Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.299
Filtrar
1.
J Environ Sci (China) ; 150: 503-514, 2025 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39306424

RESUMEN

Catalytic oxidation of NO at room temperature was carried out over nitrogen (N)-doped sludge char (SC) prepared from pyrolysis of municipal sewage sludge, and urea was adopted as nitrogen source. The effects of different N-doping methods (one-step and two-step method), dried sludge (DS)/urea mass ratios (5:1, 4:1, 3:1, 2:1, and 1:1), SC preparation procedures (pyrolysis only, pyrolysis with acid washing, and pyrolysis with KOH activation and acid washing), and different pyrolysis temperatures (500, 600, 700, and 800°C) on the catalytic oxidation of NO were compared to optimize the procedure for SC preparation. The results indicated that N-doping could obviously promote the catalytic performance of SC. The one-step method with simultaneous sludge pyrolysis (at 700°C), KOH activation, and N-doping (DS/urea of 3:1) was the optimal procedure for preparing the N-doped SC with the NO conversion rate of 54.7%, whereas the optimal NO conversion rate of SC without N-doping was only 47.3%. Urea worked both as carbon and nitrogen source, which could increase about 2.9%-16.5% of carbon and 24.8%-42.7% of nitrogen content in SC pyrolyzed at 700°C. N-doping significantly promoted microporosity of SC. The optimal N-doped SC showed specific surface areas of 571.38 m2/g, much higher than 374.34 m2/g of the optimal SC without N-doping. In addition, N-doping also increased amorphousness and surface basicity of SC through the formation of N-containing groups. Finally, three reaction paths, i.e. microporous reactor, active sites, and basic site control path, were proposed to explain the mechanism of N-doping on promoting the catalytic performance of NO.


Asunto(s)
Nitrógeno , Oxidación-Reducción , Aguas del Alcantarillado , Nitrógeno/química , Aguas del Alcantarillado/química , Catálisis , Temperatura , Eliminación de Residuos Líquidos/métodos , Óxido Nítrico/química , Modelos Químicos , Carbón Orgánico/química
2.
Environ Sci Technol ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39374327

RESUMEN

The artificial sweetener acesulfame is a persistent pollutant in wastewater worldwide. So far, only a few bacterial isolates were recently found to degrade acesulfame efficiently. In Bosea and Chelatococcus strains, a Mn2+-dependent metallo-ß-lactamase-type sulfatase and an amidase signature family enzyme catalyze acesulfame hydrolysis via acetoacetamide-N-sulfonate to acetoacetate. Here, we describe a new acesulfame sulfatase in Shinella strains isolated from wastewater treatment plants in Germany. Their genomes do not encode the Mn2+-dependent sulfatase. Instead, a formylglycine-dependent sulfatase gene was found, together with the acetoacetamide-N-sulfonate amidase gene on a plasmid shared by all known acesulfame-degrading Shinella strains. Heterologous expression, proteomics, and size exclusion chromatography corroborated the physiological function of the Shinella sulfatase in acesulfame hydrolysis. Since both acesulfame sulfatase types are absent in other bacterial genomes or metagenome-assembled genomes, we surveyed 73 tera base pairs of wastewater-associated metagenome raw data sets. Bosea/Chelatococcus sulfatase gene signatures were regularly found from 2013, particularly in North America, Europe, and East Asia, whereas Shinella sulfatase gene signatures were first detected in 2020. Moreover, signatures for the Shinella sulfatase and amidase genes co-occur only in six data sets from China, Finland, and Mexico, suggesting that the Shinella genes were enriched or introduced quite recently in wastewater treatment facilities.

3.
Water Res ; 267: 122552, 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39362131

RESUMEN

Bioaerosol contamination was considered as a potential health threat in sludge dewatering systems (SDSs), while emission and risk of airborne antibiotic resistome remain largely unclear. Herein, seasonal investigations of fine particulate matter (PM2.5) were conducted using metagenomics-based methods within and around different SDSs, together with an analysis of sewage sludge. Featured with evident seasonality, antibiotic resistance genes (ARGs) in SDS-PM2.5 also possessed greater accumulation, transfer, and pathogen accessibility than those in ambient air PM2.5. Mobile ARGs in SDS-PM2.5 mainly encoded resistance to tetracycline, and most were flanked by integrase. Some pathogenic antibiotic resistant bacteria (PARB), including Enterobacter asburiae, Escherichia coli, Enterococcus faecium, and Staphylococcus aureus, also carried mobile genetic elements in SDS-PM2.5. Dewatering behavior actuated > 50.56% of ARG subtypes and > 42.86% of PARB in sewage sludge to aerosolize into air. Relative humidity, temperature, and PM2.5 concentration collectively drove the evolution of bacterial community and indirectly promoted the antibiotic resistance of SDS-PM2.5. SDS-PM2.5 posed more serious resistome risks than sewage sludge and ambient air PM2.5, and the highest levels were discovered in winter. These findings underline the role of dewatering behavior in facilitating resistome's aerosolization, and the need to mitigate this potential air pollution.

4.
J Environ Manage ; 370: 122772, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39362159

RESUMEN

A pilot-scale study on sludge treatment reed beds investigated the combined effects of earthworms and Arundo donax on sewage sludge dewatering and residual sludge quality. Four units were tested: one planted with earthworms, one planted without earthworms, one unplanted with earthworms, and one control, each unit replicated. Over a year, 24 cycles of sludge (dry and volatile solid contents of 24.71 g.L-1, and 19.14 g.L-1) were fed onto the units at a sludge loading rate: 43.59 kg.DS.m-2.year-1. Afterward, the units experienced 132 days of resting period, increasing dry solids from 21 to 70 % and decreasing volatile solids from 81 to 69 % on average (40 % sludge volume reduction). The bottom layers of the planted unit with earthworms showed a 30 % reduction in volatile solids, indicating improved sludge stabilization. Macronutrient abundance in the residual sludge followed the sequence N > Ca > P > K > S > Mg. The planted unit with earthworms reduced micronutrient concentrations by 22 % compared to the control unit (Fe > Na > Mn > B > Mo). Earthworms also played a key role in reducing heavy metal concentrations by 11 % compared to the planted unit without earthworms (Zn > Cr > Pb > Ni > Cd). Heavy metal levels in the residual sludge met EU and Portugal standards, with a 99.9 % reduction in Escherichia coli and fecal coliforms. Cost estimation showed centrifugation and W-STRB scenarios cost 167 and 183 €.PE-1 for a ten-year operation, with O&M costs of 7 and 3 €.PE-1.year-1, respectively.

5.
J Environ Manage ; 370: 122796, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39362168

RESUMEN

Cheese whey is a difficult and costly wastewater to treat due to its high organic matter and mineral content. Although many management strategies are conducted for whey removal, its use in composting is limited. In this study, the effect of cheese whey in the composting of sewage sludge and poultry waste on compost quality and process efficiency was investigated. Also, valid and consistent simulations were developed with Gaussian Process Regression (GPR), Support Vector Regression (SVR), and Neural Network Regression (NNR) Machine Learning (ML) algorithms. The results of all physicochemical parameters determined that 3% of cheese whey addition for both feedstocks improved the composting process's efficiency and the final product's quality. The best results obtained through hyperparameter tuning showed that Gaussian Process Regression (GPR) was the most effective modeling tool providing realistic simulations. The reliability of these simulations was verified by running the GPR process 50 times. MdAPE demonstrated the validity and consistency of the created process simulations. Moreover, a genetic algorithm was used to optimize these dependent simulations and achieved almost 100% desirability. Optimization studies showed that the effective cheese whey ratios were 3.2724% and 3.1543% for sewage sludge and poultry waste, respectively. Optimization results were compatible with the results of experimental studies. This study provides a new strategy for the recovery of cheese whey as well as a new perspective on the effect of cheese whey on both physicochemical parameters and composting phases and the modeling and optimization processes of the results.

6.
Sci Total Environ ; 954: 176679, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39366572

RESUMEN

The world's phosphorus (P) resources are gradually depleting. Sewage sludge is an important secondary P resource, and sludge-derived biochar for land use is an effective way to achieve P recovery. However, P in biochar synthesized by direct pyrolysis of sludge usually shows comparatively low bioavailability. In this study, biomass ash from different types of straw was used as an additive for co-pyrolysis with sludge. The distribution of different P fractions in the obtained co-pyrolyzed biochar was investigated. The P bioavailability of the co-pyrolyzed biochar was comprehensively evaluated by three methods, including chemical extraction, diffusive gradients in thin films (DGT) technology and pot experiments. The results indicate that the bioavailable P in co-pyrolyzed biochar is significantly positively correlated with the contents of K, Ca, and Mg elements in straw ash, which facilitate the transformation of P in sludge into forms that are more easily utilized by plants, including monetite (CaHPO4), hydroxyapatite (Ca5(PO4)3OH) and pyrocoproite (K2MgP2O7). Moreover, pot experiments show that the P contents in ryegrass shoots and roots cultivated in co-pyrolyzed biochar-added soils increased by 11.98-114.97 % and 28.90-69.70 %, respectively, compared to the control soil. The DGT technology could better reflect the uptake of P by plants with a Pearson correlation coefficient as high as 0.94. This study provides references for P resource recovery, and the collaborative reutilization of sewage sludge and straw ash.

7.
Environ Monit Assess ; 196(11): 1027, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373797

RESUMEN

The aim of this study was to assess the spatiotemporal variation in water quality in the Grande River and the Ondas River, in the city of Barreiras, Bahia, Brazil. Water samples were collected at 11 points along the rivers, and eight physical-chemical parameters (electrical conductivity, pH, alkalinity, apparent and true color, turbidity, dissolved oxygen, and biochemical oxygen demand) and three microbiological indicators (heterotrophic bacteria, total and thermotolerant coliforms) were analyzed. Spatiotemporal variation was assessed using the multivariate techniques of principal component analysis/factorial analysis (PCA/FA) and hierarchical cluster analysis (HCA). The results of the PCA/FA highlighted eight of the eleven parameters as the main ones responsible for the variations in water quality, with the greatest increase in these parameters being observed in the rainy season, especially among the points influenced by sewage discharges and by the influence of the urban area. The CA grouped the results from 11 points into three main groups: group 1 corresponded to points influenced by sewage discharges; group 2 grouped points with mainly urban influences; and group 3 grouped points in rural areas. These groupings showed the negative influence of urbanization and also statistically significant variations between the groups and periods. The most degraded conditions were in group 1, and the least degraded conditions were in group 3. Assessment of the variations between the monitoring periods showed that rainfall had a significant impact on the increase or decrease in the parameters assessed, as a result of surface runoff linked to urbanization and increased river flow.


Asunto(s)
Monitoreo del Ambiente , Ríos , Calidad del Agua , Brasil , Ríos/química , Urbanización , Contaminantes Químicos del Agua/análisis , Ciudades
8.
Microbiol Resour Announc ; : e0074124, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283155

RESUMEN

This report details the genome sequence of Escherichia coli strain Hakim RU_GHWS, isolated from sewage water. The assembled genome comprises 5.022 Mb with 77.675× coverage, depicting an average GC content of 50.50%. This genome contains 10 CRISPR arrays, 14 prophages, 65 antibiotic resistance genes, and 28 virulence factor genes.

9.
Molecules ; 29(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39274958

RESUMEN

Sewage sludge odorous gas release is a key barrier to resource utilization, and conditioners can mitigate the release of sulfur-containing gases. The gas release characteristics and sulfur compound distribution in pyrolysis products under both single and composite conditioning strategies of CaO, Fe2O3, and FeCl3 were investigated. This study focused on the inhibition mechanisms of these conditioners on sulfur-containing gas emissions and compared the theoretical and experimental sulfur content in the products to evaluate the potential synergistic effects of the composite conditioners. The findings indicated that at 650 °C, CaO, Fe2O3, and FeCl3 inhibited H2S release by 35.8%, 23.2%, and 9.1%, respectively. Notably, the composite of CaO with FeCl3 at temperatures ranging from 350 to 450 °C and the combination of Fe2O3 with FeCl3 at 650 °C were found to exert synergistic suppression on H2S emissions. The strongly alkaline CaO inhibited the metathesis reaction between HCl, a decomposition product of FeCl3, and the sulfur-containing compounds within the sewage sludge, thereby exerting a synergistic suppression on the emission of H2S. Conversely, at temperatures exceeding 550 °C, the formation of Ca-Fe compounds, such as FeCa2O4, appeared to diminish the sulfur-fixing capacity of the conditioners, resulting in increased H2S emissions. For instance, the combination of CaO and FeCl3 at 450 °C was found to synergistically reduce H2S emissions by 56.3%, while the combination of CaO and Fe2O3 at 650 °C synergistically enhances the release of H2S by 23.6%. The insights gained from this study are instrumental in optimizing the pyrolysis of sewage sludge, aiming to minimize its environmental footprint and enhance the efficiency of resource recovery.

10.
J Colloid Interface Sci ; 678(Pt A): 959-969, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39226836

RESUMEN

Bismuth oxybromide (BiOBr) nanomaterials are well-known efficient powder-shaped photocatalyst for degrading antibiotic wastewater, but their practical applications have been limited by unsatisfactory photo-absorption, weak photocatalytic activity and poor recyclability. To address these issues, we demonstrate that the growing of S-doped BiOBr nanosheets on carbon fiber cloth (CFC) can lead to efficient photocatalysis with recyclable features. With carbon fiber cloth as the substrate, S-doped BiOBr (BiOBr-Sx) nanosheets (diameter: ∼500 nm, thicknesses: ∼5-90 nm) was prepared by solvothermal method with thiourea as dopant. With the increase of thiourea (0-0.2 g) in the precursor solution, BiOBr-Sx nanosheets exhibit a significant shift in the photo-absorption edge from 420 to 461 nm and decreased thicknesses from 90 to 5 nm, accompanying by the increased proportion of (010) exposed surface. Amony them, CFC/BiOBr-S0.5 can degrade various contaminants (such as 98.7 % levofloxacin (LVFX), 95.6 % ciprofloxacin (CIP) and 95.9 % tetracycline (TC)) with most degradation efficiency within 120 min of visible light irradiation, which are 1.6, 1.9 and 1.4 times than that of CFC/BiOBr (61.4 % LVFX, 49.5 % CIP and 67.1 % TC), respectively. Significantly, when CFC/BiOBr-S0.05 photocatalytic fabric is combined with a multi-stage flow device to treat the flowing wastewater (10 mg/L LVFX, rate: 1 L/h), 91.0 % LVFX can be degraded after tenth grade. Therefore, this study not only demonstrates the controllable preparation of S-doped BiOBr nanosheets with different thickness on CFC but also highlights the practical applications of fabric-based photocatalysts for purifying the flowing sewage efficiently.

11.
Water Res ; 266: 122361, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39244864

RESUMEN

This paper examines the acid leaching efficiencies of Fe and P from vivianite slurry (VS, Fe3(PO4)2·8H2O), which is magnetically separated from anaerobic digested sludge, and elaborates on Fe and P reuse routes. The characteristics and dissolution behavior of raw VS in hydrochloric, sulfuric, phosphoric, oxalic, and citric acids are investigated. Results reveal that the primary impurities in VS are organic matter, other phosphate compounds, and Mg present in the vivianite crystal structure. Hydrochloric and sulfuric acids could effectively extract P (90%) from VS at an optimal hydrogen-to-phosphorus (H⁺/P) ratio of 2.5, compared with sewage sludge ash (SSA) that normally needs an H⁺/P ratio greater than 3. Hence, VS can be employed as an alternative P resource following a similar recovery route used with SSA. However, in comparison to SSA, VS use can decrease acid consumption in P extraction and the requirement for the extensive purification of cationic impurities. Furthermore, oxalic acid effectively facilitates the separation of P and Fe in VS by precipitating Fe as insoluble ferrous oxalate in acidic conditions, leading to a high Fe recovery rate of 95%. The recovery and reuse of Fe through the oxalic acid route further improves the feasibility of VS as an alternate resource.

12.
Microbiol Resour Announc ; : e0057224, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248518

RESUMEN

Escherichia coli lytic bacteriophage BAU.Micro_ELP-22 was isolated from sewage wastewater as a therapeutic agent alternative to antibiotics. The phage genome is 373,488 bp in length, encoding 744 protein-coding sequences and 7 tRNAs, and contains no antibiotic resistance, virulence, or temperate marker genes, which specifies its potentiality as a compatible phage therapy candidate.

13.
Water Res ; 266: 122346, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39232256

RESUMEN

Due to the high moisture, strong hydrophilicity, and hard compressibility of sewage sludge (SS), it is difficult to realize the high-efficiency drying. Herein, a novel SS drying technology was developed to quickly and deeply reduce the moisture of SS from 75.6% to 38.5% in 1 h. During the process, secondary aluminum ash (SAA), a solid waste, was added to SS and acted as skeletons to form plenty of channels. Subsequently, NaOH was added and reacted with SAA to produce a lot of heat, resulting in a rapid temperature rise of the system from 20 to 105°C in 60 s. The heat could effectively remove water from these channels, which could be proved by the T1-T2 maps of in-site Low-Field 1H nuclear magnetic resonance. In addition, the extracellular polymeric substances were decomposed by SAA/NaOH successfully, and thus the SS became hydrophobic, favoring the drying. Finally, the dried SS could be used to fabricate unburned bricks. Thus, this work provides a promising method to realize the rapid SS deep drying and high-efficiency utilization of SAA and dried SS.

14.
Bioresour Technol ; 413: 131434, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236905

RESUMEN

This study assessed the characteristics and toxicity of aqueous pyrolytic liquid (APL) derived from digested sewage sludge on anaerobic digestion (AD) and determined its rate-limiting step. Digested sewage sludge was pyrolyzed at multiple temperatures (350-650 °C) and moisture levels (0-40.4 %), resulting in APLs with varying AD toxicities. APL 350 °C-0 % showed the least toxicity, whereas APL 650 °C-40.4 % exhibited the greatest toxicity. Glucose (GL) and sodium acetate (SA) were introduced to elucidate the rate-limiting steps. SA, but not GL, enhanced APL conversion to CH4. And volatile fatty acid lack was observed in treatments without SA addition. This suggested that acidification was the primary rate-limiting step. This finding was confirmed using the modified Gompertz model: SA considerably improved the maximum methane production rate, whereas GL did not. Insights gained from this research clarified the feasibility and potential of AD for APL utilization and conversion.

15.
Water Res ; 266: 122352, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39243462

RESUMEN

In a membrane bioreactor (MBR) system, in situ sludge reduction techniques induce membrane fouling. To address this challenge, we incorporated a rotating mesh carrier, which can adsorb organic matter and provide a habitat for metazoans, into the anoxic tank of a conventional anoxic/oxic-MBR (A/O-MBR) system, termed rotating biological contactor-MBR (RBC-MBR), and evaluated treatment performance. Over 151 days, lab-scale RBC-MBR and A/O-MBR were used to treat municipal sewage. Both reactors showed similar COD and NH4+ removal rates. However, RBC-MBR reduced excess sludge by approximately 45 % compared with A/O-MBR. Microscopic observation and 18S rRNA gene-based microbial analysis revealed the persistence of microfauna and metazoans (oligochaetes, nematodes, and rotifers) in RBC, which are typically absent in activated sludge. Additionally, the metazoan's population in the RBC-MBR membrane tank was two-fold that of A/O-MBR, indicating enhanced sludge reduction through predation. Despite these reductions, the increase in transmembrane pressure was similar between RBC-MBR and A/O-MBR, suggesting that sludge holding by RBC mesh media degrade fouling substances, such as proteins and polysaccharides and improves sludge filterability, resulting in membrane fouling mitigation. Microbial communities in both reactors were similar, indicating that the installation of RBC did not alter the microbial community of sludge. Network analysis suggested potential symbiotic or prey-predator relationships between bacteria and metazoans. This study reveals that RBC-MBR effectively reduced the excess sludge while mitigating membrane fouling, highlighting one of the promising technology for applying metazoan predation into MBR.

16.
J Environ Manage ; 370: 122531, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39288493

RESUMEN

The combined application of organic material and phosphorus fertilizer is an effective method to enhance phosphorus use efficiency for plant growth. This is partly because the presence of water-soluble organic matter (WSOM) derived from different organic materials can enhance the level of available phosphorus in the soil; however, it is poorly understood how this level varies with changes in the WSOM status (i.e., decomposed, dissolved, and retained) in the soil depending on WSOM types. This study aimed to (i) understand how changes in the WSOM status enhances the available phosphorus level in the soil, and (ii) determine the WSOM type that contributes to such enhancement. The incubation test showed that fractions of 73%-92% and 8%-27% of WSOM-derived organic carbon were retained and dissolved, respectively, at the beginning of incubation, while 31%-45% was decomposed during the incubation period. The WSOM derived from cattle manure compost (CM) and sewage sludge compost (SSC) that was initially retained was maintained until the late stage of the incubation test, whereas that derived from hydrothermal decomposed liquid fertilizer (HDLF) was rapidly desorbed during the first 14 days of the incubation period. The available phosphorus level was higher under the combined application of CM- and SSC-derived WSOM than under the single phosphorus application throughout the incubation period, while it was high only during the first 3 days of incubation under the application of HDLF-derived WSOM. The amounts of retained organic carbon at each sampling point during the incubation period compared to those at the beginning were positively and linearly correlated to the available phosphorus levels that were enhanced by the WSOM present in the soil. This study for the first time provides quantitative experimental evidence that 1) the longer the WSOM continues to be retained, the higher the amount of available phosphorus remaining in the soil, and 2) the available phosphorus level decreases with WSOM sorption or decomposition. Furthermore, it was shown that highly humified WSOM has a great potential for the maintenance of higher available phosphorus levels. This study provides the insight that a combined application of highly humified organic materials with a chemical fertilizer is necessary for not only cost effective but also sustainable fertilization design.

17.
Environ Toxicol Chem ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291828

RESUMEN

The detection of pharmaceuticals in aquatic ecosystems has generated concern for wildlife and human health over the past several decades. ß-adrenergic blocking agents are a class of drugs designed to treat cardiovascular diseases and high blood pressure. Metoprolol is a second-generation ß1-adrenergic receptor inhibitor detected in effluent derived from sewage treatment plants. Our review presents an updated survey of the current state of knowledge regarding the sources, occurrence, and toxicity of metoprolol in aquatic ecosystems. We further aimed to summarize the current literature on the presence of metoprolol in various classes of aquatic species and to consider the trophic transfer of these contaminants in marine mammals. The biological impacts of metoprolol have been reported in 20 aquatic organisms, with a primary focus on cardiac function and oxidative stress. Our review reveals that concentrations of metoprolol that cause toxicity in aquatic species are above levels that are typical of marine and freshwater environments. Future studies should investigate the effects of metoprolol at lower concentrations in aquatic organisms. Other recommendations include (1) a further focus on noncardiac endpoints, because computational assessments of currently available molecular data identify gonadotropins, vitellogenin, collagen, and cytokines as potential targets of modulation, and (2) development of adverse outcome pathways for cardiac dysfunction in aquatic species to improve our understanding of molecular interactions and outcomes following exposure. As the next generation of ß-blockers is developed, continued diligence is needed for assessing environmental impacts in aquatic ecosystems to determine their potential accumulation and long-term effects on wildlife and humans. Environ Toxicol Chem 2024;00:1-14. © 2024 SETAC.

18.
Water Res ; 266: 122446, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39298901

RESUMEN

In advanced wastewater treatment plants on pig farms, meticulous design aims to eliminate intrinsic pollutants such as organic matter, heavy metals, and biological contaminants. In our field survey across Southern China, a notable disparity in wastewater treatment procedures among various farming facilities lies in the utilization of terminal chemical oxidation post-sedimentation tank. However, recent focus in wastewater surveillance has predominantly centered on antibiotic resistance genes, leaving the efficacy of virus removal in different effluent systems largely unexplored. To profile virus composition at the effluent, assess the virus elimination efficiency of chemical oxidation at the effluent end, and the potential environmental driver of virus abundance, we deployed a meta-transcriptomics approach to first determine the total virome in effluent specimens of terminal clean water tank system (CWT) and terminal chemical oxidation system (TCO) in Southern China pig farms, respectively. From these data, 172 viruses were identified, with a median reads per million (RPM) of 27,789 in CWT and 19,982 in TCO. Through the integration of analyses encompassing the co-occurrence patterns within viral communities, the ecology of viral diversity, and a comparative assessment of average variation degrees, we have empirically demonstrated that the procedure of TCO may perturb viral communities and diminish their abundance, particularly impacting RNA viral communities. However, despite the diminished abundance, pathogenic viruses such as PEDV and PRRSV persisted in the effluent following chemical deoxidation at a moderate RPM value, indicating a substantial in situ presence at effluent. Our environmental driver modeling, employing GLM and mantel tests, substantiated the intricate nature of virus community variation within the effluent, influenced heterogeneously by diverse factors. Notably, pond temperature emerged as the foremost determinant, while fishing farming exhibited a positive correlation with virus diversity (p < 0.05). This revelation of the cryptic persistence of virus communities in wastewater effluent expands our understanding of the varied responses of different virus categories to oxidation. Such insights transcend mere virus characterization, offering valuable implications for enhancing biosafety measures in farming practices and informing wastewater-based epidemiological surveillance.

19.
J Hazard Mater ; 480: 135714, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39298958

RESUMEN

The accumulation of trace metals in the environmental compartments of coastal rivers is a global and complex environmental issue, requiring multiple tools to constrain the various anthropogenic sources and biogeochemical processes affecting the water quality of these environments. The Valao fluvio-estuarine system (Rio de Janeiro, Brazil) presents a challenging case of a coastal river contaminated by both modern and historical anthropogenic metal sources, located in the land and in the intra-estuary, continuously mixed by tidal cycles. This study employed a combination of spatial distribution analysis of trace metals including gadolinium (Gd), zinc (Zn) isotopic analyses, and X-ray absorption spectroscopy (XAS) to distinguish between these sources. The concentrations of metals in both dissolved (water samples) and surficial sediment compartments (Suspended Particulate Matter and sediment samples) display an overall enrichment trend from upstream to downstream. Multivariate statistical analysis allows to discriminate geogenic elements derived from watershed geology (Ti, K, and Mg) vs anthropogenic contaminants from urban runoff and domestic sewage discharges (Cu, Cr, Pb, Zn, and Gd); and legacy metal contaminants (Zn and Cd) remobilized from ancient metallurgical wastes and transported upstream in the estuary during tidal cycles. The anthropogenic Gd concentration in the dissolved compartment increases along the watercourse, highlighting continuous ongoing sewage discharge. Zinc solid speciation also indicates that Zn contribution from legacy metallurgy waste is primarily associated with sulfide-Zn and Zn-phyllosilicate in the outlet estuary, while in upstream sediments of fluvio-estuarine system, Zn is found bound to organic matter. Zinc isotope systematically reveals a progressive downstream shift to heavier isotope compositions. Upstream, the relatively pristine site and the urbanized section of the river exhibit a relatively uniform δ66/64Zn value (+0.20 ± 0.07 ‰) in suspended particulate matter (SPM) and surficial sediments. These results indicate that domestic sewage discharges contribute to Zn enrichment in sediments of the Valao fluvio-estuarine system but without modifying its isotope signature in sediments. The sediment of the downstream estuarine section shows a heavier δ66/64Zn value (+0.48 ± 0.08 ‰), indicating the strong influence of the intra-estuarine source identified as the historical metallurgic contamination. An integrated view of the geochemical tracers allows thus inferring that the untreated sewage and legacy metallurgical contamination are the primary sources of anthropogenic Zn contamination. It highlights the progressive mixing along the estuarine gradient under tidal dynamics. The influence of the former source continuously expands from the headland towards the estuary.

20.
Environ Technol ; : 1-11, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292531

RESUMEN

This work evaluated the effects of cobalt nanoparticles (CoNPs) (0.025-7 mg/gVS) on the intensification of sewage sludge anaerobic digestion (AD) using biochemical methane potential (BMP) tests. This study was motivated by the need to improve the efficiency and stability of anaerobic digestion of sewage sludge, a critical process in waste management and renewable energy production. The effects at doses less than 2 mg/gVS were not substantial, but 3-7 mg/gVS improved the performance. The maximum biogas yield was 232 mL/gVS (at a dose of 7 mg/gVS), whereas it was 132 mL/gVS in the control (zero dose). Similarly, the reductions in the volatile solids and methane contents reached maxima of 16 and 74.3%, respectively. The analyses of volatile fatty acids, redox potential, and electron transfer system activity indicated that the addition of CoNPs stimulated the early stages of AD. Finally, acetate consumption and the increase in CH4 content suggested that CoNPs positively affected system stability and acetoclastic methanogenesis. That is, CoNPs effectively intensified the behaviour and stability of the anaerobic process. The novelty of this research lies in the comprehensive evaluation of the effects of CoNPs across a wide range of doses on sewage sludge AD, providing new insights into the optimisation of this process for increased biogas production and organic matter reduction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA