organic functional solids. In this review, the past exploring journey of PSC phenomenon in organic materials are retrospected, including non-magnetic semiconductors and molecular magnets. Starting with the basic concepts and the generation mechanism for PSC, the representative experimental observations of PSC in the organic-based networks are subsequently demonstrated and summarized, by accompanying explicit discussion over the propagating mechanism of net spin itself in the organic media. Finally, future perspectives on PSC in organic materials are illustrated mainly from the material point of view, including single molecule magnets, complexes for the organic ligands framework as well as the lanthanide metal complexes, organic radicals, and the emerging 2D organic magnets.

12.
Gels ; 9(2)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36826333

RESUMEN

The application of silica aerogel has been limited because of its poor mechanical properties. In order to expand the application scope of silica aerogel, this study fabricated an ultra-flexible conductive silica aerogel as a multiparameter sensor. The sample is fabricated by introducing poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) on a base of ultra-flexible silica aerogel, which was prepared by a diene synthesis reaction at atmospheric pressure. The pressure, temperature, and humidity can be converted into electrical signals. The pressure sensitivity can reach up to 54.88 kPa-1, and the detection limit is as low as 5 Pa. The temperature resolution is up to 0.1 K, and the response time of humidity is within 4 s. More importantly, the developed multiparameter sensor can be self-powered to realize multiparameter sensing of pressure, temperature, and humidity. The ultra-flexible conductive silica aerogel is a promising candidate for monitoring human activities and fire-affected areas.

13.
Nanotechnology ; 34(9)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36541544

RESUMEN

High curie temperature 2D materials are important for the progress of the field of spin caloritronics. The spin Seebeck effect and conventional thermoelectric figure of merit (ZT) can give a great insight into how these 2D magnetic materials will perform in spin caloritronics applications. Here in this paper, we have systematically studied 2D Janus monolayers based on CrX3monolayers. We obtain a ZT of 0.31 and 0.21 for the Cr2Br3S3and Cr2I3S3Janus monolayers. The spin Seebeck coefficient obtained at room temperature is also very high (∼1570µVK-1in the hole-doped region and ∼1590µVK-1in the electron-doped region). The thermal conductivity of these monolayers (∼22 Wm-1K-1for Cr2Br3S3and ∼16 Wm-1K-1for Cr2I3S3) are also very similar to other 2D semiconductor transition metals chalcogenides. These findings suggest a high potential for these monolayers in the spin caloritronics field.

14.
Sensors (Basel) ; 22(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36502027

RESUMEN

This paper presents the results of beam investigations on semiconductor IR lasers using novel detectors based on thermocouples. The work covers the design, the fabrication of detectors, and the experimental validation of their sensitivity to IR radiation. The principle of operation of the manufactured detectors is based on the Seebeck effect (the temperature difference between hot and cold junctions induced voltage appearance). The devices were composed of several thermocouples arranged in a linear array. The nano- and microscale thermocouples (the hot junctions) were fabricated using a typical Si-compatible MEMS process enhanced with focused ion beam (FIB) milling. The performance of the hot junctions was tested, focusing on their sensitivity to IR radiation covering the near-infrared (NIR) radiation (λ = 976 nm). The output voltage was measured as a function of the detector position in the XY plane. The measurement results allowed for reconstructing the Gaussian-like intensity distribution of the incident light beam.


Asunto(s)
Láseres de Semiconductores , Semiconductores , Metales , Frío , Comercio
15.
Adv Sci (Weinh) ; 9(36): e2203455, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36354191

RESUMEN

When a thermoelectric (TE) material is deposited with a secondary TE material, the total Seebeck coefficient of the stacked layer is generally represented by a parallel conductor model. Accordingly, when TE material layers of the same thickness are stacked vertically, the total Seebeck coefficient in the transverse direction may change in a single layer. Here, an abnormal Seebeck effect in a stacked two-dimensional (2D) PtSe2 /PtSe2 homostructure film, i.e., an extra in-plane Seebeck voltage is produced by wet-transfer stacking at the interface between the PtSe2 layers under a transverse temperature gradient is reported. This abnormal Seebeck effect is referred to as the interfacial Seebeck effect in stacked PtSe2 /PtSe2 homostructures. This effect is attributed to the carrier-interface interaction, and has independent characteristics in relation to carrier concentration. It is confirmed that the in-plane Seebeck coefficient increases as the number of stacked PtSe2 layers increase and observed a high Seebeck coefficient exceeding ≈188 µV K-1 at 300 K in a four-layer-stacked PtSe2 /PtSe2 homostructure.

16.
Adv Mater ; 34(42): e2205988, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36055979

RESUMEN

The inverse spin Hall effect (ISHE) is one of the accessible and reliable methods to detect spin current. The magnetization-dependent inverse spin Hall effect has been observed in magnets, expanding the dimension for spin-to-charge conversion. However, antiferromagnetic Néel-vector-dependent ISHE, which has been long time highly pursued, is still elusive. Here, ISHE in Mn2 Au/[Co/Pd] heterostructures is investigated by terahertz emission and spin Seebeck effect measurements, where [Co/Pd] possesses perpendicular magnetic anisotropy for out-of-plane polarized spin current generation and Mn2 Au is a collinear antiferromagnet for the spin-to-charge conversion. The out-of-plane spin polarization (σz ) is rotated toward in-plane by the Néel vectors in Mn2 Au, then the spin current is converted into charge current at two staggered spin sublattices. The ISHE signal is much stronger when the converted charge current is parallel to the Néel vector compared with its orthogonal counterpart. The Néel vector and resultant ISHE signals, which is termed as antiferromagnetic inverse spin Hall effect, can be switched. The finding not only adds a new member to the Hall effect family, but also makes antiferromagnetic spintronics more flexible.

17.
Nano Lett ; 22(14): 5708-5714, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35796713

RESUMEN

Quantum Hall (QH) interferometry provides an archetypal platform for the experimental realization of braiding statistics of fractional QH states. However, the complexity of observing fractional statistics requires phase coherence over the length of the interferometer, as well as suppression of Coulomb charging energy. Here, we demonstrate a new type of QH interferometer based on marginally twisted bilayer graphene (mtBLG), with a twist angle θ ≈ 0.16°. With the device operating in the QH regime, we observe distinct signatures of electronic Fabry-Pérot and Aharonov-Bohm oscillations of the magneto-thermopower in the density-magnetic field phase space, at Landau level filling factors ν = 4, 8. We find that QH interference effects are intrinsic to the triangular AB/BA domains in mtBLG that show diminished Coulomb charging effects. Our results demonstrate phase-coherent interference of QH edge modes without any additional gate-defined complex architecture, which may be beneficial in experimental realizations of non-Abelian braiding statistics.

18.
Nano Lett ; 22(10): 3953-3960, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35575639

RESUMEN

Molecular junctions can be miniaturized devices for heat-to-electricity conversion application, yet these operate only in mild thermal environments (less than 323 K) because thiol, the most widely used anchor moiety for chemisorption of active molecules onto surface of electrode, easily undergoes thermal degradation. N-Heterocyclic carbene (NHC) can be an alternative to traditional thiol anchor for producing ultrastable thermoelectric molecular junctions. Our experiments showed that the NHC-based molecular junctions withstood remarkably high temperatures up to 573 K, exhibiting consistent Seebeck effect and thermovoltage up to approximately |1900 µV|. Our work advances our understanding of molecule-electrode contact in the Seebeck effect, providing a roadmap for constructing robust and efficient organic thermoelectric devices.

19.
Nano Lett ; 22(8): 3417-3424, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35404612

RESUMEN

Power generation through harvesting human thermal energy provides an ideal strategy for self-powered wearable design. However, existing thermoelectric fibers, films, and blocks have small power generation capacity and poor flexibility, which hinders the development of self-powered wearable electronics. Here, we report a multifunctional superelastic graphene-based thermoelectric (TE) sponge for wearable electronics and thermal management. The sponge has a high Seebeck coefficient of 49.2 µV/K and a large compressive strain of 98%. After 10 000 cyclic compressions at 30% strain, the sponge shows excellent mechanical and TE stability. A wearable sponge array TE device was designed to drive medical equipment for monitoring physiological signals by harvesting human thermal energy. Furthermore, a 4 × 4 array TE device placed on the surface of a normal working Central Processing Unit (CPU) can generate a stable voltage and reduce the CPU temperature by 8 K, providing a feasible strategy for simultaneous power generation and thermal management.


Asunto(s)
Grafito , Dispositivos Electrónicos Vestibles , Electrónica , Calor , Humanos , Temperatura
20.
Adv Mater ; 34(23): e2200857, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35384096

RESUMEN

Liquid crystal elastomers (LCEs) have attracted tremendous interest as actuators for soft robotics due to their mechanical and shape memory properties. However, LCE actuators typically respond to thermal stimulation through active Joule heating and passive cooling, which make them difficult to control. In this work, LCEs are combined with soft, stretchable thermoelectrics to create transducers capable of electrically controlled actuation, active cooling, and thermal-to-electrical energy conversion. The thermoelectric layers are composed of semiconductors embedded within a 3D printed elastomer matrix and wired together with eutectic gallium-indium (EGaIn) liquid metal interconnects. This layer is covered on both sides with LCE, which alternately heats and cools to achieve cyclical bending actuation in response to voltage-controlled Peltier activation. Moreover, the thermoelectric layer can harvest energy from thermal gradients between the two LCE layers through the Seebeck effect, allowing for regenerative energy harvesting. As demonstrations, first, closed-loop control of the transducer is performed to rapidly track a changing actuator position. Second, a soft robotic walker that is capable of walking toward a heat source and harvesting energy is introduced. Lastly, phototropic-inspired autonomous deflection of the limbs toward a heat source is shown, demonstrating an additional method to increase energy recuperation efficiency for soft systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA