Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
1.
Immunol Res ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967692

RESUMEN

The extracellular matrix (ECM) is currently considered to be an important factor influencing the migration and progression of cancer cells. Therefore, the aim of our study was to investigate the mechanism of action of elastin-derived peptides in cancerous cells derived from the immunological system, i.e., HL-60, K562, and MEG-A2 cell lines. Moreover, an attempt to clarify the involvement of c-SRC kinase in EDP mechanism of action was also undertaken. Our data show that the VGVAPG and VVGPGA peptides are not toxic in the studied cell lines. Moreover, due to the involvement of KI67 and PCNA proteins in the cell cycle and proliferation, we can assume that neither peptide stimulates cell proliferation. Our data suggest that both peptides could initiate the differentiation process in all the studied cell lines. However, due to the different origins (HL-60 and K562-leukemic cell line vs. MEG-A2-megakaryoblastic origin) of the cell lines, the mechanism may differ. The increase in the ELANE mRNA expression noted in our experiments may also suggest enhancement of the migration of the tested cells. However, more research is needed to fully explain the mechanism of action of the VGVAPG and VVGPGA peptides in the HL-60, K562, and MEG-A2 cell lines. HIGHLIGHTS: • VGVAPG and VVGPGA peptides do not affect the metabolic activity of HL-60, K562, and MEG-A2 cells. • mTOR and PPARγ proteins are involved in the mechanism of action of VGVAPG and VVGPGA peptides. • Both peptides may initiate differentiation in HL-60, K562, and MEG-A2 cell lines.

3.
Elife ; 132024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780416

RESUMEN

Protein phosphorylation is one of the major molecular mechanisms regulating protein activity and function throughout the cell. Pannexin 1 (PANX1) is a large-pore channel permeable to ATP and other cellular metabolites. Its tyrosine phosphorylation and subsequent activation have been found to play critical roles in diverse cellular conditions, including neuronal cell death, acute inflammation, and smooth muscle contraction. Specifically, the non-receptor kinase Src has been reported to phosphorylate Tyr198 and Tyr308 of mouse PANX1 (equivalent to Tyr199 and Tyr309 of human PANX1), resulting in channel opening and ATP release. Although the Src-dependent PANX1 activation mechanism has been widely discussed in the literature, independent validation of the tyrosine phosphorylation of PANX1 has been lacking. Here, we show that commercially available antibodies against the two phosphorylation sites mentioned above-which were used to identify endogenous PANX1 phosphorylation at these two sites-are nonspecific and should not be used to interpret results related to PANX1 phosphorylation. We further provide evidence that neither tyrosine residue is a major phosphorylation site for Src kinase in heterologous expression systems. We call on the field to re-examine the existing paradigm of tyrosine phosphorylation-dependent activation of the PANX1 channel.


Asunto(s)
Conexinas , Proteínas del Tejido Nervioso , Familia-src Quinasas , Fosforilación , Conexinas/metabolismo , Conexinas/genética , Humanos , Familia-src Quinasas/metabolismo , Familia-src Quinasas/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Tirosina/metabolismo , Animales , Células HEK293 , Ratones
4.
Mol Neurobiol ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819634

RESUMEN

Inflammation is an important pathogenic driving force in the genesis and development of epilepsy. The latest researches demonstrated that IL-17A mediated blood-brain barrier (BBB) dysfunction through disruption of tight junction protein expression. To investigate whether IL-17A is involved in BBB disruption after acute seizure attack, the pilocarpine model was established with C57BL/6 J (wild type, WT) and IL-17R-deficient mice in vivo and with primary cultured rat brain microvascular endothelial cells in vitro. The mortality rate and brain water content were evaluated at 24 h after status epilepticus, and IL-17A concentration, endothelial tight junction, adherens junction proteins, and albumin leakage were assessed at 0 h, 4 h, 12 h, and 24 h after status epilepticus (SE). IL-17R-deficient mice showed lessen severity of epilepsy than WT mice, accompanied by less albumin leakage, reduced brain water content, decreased IL-17A, and upregulated expression of target proteins (ZO-1, Occludin and VE-cadherin). IL-17R knockout abrogated abnormal upregulation of Src kinase and phosphorylated Src kinase in the setting of SE, and Src kinase inhibitor PP1 abrogated IL-17A-induced SE related endothelial injury in vitro. In conclusion, IL-17A inhibition might be a promising therapeutic option to attenuate endothelial cell injury and further BBB disruption by reducing Src kinase activation.

5.
Transl Res ; 271: 1-12, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38670453

RESUMEN

The reactivation of TERT is associated with poor outcome in papillary thyroid cancer (PTC). Extra-telomeric functions of TERT were reported, with a protective role against oxidative stress (OS). The aim of the present study was to explore the extra-nuclear TERT localization in PTC and its role in cancer progression. TERT nuclear export under OS were analyzed in K1 PTC cell line. We investigated the role of different TERT localizations using specific TERT constructs that limit its localization to the nucleus or to the mitochondria. The effect of SRC kinase inhibitor PP2, which reduces TERT nuclear export, was investigated as well. Moreover, TERT localization was analyzed in 39 PTC tissues and correlated with the genetic profile and the level of OS, DNA damage and apoptosis in the tumors and with the clinical characteristics of the patients. We demonstrated that TERT is exported from the nucleus in response to OS induced either from H2O2 or the BRAF inhibitor PLX4720. We proved that extra-nuclear TERT reduces mitochondrial OS and induces mitochondrial fragmentation. Moreover, limiting mitochondrial TERT localization reduced proliferation, migration, AKT phosphorylation and glycolysis and increased DNA damage and p21 expression. Finally, in PTC tissues the fraction of mitochondrial/nuclear TERT resulted inversely correlated with OS and p21 expression and associated with tumor persistence. In conclusion, our data indicate that extra-nuclear TERT is involved in reducing the effect of excessive OS, thus promoting cancer cell survival. Extra-nuclear TERT may thus represent a marker of cancer progression and a possible therapeutic target in PTC.


Asunto(s)
Progresión de la Enfermedad , Estrés Oxidativo , Telomerasa , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Humanos , Telomerasa/metabolismo , Telomerasa/genética , Estrés Oxidativo/efectos de los fármacos , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/metabolismo , Cáncer Papilar Tiroideo/genética , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/tratamiento farmacológico , Línea Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/efectos de los fármacos , Femenino , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Masculino , Persona de Mediana Edad , Daño del ADN , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos
6.
Front Mol Neurosci ; 17: 1371145, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38571813

RESUMEN

The prevailing model behind synapse development and specificity is that a multitude of adhesion molecules engage in transsynaptic interactions to induce pre- and postsynaptic assembly. How these extracellular interactions translate into intracellular signal transduction for synaptic assembly remains unclear. Here, we focus on a synapse organizing complex formed by immunoglobulin superfamily member 21 (IgSF21) and neurexin2α (Nrxn2α) that regulates GABAergic synapse development in the mouse brain. We reveal that the interaction between presynaptic Nrxn2α and postsynaptic IgSF21 is a high-affinity receptor-ligand interaction and identify a binding interface in the IgSF21-Nrxn2α complex. Despite being expressed in both dendritic and somatic regions, IgSF21 preferentially regulates dendritic GABAergic presynaptic differentiation whereas another canonical Nrxn ligand, neuroligin2 (Nlgn2), primarily regulates perisomatic presynaptic differentiation. To explore mechanisms that could underlie this compartment specificity, we targeted multiple signaling pathways pharmacologically while monitoring the synaptogenic activity of IgSF21 and Nlgn2. Interestingly, both IgSF21 and Nlgn2 require c-jun N-terminal kinase (JNK)-mediated signaling, whereas Nlgn2, but not IgSF21, additionally requires CaMKII and Src kinase activity. JNK inhibition diminished de novo presynaptic differentiation without affecting the maintenance of formed synapses. We further found that Nrxn2α knockout brains exhibit altered synaptic JNK activity in a sex-specific fashion, suggesting functional linkage between Nrxns and JNK. Thus, our study elucidates the structural and functional relationship of IgSF21 with Nrxn2α and distinct signaling pathways for IgSF21-Nrxn2α and Nlgn2-Nrxn synaptic organizing complexes in vitro. We therefore propose a revised hypothesis that Nrxns act as molecular hubs to specify synaptic properties not only through their multiple extracellular ligands but also through distinct intracellular signaling pathways of these ligands.

7.
Biosensors (Basel) ; 14(4)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38667199

RESUMEN

C-terminal Src kinase (CSK) is the major inhibitory kinase for Src family kinases (SFKs) through the phosphorylation of their C-tail tyrosine sites, and it regulates various types of cellular activity in association with SFK function. As a cytoplasmic protein, CSK needs be recruited to the plasma membrane to regulate SFKs' activity. The regulatory mechanism behind CSK activity and its subcellular localization remains largely unclear. In this work, we developed a genetically encoded biosensor based on fluorescence resonance energy transfer (FRET) to visualize the CSK activity in live cells. The biosensor, with an optimized substrate peptide, confirmed the crucial Arg107 site in the CSK SH2 domain and displayed sensitivity and specificity to CSK activity, while showing minor responses to co-transfected Src and Fyn. FRET measurements showed that CSK had a relatively mild level of kinase activity in comparison to Src and Fyn in rat airway smooth muscle cells. The biosensor tagged with different submembrane-targeting signals detected CSK activity at both non-lipid raft and lipid raft microregions, while it showed a higher FRET level at non-lipid ones. Co-transfected receptor-type protein tyrosine phosphatase alpha (PTPα) had an inhibitory effect on the CSK FRET response. The biosensor did not detect obvious changes in CSK activity between metastatic cancer cells and normal ones. In conclusion, a novel FRET biosensor was generated to monitor CSK activity and demonstrated CSK activity existing in both non-lipid and lipid raft membrane microregions, being more present at non-lipid ones.


Asunto(s)
Técnicas Biosensibles , Proteína Tirosina Quinasa CSK , Transferencia Resonante de Energía de Fluorescencia , Humanos , Animales , Proteína Tirosina Quinasa CSK/metabolismo , Ratas , Familia-src Quinasas/metabolismo , Fosforilación , Microdominios de Membrana/metabolismo , Dominios Homologos src
8.
Front Immunol ; 15: 1344761, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38487529

RESUMEN

Background: The importance of CD11b/CD18 expression in neutrophil effector functions is well known. Beyond KINDLIN3 and TALIN1, which are involved in the induction of the high-affinity binding CD11b/CD18 conformation, the signaling pathways that orchestrate this response remain incompletely understood. Method: We performed an unbiased screening method for protein selection by biotin identification (BioID) and investigated the KINDLIN3 interactome. We used liquid chromatography with tandem mass spectrometry as a powerful analytical tool. Generation of NB4 CD18, KINDLIN3, or SKAP2 knockout neutrophils was achieved using CRISPR-Cas9 technology, and the cells were examined for their effector function using flow cytometry, live cell imaging, microscopy, adhesion, or antibody-dependent cellular cytotoxicity (ADCC). Results: Among the 325 proteins significantly enriched, we identified Src kinase-associated phosphoprotein 2 (SKAP2), a protein involved in actin polymerization and integrin-mediated outside-in signaling. CD18 immunoprecipitation in primary or NB4 neutrophils demonstrated the presence of SKAP2 in the CD11b/CD18 complex at a steady state. Under this condition, adhesion to plastic, ICAM-1, or fibronectin was observed in the absence of SKAP2, which could be abrogated by blocking the actin rearrangements with latrunculin B. Upon stimulation of NB4 SKAP2-deficient neutrophils, adhesion to fibronectin was enhanced whereas CD18 clustering was strongly reduced. This response corresponded with significantly impaired CD11b/CD18-dependent NADPH oxidase activity, phagocytosis, and cytotoxicity against tumor cells. Conclusion: Our results suggest that SKAP2 has a dual role. It may restrict CD11b/CD18-mediated adhesion only under resting conditions, but its major contribution lies in the regulation of dynamic CD11b/CD18-mediated actin rearrangements and clustering as required for cellular effector functions of human neutrophils.


Asunto(s)
Neutrófilos , Familia-src Quinasas , Humanos , Neutrófilos/metabolismo , Familia-src Quinasas/metabolismo , Fibronectinas/metabolismo , Antígenos CD18/metabolismo , Adhesión Celular , Actinas/metabolismo , Fosfoproteínas/metabolismo , Antígeno de Macrófago-1/metabolismo
9.
J Membr Biol ; 257(1-2): 79-89, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38436710

RESUMEN

The gastric H+,K+-ATPase is an integral membrane protein which derives energy from the hydrolysis of ATP to transport H+ ions from the parietal cells of the gastric mucosa into the stomach in exchange for K+ ions. It is responsible for the acidic environment of the stomach, which is essential for digestion. Acid secretion is regulated by the recruitment of the H+,K+-ATPase from intracellular stores into the plasma membrane on the ingestion of food. The similar amino acid sequences of the lysine-rich N-termini α-subunits of the H+,K+- and Na+,K+-ATPases, suggests similar acute regulation mechanisms, specifically, an electrostatic switch mechanism involving an interaction of the N-terminal tail with the surface of the surrounding membrane and a modulation of the interaction via regulatory phosphorylation by protein kinases. From a consideration of sequence alignment of the H+,K+-ATPase and an analysis of its coevolution with protein kinase C and kinases of the Src family, the evidence points towards a phosphorylation of tyrosine-7 of the N-terminus by either Lck or Yes in all vertebrates except cartilaginous fish. The results obtained will guide and focus future experimental research.


Asunto(s)
ATPasa Intercambiadora de Sodio-Potasio , Estómago , Animales , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Transporte Biológico , ATPasa Intercambiadora de Hidrógeno-Potásio/química , Iones/metabolismo
10.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G525-G542, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38440826

RESUMEN

The inflamed mucosa contains a complex assortment of proteases that may participate in wound healing or the development of inflammation-associated colon cancer. We sought to determine the role of protease-activated receptor 2 (PAR2) in epithelial wound healing in both untransformed and transformed colonic epithelial cells. Monolayers of primary epithelial cells derived from organoids cultivated from patient colonic biopsies and of the T84 colon cancer cell line were grown to confluence, wounded in the presence of a selective PAR2-activating peptide, and healing was visualized by live cell microscopy. Inhibitors of various signaling molecules were used to assess the relevant pathways responsible for wound healing. Activation of PAR2 induced an enhanced wound-healing response in T84 cells but not primary cells. The PAR2-enhanced wound-healing response was associated with the development of lamellipodia in cells at the wound edge, consistent with sheet migration. The response to PAR2 activation in T84 cells was completely dependent on Src kinase activity and partially dependent on Rac1 activity. The Src-associated signaling molecules, focal adhesion kinase, and epidermal growth factor receptor, which typically mediate wound-healing responses, were not involved in the PAR2 response. Experiments repeated in the presence of the inflammatory cytokines TNF and IFNγ revealed a synergistically enhanced PAR2 wound-healing response in T84s but not primary cells. The epithelial response to proteases may be different between primary and cancer cells and is accentuated in the presence of inflammatory cytokines. Our findings have implications for understanding epithelial restitution in the context of inflammatory bowel disease (IBD) and inflammation-associated colon cancer.NEW & NOTEWORTHY Protease-activated receptor 2 enhances wound healing in the T84 colon cancer cell line, but not in primary cells derived from patient biopsies, an effect that is synergistically enhanced in the presence of the inflammatory cytokines TNF and IFNγ.


Asunto(s)
Neoplasias del Colon , Receptor PAR-2 , Humanos , Línea Celular , Movimiento Celular , Neoplasias del Colon/metabolismo , Citocinas/metabolismo , Células Epiteliales/metabolismo , Inflamación/metabolismo , Péptido Hidrolasas/metabolismo , Péptido Hidrolasas/farmacología , Receptor PAR-2/metabolismo
11.
Drug Resist Updat ; 73: 101051, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38219531

RESUMEN

Trastuzumab resistance in HER2+ breast cancer (BC) is the major reason leading to poor prognosis of BC patients. Oncogenic gene overexpression or aberrant activation of tyrosine kinase SRC is identified to be the key modulator of trastuzumab response. However, the detailed regulatory mechanisms underlying SRC activation-associated trastuzumab resistance remain poorly understood. In the present study, we discover that SRC-mediated YAP1 tyrosine phosphorylation facilitates its interaction with transcription factor AP-2 alpha (activating enhancer binding protein 2 alpha, TFAP2A), which in turn promotes YAP1/TEAD-TFAP2A (YTT) complex-associated transcriptional outputs, thereby conferring trastuzumab resistance in HER2+ BC. Inhibition of SRC kinase activity or disruption of YTT complex sensitizes cells to trastuzumab treatment in vitro and in vivo. Additionally, we also identify YTT complex co-occupies the regulatory regions of a series of genes related to trastuzumab resistance and directly regulates their transcriptions, including EGFR, HER2, H19 and CTGF. Moreover, YTT-mediated transcriptional regulation is coordinated by SRC kinase activity. Taken together, our study reveals that SRC-mediated YTT complex formation and transcriptions are responsible for multiple mechanisms associated with trastuzumab resistance. Therefore, targeting HER2 signaling in combination with the inhibition of YTT-associated transcriptional outputs could serve as the treatment strategy to overcome trastuzumab resistance caused by SRC activation.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Trastuzumab/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Fosforilación , Factor de Transcripción AP-2/metabolismo , Receptor ErbB-2/genética , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Familia-src Quinasas/metabolismo , Familia-src Quinasas/uso terapéutico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tirosina/metabolismo , Tirosina/uso terapéutico
12.
J Biomol Struct Dyn ; 42(3): 1582-1614, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37144746

RESUMEN

The pyrimidine and fused pyrimidine ring systems play vital roles to inhibit the c-Src kinase. The Src kinase is made of different domains but the kinase domain is responsible for inhibition of Src kinase. In which the kinase domain is the main domain that is made of several amino acids. The Src kinase is inhibited by its inhibitors when it is activated by phosphorylation. Although dysregulation of Src kinase caused cancer in the late nineteenth century, medicinal chemists have not explored it extensively; therefore it is still regarded as a cult pathway. There are numerous FDA-approved drugs on the market, yet novel anticancer drugs are still in demand. Existing medications have adverse effects and drug resistance owing to rapid protein mutation. In this review, we discussed the activation process of Src kinase, chemistry of pyrimidine ring and its different synthetic routes, as well as the recent development in c-Src kinase inhibitors containing pyrimidine and their biological activity, SAR, and selectivity. The c-Src binding pocket has been predicted in detail to discover the vital amino acids which will interact with inhibitors. The potent derivatives were docked to discover the binding pattern. The derivative 2 established three hydrogen bonds with the amino acid residues Thr341 and Gln278 and had the greatest binding energy of -13.0 kcal/mol. The top docked molecules were further studied for ADMET studies. The derivative 1, 2, and 43 did not show any violation of Lipinski's rule. All derivatives used for the prediction of toxicity showed toxicity.


Asunto(s)
Antineoplásicos , Familia-src Quinasas , Familia-src Quinasas/química , Familia-src Quinasas/metabolismo , Proteína Tirosina Quinasa CSK , Pirimidinas/farmacología , Pirimidinas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Aminoácidos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química
13.
Cancer Lett ; 582: 216516, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38052369

RESUMEN

Triple-negative breast cancer (TNBC) is highly aggressive and metastatic, and has the poorest prognosis among all breast cancer subtypes. Activated ß-catenin is enriched in TNBC and involved in Wnt signaling-independent metastasis. However, the underlying mechanisms of ß-catenin activation in TNBC remain unknown. Here, we found that SHC4 was upregulated in TNBC and high SHC4 expression was significantly correlated with poor outcomes. Overexpression of SHC4 promoted TNBC aggressiveness in vitro and facilitated TNBC metastasis in vivo. Mechanistically, SHC4 interacted with Src and maintained its autophosphorylated activation, which activated ß-catenin independent of Wnt signaling, and finally upregulated the transcription and expression of its downstream genes CD44 and MMP7. Furthermore, we determined that the PxPPxPxxxPxxP sequence on CH2 domain of SHC4 was critical for SHC4-Src binding and Src kinase activation. Overall, our results revealed the mechanism of ß-catenin activation independent of Wnt signaling in TNBC, which was driven by SHC4-induced Src autophosphorylation, suggesting that SHC4 might be a potential prognostic marker and therapeutic target in TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo , Línea Celular Tumoral , beta Catenina/genética , beta Catenina/metabolismo , Proliferación Celular , Vía de Señalización Wnt/genética , Proteínas Adaptadoras de la Señalización Shc/genética , Proteínas Adaptadoras de la Señalización Shc/metabolismo
14.
Cells ; 12(20)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37887297

RESUMEN

Glycosphingolipids (GSLs) are products of lipid glycosylation that have been implicated in the development of cardiovascular diseases. In diabetes, the adipocyte microenvironment is characterized by hyperglycemia and inflammation, resulting in high levels of GSLs. Therefore, we sought to assess the GSL content in extracellular vesicles derived from the adipose tissues (adiposomes) of obese-diabetic (OB-T2D) subjects and their impact on endothelial cell function. To this end, endothelial cells were exposed to adiposomes isolated from OB-T2D versus healthy subjects. Cells were assessed for caveolar integrity and related signaling, such as Src-kinase and caveolin-1 (cav-1) phosphorylation, and functional pathways, such as endothelial nitric oxide synthase (eNOS) activity. Compared with adiposomes from healthy subjects, OB-T2D adiposomes had higher levels of GSLs, especially LacCer and GM3; they promoted cav-1 phosphorylation coupled to an obvious loss of endothelial surface caveolae and induced eNOS-uncoupling, peroxynitrite generation, and cav-1 nitrosylation. These effects were abolished by Src kinase inhibition and were not observed in GSL-depleted adiposomes. At the functional levels, OB-T2D adiposomes reduced nitric oxide production, shear response, and albumin intake in endothelial cells and impaired flow-induced dilation in healthy arterioles. In conclusion, OB-T2D adiposomes carried a detrimental GSL cargo that disturbed endothelial caveolae and the associated signaling.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedades Vasculares , Humanos , Caveolas/metabolismo , Células Endoteliales/metabolismo , Gotas Lipídicas/metabolismo , Transducción de Señal , Familia-src Quinasas/metabolismo , Enfermedades Vasculares/metabolismo , Diabetes Mellitus Tipo 2/metabolismo
15.
Pregnancy Hypertens ; 34: 83-89, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37864990

RESUMEN

OBJECTIVES: Endothelial dysfunction is known to be a key characteristic of preeclampsia (PE) and can contribute to progression of symptoms and injury to multiple organ systems. Delivery is the only treatment for progression of PE, but development of an endothelial-based therapy for PE presents a promising strategy. Growth factors and cytokines are dysregulated in PE and can impact endothelial function, manifesting changes in Ca2+ signaling and interruptions in monolayer barrier function that contribute to symptoms of hypertension, proteinuria, and edema. In this study, we highlight Src kinase as a partial mediator of growth factor and cytokine mediated endothelial dysfunction. STUDY DESIGN: Fura-2 Ca2+ imaging and Electrical Cell Impedance Sensing (ECIS) assays are performed on growth factor or cytokine exposed human umbilical vein endothelial cells (HUVECs). Inhibitors to MEK/ERK (U0126) or Src (PP2) are used to determine the contribution of kinase signaling pathways. MAIN OUTCOME MEASURES: Decreases in HUVEC Ca2+ signaling or monolayer resistance measure endothelial dysfunction. Reversal of endothelial dysfunction by kinase inhibitors reveals the respective contibutions of MEK/ERK and Src kinase. RESULTS: We show that Src inhibition protects Ca2+ signaling responses against insults induced by VEGF165, bFGF, PlGF, TNFα, and IL-1ß. Additionally, we show that Src inhibition protects the endothelial monolayer from the full impact of TNFα insult. Further, we find that MEK/ERK inhibition does not offer protection from growth factor-mediated endothelial dysfunction. CONCLUSIONS: The results of this study suggest cytokine and growth factor-stimulated Src kinase plays a partial role on promoting endothelial dysfunction in HUVECs.


Asunto(s)
Preeclampsia , Familia-src Quinasas , Embarazo , Femenino , Humanos , Familia-src Quinasas/metabolismo , Factor de Necrosis Tumoral alfa , Citocinas , Preeclampsia/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Células Cultivadas
16.
Biomedicines ; 11(10)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37893161

RESUMEN

Src-kinase associated protein 2 (SKAP2) is an intracellular scaffolding protein that is broadly expressed in immune cells and is involved in various downstream signalling pathways, including, but not limited to, integrin signalling. SKAP2 has a wide range of binding partners and fine-tunes the rearrangement of the cytoskeleton, thereby regulating cell migration and immune cell function. Mutations in SKAP2 have been associated with several inflammatory disorders such as Type 1 Diabetes and Crohn's disease. Rodent studies showed that SKAP2 deficient immune cells have diminished pathogen clearance due to impaired ROS production and/or phagocytosis. However, there is currently no in-depth understanding of the functioning of SKAP2. Nevertheless, this review summarises the existing knowledge with a focus of its role in signalling cascades involved in cell migration, tissue infiltration and immune cell function.

17.
Elife ; 122023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37706489

RESUMEN

The acquisition of distinct branch sizes and shapes is a central aspect in tubular organ morphogenesis and function. In the Drosophila airway tree, the interplay of apical extracellular matrix (ECM) components with the underlying membrane and cytoskeleton controls tube elongation, but the link between ECM composition with apical membrane morphogenesis and tube size regulation is elusive. Here, we characterized Emp (epithelial membrane protein), a Drosophila CD36 homolog belonging to the scavenger receptor class B protein family. emp mutant embryos fail to internalize the luminal chitin deacetylases Serp and Verm at the final stages of airway maturation and die at hatching with liquid filled airways. Emp localizes in apical epithelial membranes and shows cargo selectivity for LDLr-domain containing proteins. emp mutants also display over elongated tracheal tubes with increased levels of the apical proteins Crb, DE-cad, and phosphorylated Src (p-Src). We show that Emp associates with and organizes the ßH-Spectrin cytoskeleton and is itself confined by apical F-actin bundles. Overexpression or loss of its cargo protein Serp lead to abnormal apical accumulations of Emp and perturbations in p-Src levels. We propose that during morphogenesis, Emp senses and responds to luminal cargo levels by initiating apical membrane endocytosis along the longitudinal tube axis and thereby restricts airway elongation.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Endocitosis , Receptores Depuradores , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Morfogénesis , Receptores Depuradores/metabolismo , Tráquea/metabolismo
18.
Chem Biodivers ; 20(9): e202300515, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37563848

RESUMEN

The physiological Src proto-oncogene is a protein tyrosine kinase receptor that served as the essential signaling pathway in different types of cancer. Src kinase receptor is divided into different domains: a unique domain, an SH3 domain, an SH2 domain, a protein tyrosine kinase domain, and a regulatory tail, which runs from the N-terminus to the C-terminus. Src kinase inhibitors bind in the kinase domain and are activated by phosphorylation. The etiology of cancer involved various signaling pathways and Src signaling pathways are also involved in those clusters. Although the dysregulation of Src kinase resulted in cancer being discovered in the late 19th century it is still considered a cult pathway because it is not much explored by different medicinal chemists and oncologists. The Src kinase regulated through different kinase pathways (MAPK, PI3K/Akt/mTOR, JAK/STAT3, Hippo kinase, PEAK1, and Rho/ROCK pathways) and proceeded downstream signaling to conduct cell proliferation, angiogenesis, migration, invasion, and metastasis of cancer cells. There are numerous FDA-approved drugs flooded the market but still, there is a huge demand for the creation of novel anticancer drugs. As the existing drugs are accompanied by several adverse effects and drug resistance due to rapid mutation in proteins. In this review, we have elaborated about the structure and activation of Src kinase, as well as the development of Src kinase inhibitors. Our group also provided a comprehensive overview of Src inhibitors throughout the last two decades, including their biological activity, structure-activity relationship, and Src kinase selectivity. The Src binding pocket has been investigated in detail to better comprehend the interaction of Src inhibitors with amino acid residues. We have strengthened the literature with our contribution in terms of molecular docking and ADMET studies of top compounds. We hope that the current analysis will be a useful resource for researchers and provide glimpse of direction toward the design and development of more specific, selective, and potent Src kinase inhibitors.


Asunto(s)
Antineoplásicos , Familia-src Quinasas , Familia-src Quinasas/química , Familia-src Quinasas/metabolismo , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas/metabolismo , Química Farmacéutica , Relación Estructura-Actividad , Antineoplásicos/farmacología , Antineoplásicos/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química
19.
Cells ; 12(14)2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37508535

RESUMEN

Non-muscle myosin 2A (NM2A) is a key cytoskeletal enzyme that, along with actin, assembles into actomyosin filaments inside cells. NM2A is fundamental for cell adhesion and motility, playing important functions in different stages of development and during the progression of viral and bacterial infections. Phosphorylation events regulate the activity and the cellular localization of NM2A. We previously identified the tyrosine phosphorylation of residue 158 (pTyr158) in the motor domain of the NM2A heavy chain. This phosphorylation can be promoted by Listeria monocytogenes infection of epithelial cells and is dependent on Src kinase; however, its molecular role is unknown. Here, we show that the status of pTyr158 defines cytoskeletal organization, affects the assembly/disassembly of focal adhesions, and interferes with cell migration. Cells overexpressing a non-phosphorylatable NM2A variant or expressing reduced levels of Src kinase display increased stress fibers and larger focal adhesions, suggesting an altered contraction status consistent with the increased NM2A activity that we also observed. We propose NM2A pTyr158 as a novel layer of regulation of actomyosin cytoskeleton organization.


Asunto(s)
Citoesqueleto de Actina , Actomiosina , Fosforilación , Actomiosina/metabolismo , Citoesqueleto de Actina/metabolismo , Familia-src Quinasas/metabolismo , Tirosina/metabolismo
20.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37513870

RESUMEN

Src is a non-receptor tyrosine kinase (TK) whose involvement in cancer, including glioblastoma (GBM), has been extensively demonstrated. In this context, we started from our in-house library of pyrazolo[3,4-d]pyrimidines that are active as Src and/or Bcr-Abl TK inhibitors and performed a lead optimization study to discover a new generation derivative that is suitable for Src kinase targeting. We synthesized a library of 19 compounds, 2a-s. Among these, compound 2a (SI388) was identified as the most potent Src inhibitor. Based on the cell-free results, we investigated the effect of SI388 in 2D and 3D GBM cellular models. Interestingly, SI388 significantly inhibits Src kinase, and therefore affects cell viability, tumorigenicity and enhances cancer cell sensitivity to ionizing radiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...