Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.369
Filtrar
1.
Biochem Biophys Res Commun ; 734: 150612, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39217813

RESUMEN

The morphology-dependent antibacterial activity of zinc oxide (ZnO) nanoparticles with three different morphologies, nanowall (NW), nanosphere (NS), and, nanorod (NR) was rigorously investigated to elucidate the influence of shape and size on their performance. Their morphological, surface, and structural characteristics were meticulously analyzed using SEM, BET, and XRD techniques. The antibacterial activity of synthesized ZnO samples was initially investigated and validated through in silico docking studies against nine bacterial strains, specifically targeting 1GCI, 2DCJ, 6KMM and 3T07, 6KVQ, 1MWT from gram-positive Bacillus sp. and Staphylococcus sp. respectively, 6N38, 6CRT, 6GRH from gram-negative E. coli. The docking simulations were performed using Autodock 4.2 software, yielding promising results characterized by negative binding energies, indicative of favorable interactions. The invitro studies were assessed against three same bacteria mentioned above using the disk diffusion method. The results demonstrated a pronounced dependency of antibacterial activity on the surface area, average crystallite size, and surface roughness of ZnO samples. ZnO (NW) exhibited markedly superior antibacterial properties. This enhanced efficacy is attributed to their higher surface area to volume ratio, smaller average crystallite size and increased surface roughness facilitating more efficient interactions with bacterial cell membranes. ZnO (NR) nanoparticles exhibited enhanced antibacterial activity despite minimal surface area.

2.
Pharmacol Rep ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39222174

RESUMEN

BACKGROUND: Emerging evidence indicates that intravenous ketamine is effective in managing treatment-resistant unipolar and bipolar depression. Clinical studies highlight its favorable efficacy, safety, and tolerability profile within a dosage range of 0.5-1.0 mg/kg based on actual body weight. However, data on alternative dosage calculation methods, particularly in relation to body mass index (BMI) and therapeutic outcomes, remain limited. METHODS: This retrospective analysis of an open-label study aims to evaluate dose calculation strategies and their impact on treatment response among inpatients with treatment-resistant major depressive disorder (MDD) (n = 28). The study employed the Boer and Devine formulas to determine lean body mass (LBM) and ideal body weight (IBW), and the Mosteller formula to estimate body surface area (BSA). The calculated doses were then compared with the actual doses administered or converted to a dosage per square meter for both responders and non-responders. RESULTS: Regardless of treatment response, defined as a reduction of 50% in the Montgomery-Åsberg Depression Rating Scale, the use of alternative ketamine dosing formulas resulted in underdosing compared to the standardized dose of 0.5 mg/kg. Only two participants received higher doses (102.7% and 113.0%) when the Devine formula was applied. CONCLUSIONS: This study suggests that ketamine dosing formulas, alternative to the standardized 0.5 mg/kg based on body weight, may lead to underdosing and potentially impact outcome interpretation. To enhance dosing accuracy, future studies should consider incorporating body impedance analysis and waist-to-hip ratio measurements, as this study did not account for body composition.

3.
Ocul Surf ; 34: 296-308, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39218301

RESUMEN

PURPOSE: Our aim was to evaluate a potential role for the lacrimal drainage system (LDS) as a portal of entry and conduit for SARS-CoV-2 in human infection. We also investigate the mucosal surface area. The relatively long tear contact time in a closed system raises the possibility that this pathway may contribute to the initiation of systemic infection. We looked for expression of ACE2, the main receptor for SARS-CoV-2, as well as cofactors such as TMPRSS2 and other enzymes such as cathepsinB, CD147, elastase1, furin, neuropilin1, neuropilin2, TMPRSS11D and trypsin which also play a role in SARS-CoV-2 infection, in this system. METHODS: Human tissue samples of the draining tear ducts from body donors were analyzed by RT-PCR, Western blot and immunohistochemistry. It is not known whether the respective body donors were Sars-Cov-2 positive at any time; they were negative when they entered the institute. Besides, the draining LDS of body donors were measured to determine the mucosal surface in the lacrimal system. RESULTS: The expression of the main receptor studied, ACE2, cofactors such as TMPRSS2 and other enzymes such as cathepsinB, CD147, elastase1, furin, neuropilin1, neuropilin2, TMPRSS11D and trypsin were all detected at the gene and protein level. The average mucosal surface area of the lacrimal sac and nasolacrimal duct was calculated to be 110 mm2. CONCLUSION: The results show the presence of all analyzed receptors in the efferent LDS. With an average tear passage time of 3 min and a relatively large mucosal surface area, the LDS could therefore be considered as a portal of entry and conduit for SARS-CoV-2. In addition, it represents a surface that should be taken into consideration in the administration of topically applied medication to the ocular surface.

4.
Chemistry ; : e202402785, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207268

RESUMEN

Oxygen reduction reaction (ORR) performance of porous electrode is critical for solid oxide fuel cells (SOFCs). However, the effects of gas diffusion on the ORR in porous media need further investigation, although some issues, such as nonthermal surface oxygen exchange, have been attributed to gas diffusion. Herein, La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) with various porosity, pore radii and gas permeability were investigated via the electrical conductivity relaxation method and analysed using the distributed of characteristic time (DCT) model. The ORR is revealed with three characteristic times, which are gas diffusion, oxygen exchange via the surface corresponding to small pores, and oxygen exchange to large pores. Gas diffusion delays the oxygen surface exchange reaction, resulting in very low chemical oxygen surface exchange coefficient compared with that obtained with dense sample under the assumption that all the surfaces are active for the ORR. Reduced surface area is thus defined to quantitatively represent the gas diffusion effects. The reduced surface area increases with increasing gas permeability, demonstrating the importance of electrode engineering for fast gas transport. Moreover, reduced surface area is suggested for replacing the specific surface area to calculate the electrode polarization resistance using the ALS model.

5.
J Affect Disord ; 366: 234-243, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39216643

RESUMEN

BACKGROUND: Anhedonia is an enduring symptom of subthreshold depression (StD) and predict later onset of major depressive disorder (MDD). Brain structural covariance describes the inter-regional distribution of morphological changes compared to healthy controls (HC) and reflects brain maturation and disease progression. We investigated neural correlates of anhedonia from the structural covariance. METHODS: T1-weighted brain magnetic resonance images were acquired from 79 young adults (26 StD, 30 MDD, and 23 HC). Intra-individual structural covariance networks of 68 cortical surface area (CSAs), 68 cortical thicknesses (CTs), and 14 subcortical volumes were constructed. Group-level hubs and principal edges were defined using the global and regional graph metrics, compared between groups, and examined for the association with anhedonia severity. RESULTS: Global network metrics were comparable among the StD, MDD, and HC. StD exhibited lower centralities of left pallidal volume than HC. StD showed higher centralities than HC in the CSAs of right rostral anterior cingulate cortex (ACC) and pars triangularis, and in the CT of left pars orbitalis. Less anhedonia was associated with higher centralities of left pallidum and right amygdala, higher edge betweenness centralities in the structural covariance (EBSC) of left postcentral gyrus-parahippocampal gyrus and LIPL-right amygdala. More anhedonia was associated with higher centralities of left inferior parietal lobule (LIPL), left postcentral gyrus, left caudal ACC, and higher EBSC of LIPL-left postcentral gyrus, LIPL-right lateral occipital gyrus, and left caudal ACC-parahippocampal gyrus. LIMITATIONS: This study has a cross-sectional design. CONCLUSIONS: Structural covariance of brain morphologies within the salience and limbic networks, and among the salience-limbic-default mode-somatomotor-visual networks, are possible neural correlates of anhedonia in depression.

6.
Nanomaterials (Basel) ; 14(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39120369

RESUMEN

The physical properties of nano-fertilizers (NFs) are important in determining their performance, efficacy, and environmental interactions. Nano-fertilizers, due to their small size and high surface area-to-volume ratio, enhance plant metabolic reactions, resulting in higher crop yields. The properties of nano-fertilizers depend on the synthesis methods used. The nanoparticle's nutrient use efficiency (NUE) varies among plant species. This review aims to analyze the relationship between the physical properties of NF and their influence on crop performance and nutrient uptake efficiency. The review focuses on the physical properties of NFs, specifically their size, shape, crystallinity, and agglomeration. This review found that smaller particle-sized nanoparticles exhibit higher nutrient use efficiency than larger particles. Nano-fertilizer-coated additives gradually release nutrients, reducing the need for frequent application and addressing limitations associated with chemical fertilizer utilization. The shapes of nano-fertilizers have varying effects on the overall performance of plants. The crystalline structure of nanoparticles promotes a slow release of nutrients. Amorphous nano-fertilizers improve the NUE and, ultimately, crop yield. Agglomeration results in nanoparticles losing their nanoscale size, accumulating on the outer surface, and becoming unavailable to plants. Understanding the physical properties of nano-fertilizers is crucial for optimizing their performance in agricultural applications.

7.
Ultrasound Med Biol ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39122609

RESUMEN

OBJECTIVE: The proximal isovelocity surface area (PISA) method is a well-established approach for mitral regurgitation (MR) quantification. However, it exhibits high inter-observer variability and inaccuracies in cases of non-hemispherical flow convergence and non-holosystolic MR. To address this, we present EasyPISA, a framework for automated integrated PISA measurements taken directly from 2-D color-Doppler sequences. METHODS: We trained convolutional neural networks (UNet/Attention UNet) on 1171 images from 196 recordings (54 patients) to detect and segment flow convergence zones in 2-D color-Doppler images. Different preprocessing schemes and model architectures were compared. Flow convergence surface areas were estimated, accounting for non-hemispherical convergence, and regurgitant volume (RVol) was computed by integrating the flow rate over time. EasyPISA was retrospectively applied to 26 MR patient examinations, comparing results with reference PISA RVol measurements, severity grades, and cMRI RVol measurements for 13 patients. RESULTS: The UNet trained on duplex images achieved the best results (precision: 0.63, recall: 0.95, dice: 0.58, flow rate error: 10.4 ml/s). Mitigation of false-positive segmentation on the atrial side of the mitral valve was achieved through integration with a mitral valve segmentation network. The intraclass correlation coefficient was 0.83 between EasyPISA and PISA, and 0.66 between EasyPISA and cMRI. Relative standard deviations were 46% and 53%, respectively. Receiver operator characteristics demonstrated a mean area under the curve between 0.90 and 0.97 for EasyPISA RVol estimates and reference severity grades. CONCLUSION: EasyPISA demonstrates promising results for fully automated integrated PISA measurements in MR, offering potential benefits in workload reduction and mitigating inter-observer variability in MR assessment.

8.
Clin Neurol Neurosurg ; 245: 108495, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39126898

RESUMEN

BACKGROUND: Perihematomal edema (PHE) is regarded as a potential intervention indicator of secondary injury following intracerebral hemorrhage (ICH). But it still lacks a comprehensive prediction model for early PHE formation. METHODS: The included ICH patients have received an initial Computed Tomography scan within 6 hours of symptom onset. Hematoma volume and PHE volume were computed using semiautomated computer-assisted software. The volume of the hematoma, edema around the hematoma, and surface area of the hematoma were calculated. The platelet-to-lymphocyte ratio (PLR) was calculated by dividing the platelet count by the lymphocyte cell count. All analyses were 2-tailed, and the significance level was determined by P <0.05. RESULTS: A total of 226 patients were included in the final analysis. The optimal cut-off values for PHE volume increase to predict poor outcomes were determined as 5.5 mL. For clinical applicability, we identified a value of 5.5 mL as the optimal threshold for early PHE growth. In the multivariate logistic regression analyses, we finally found that baseline hematoma surface area (p < 0.001), expansion-prone hematoma (p < 0.001), and PLR (p = 0.033) could independently predict PHE growth. The comprehensive prediction model demonstrated good performance in predicting PHE growth, with an area under the curve of 0.841, sensitivity of 0.807, and specificity of 0.732. CONCLUSION: In this study, we found that baseline hematoma surface area, expansion-prone hematoma, and PLR were independently associated with PHE growth. Additionally, a risk nomogram model was established to predict the PHE growth in patients with ICH.

9.
Artículo en Inglés | MEDLINE | ID: mdl-39136802

RESUMEN

Computational fluid dynamics (CFD) was used to identify factors influencing the accuracy of the hemispherical proximal isovelocity surface area (PISA) method in calculating the effective regurgitant orifice area (EROA) for patients with functional mitral regurgitation (FMR). Ninety-nine CFD models were constructed to investigate the impact of regurgitant orifice shape and leaflet tethering on the EROA calculation using the PISA method. The correction factors for regurgitation orifice shape (CFs) and for leaflet tethering (CFt) were derived by comparing the 2D PISA method and the actual orifice area. The correction formula was then tested in vivo via 2D transthoracic echocardiography with 3D transesophageal echocardiography of the vena contracta area (VCA) as a reference method in 62 patients with FMR. Based on the CFD simulation results, the two major factors for correcting the EROA calculation were vena contracta length (VCL) and coaptation depth (CD). The correction formula for the EROA was corrected effective regurgitant orifice area (CEROA) = EROA*CFs*CFt, where CFs = 0.59 × VCL(cm) + 0.6 × MR Vmax(cm/s)-0.63 × PISA R(cm)-1.51 and CFt = 0.4 × CD (cm) + 0.96. The correction formula was applied to FMR patients, and the bias and LOA between the CEROA and VCA (0.01 ± 0.13 cm2) were much smaller than those between the EROA and VCA (0.26 ± 0.32 cm2). The CFD-based correction formula improves the accuracy of the EROA calculation based on the hemispheric PISA method, possibly leading to more accurate and reliable data for treatment decision-making in FMR patients.

10.
Ophthalmol Sci ; 4(6): 100465, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39149712

RESUMEN

Purpose: To reveal the causality between retinal vascular density (VD), fractal dimension (FD), and brain cortex structure using Mendelian randomization (MR). Design: Cross-sectional study. Participants: Genome-wide association studies of VD and FD involving 54 813 participants from the United Kingdom Biobank were used. The brain cortical features, including the cortical thickness (TH) and surface area (SA), were extracted from 51 665 patients across 60 cohorts. Surface area and TH were measured globally and in 34 functional regions using magnetic resonance imaging. Methods: Bidirectional univariable MR (UVMR) was used to detect the causality between FD, VD, and brain cortex structure. Multivariable MR (MVMR) was used to adjust for confounding factors, including body mass index and blood pressure. Main Outcome Measures: The global and regional measurements of brain cortical SA and TH. Results: At the global level, higher VD is related to decreased TH (ß = -0.0140 mm, 95% confidence interval: -0.0269 mm to -0.0011 mm, P = 0.0339). At the functional level, retinal FD is related to the TH of banks of the superior temporal sulcus and transverse temporal region without global weighted, as well as the SA of the posterior cingulate after adjustment. Vascular density is correlated with the SA of subregions of the frontal lobe and temporal lobe, in addition to the TH of the inferior temporal, entorhinal, and pars opercularis regions in both UVMR and MVMR. Bidirectional MR studies showed a causation between the SA of the parahippocampal and cauda middle frontal gyrus and retinal VD. No pleiotropy was detected. Conclusions: Fractal dimension and VD causally influence the cortical structure and vice versa, indicating that the retinal microvasculature may serve as a biomarker for cortex structural changes. Our study provides insights into utilizing noninvasive fundus images to predict cortical structural deteriorations and neuropsychiatric disorders. Financial Disclosures: The author(s) have no proprietary or commercial interest in any materials discussed in this article.

11.
Materials (Basel) ; 17(16)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39203210

RESUMEN

The interest in hydrogen is rapidly expanding because of rising greenhouse gas emissions and the depletion of fossil resources. The current work focuses on employing affordable Al alloys for hydrogen production and storage to identify the most efficient alloy that performs best in each situation. In the first part of this work, hydrogen was generated from water electrolysis. The Al alloys that are being examined as electrodes in a water electrolyzer are 1050-T0, 5052-T0, 6061-T0, 6061-T6, 7075-T0, 7075-T6, and 7075-T7. The flow rate of hydrogen produced, energy consumption, and electrolyzer efficiency were measured at a constant voltage of 9 volts to identify the Al alloy that produces a greater hydrogen flow rate at higher process efficiency. The influence of the electrode surface area and water electrolysis temperature were also studied. The second part of this study examines these Al alloys' resistance to hydrogen embrittlement for applications involving compressed hydrogen gas storage, whether they are utilized as the primary vessel in Type 1 pressure vessels or as liners in Type 2 or Type 3 pressure vessels. Al alloys underwent electrochemical charging by hydrogen and Charpy impact testing, after which a scanning electron microscope (SEM) was used to investigate the fracture surfaces of both uncharged and H-charged specimens. The structural constituents of the studied alloys were examined using X-ray diffraction analysis and were correlated to the alloys' performance. Sensitivity analysis revealed that the water electrolysis temperature, electrode surface area, and electrode material type ranked from the highest to lowest in terms of their influence on improving the efficiency of the hydrogen production process. The 6061-T0 Al alloy demonstrated the best performance in both hydrogen production and storage applications at a reasonable material cost.

12.
Bioengineering (Basel) ; 11(8)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39199801

RESUMEN

This study aimed to investigate whether plaque characteristics derived from intravascular optical coherence tomography (IVOCT) could predict a long-term cardiovascular (CV) death. This study was a single-center, retrospective study on 104 patients who had undergone IVOCT-guided percutaneous coronary intervention. Plaque characterization was performed using Optical Coherence TOmography PlaqUe and Stent (OCTOPUS) software developed by our group. A total of 31 plaque features, including lesion length, lumen, calcium, fibrous cap (FC), and vulnerable plaque features (e.g., microchannel), were computed from the baseline IVOCT images. The discriminatory power for predicting CV death was determined using univariate/multivariate logistic regressions. Of 104 patients, CV death was identified in 24 patients (23.1%). Univariate logistic regression revealed that lesion length, calcium angle, calcium thickness, FC angle, FC area, and FC surface area were significantly associated with CV death (p < 0.05). In the multivariate logistic analysis, only the FC surface area (OR 2.38, CI 0.98-5.83, p < 0.05) was identified as a significant determinant for CV death, highlighting the importance of the 3D lesion analysis. The AUC of FC surface area for predicting CV death was 0.851 (95% CI 0.800-0.927, p < 0.05). Patients with CV death had distinct plaque characteristics (i.e., large FC surface area) in IVOCT. Studies such as this one might someday lead to recommendations for pharmaceutical and interventional approaches.

13.
Cancer Treat Res Commun ; 40: 100836, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39098310

RESUMEN

BACKGROUND: The most recommended treatment for stage IV EGFR-positive lung cancer is osimertinib monotherapy. The dosage of osimertinib is fixed at 80 mg/day regardless of body surface area (BSA), however some patients withdraw or reduce the dosage due to adverse events (AEs). METHODS: We performed a retrospective cohort study of 98 patients with EGFR mutation-positive non-small cell lung cancer (NSCLC), who received 80 mg osimertinib as the initial treatment. We investigated the impact of BSA on efficacy and safety of osimertinib. RESULTS: The cut-off value of BSA was estimated using the receiver operating characteristics curve, and was determined to be 1.5 m2. There were 44 patients in the BSA < 1.5 group and 54 patients in the BSA ≥ 1.5 group. There was no significant difference in the incidence of AEs (hematologic toxicity of ≥grade 3 or higher, and non-hematologic toxicity of ≥grade 3) between the two groups. However, the incidence of dose reduction due to AEs was significantly higher in the BSA < 1.5 group compared with the BSA ≥ 1.5 group (16 patients vs 5 patients, p = 0.003). The main reasons were fatigue, anorexia, diarrhea, and liver disfunction. Median progression-free survival (PFS) was not significantly different (16.9 months in the BSA < 1.5 group vs 18.1 months in the BSA ≥ 1.5 group, p = 0.869). CONCLUSION: Differences in BSA affected the optimal dose of osimertinib. However, the PFS with osimertinib treatment was not affected by BSA. Therefore, when using osimertinib as an initial treatment for patients with EGFR-mutant NSCLC, dose reduction to control AEs should be considered, especially in the BSA<1.5 group.


Asunto(s)
Acrilamidas , Compuestos de Anilina , Superficie Corporal , Carcinoma de Pulmón de Células no Pequeñas , Receptores ErbB , Neoplasias Pulmonares , Mutación , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Compuestos de Anilina/uso terapéutico , Compuestos de Anilina/efectos adversos , Compuestos de Anilina/administración & dosificación , Acrilamidas/uso terapéutico , Acrilamidas/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Receptores ErbB/genética , Receptores ErbB/antagonistas & inhibidores , Masculino , Estudios Retrospectivos , Femenino , Anciano , Persona de Mediana Edad , Anciano de 80 o más Años , Antineoplásicos/uso terapéutico , Antineoplásicos/efectos adversos , Adulto , Resultado del Tratamiento , Indoles , Pirimidinas
14.
Daru ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145828

RESUMEN

BACKGROUND: Loxoprofen has been actively used clinically to relieve musculoskeletal pain and inflammatory symptoms. However, there are few reports on quantitative pharmacokinetic (PK) prediction tools and diversity analyzes for loxoprofen within populations. OBJECTIVES: The aim of this study was to identify effective covariates associated with explaining inter-individual PK variability through a population pharmacokinetic (Pop-PK) modeling approach for loxoprofen, and to provide a starting point for establishing scientific dosing regimens. METHOD: The bioequivalence PK results of loxoprofen performed on 52 healthy Korean men and the physiological and biochemical parameters derived from each individual were used as base data for the development of a Pop-PK model of loxoprofen. In order to simultaneously predict the PKs of the active form according to loxoprofen exposure, previously reported PK results of trans-alcohol loxoprofen, an active metabolite of loxoprofen, were used to expand the model. RESULTS: The Pop-PK profiles of loxoprofen were described in terms of the basic structure of a non-sequential two absorption with 2-disposition compartment, and for inter-individual PK variations, peripheral compartment volume of distribution could be correlated with body surface area (BSA), and central compartment clearance with creatinine clearance (CrCL) and albumin levels. As a result of the model simulation, the concentrations of loxoprofen and its alcoholic metabolites in plasma significantly decreased as CrCL and albumin levels increased and decreased, respectively. On the other hand, it was confirmed that the higher the BSA, the greater the distribution of loxoprofen to the periphery, and the minimum concentrations of loxoprofen and alcoholic metabolites in plasma in steady-state increased by approximately 1.78-2 times, while the fluctuation between maximum and minimum concentrations decreased. The results suggest that patients with large BSA, impaired renal function, and high serum albumin levels may have significantly higher plasma exposure to loxoprofen and trans-alcohol loxoprofen. It was also suggested that the potential side effects in the gastrointestinal system and various tissues and the level of exposure in plasma due to long-term application of loxoprofen in this patient group could be causally explained. CONCLUSION: This study provides a very useful starting point for a scientific precision medicine approach to loxoprofen by discovering effective covariates and establishing a quantitative model that can explain the diversity of loxoprofen PKs within the population. CLINICAL TRIAL REGISTRATION: The clinical study protocol used in this study was thoroughly reviewed and approved by the Institutional Review Board of the Institute of Bioequivalence and Bridging Study, Chonnam National University, Gwangju, Republic of Korea. The bioequivalence study permit numbers are as follows: 041113; 10.15.2004.

15.
Bioresour Technol ; 409: 131251, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39127362

RESUMEN

Biomass-derived carbon for supercapacitors faces the challenge of achieving hierarchical porous carbon with graphitic structure and specific heteroatoms through a single-stage thermal process that minimises resource input. Herein, molten base carbonisation and activation is proposed. The process utilises the inherent moisture of Moso bamboo shoots, coupled with a low amount of KOH, to form potassium organic salts before drying. The resultant potassium salts promote in-situ activation during single-stage heating process, yielding hierarchical porous, large specific surface area, and partially graphitised carbon with heteroatoms (N, O). As an electrode material, this carbon exhibits a specific capacitance of 327F g-1 in 6 M KOH and 182F g-1 in 1 M TEABF4/AN, demonstrating excellent cycling stability over 10,000 cycles at 2 A/g. Overall, this study presents a straightforward process that avoids pre-drying of biomass, minimises base consumption, and employs single-stage heating to fabricate electrode carbon suitable for supercapacitors.


Asunto(s)
Biomasa , Carbono , Capacidad Eléctrica , Electrodos , Porosidad , Carbono/química , Técnicas Electroquímicas/métodos
16.
Gastro Hep Adv ; 3(2): 215-220, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39129953

RESUMEN

Background and Aims: Children with very early onset inflammatory bowel disease (VEO-IBD) are uniquely at risk of inadequate infliximab (IFX) exposure. We studied the association between standard body weight (BW)-based and body surface area (BSA)-based dosing strategies and outcomes. Methods: We identified VEO-IBD patients treated with IFX before 9 years at a single center. Patients were separated into those that received a BSA-based dose (200 mg/m2) and standard BW dosing (5 mg/kg). IFX drug levels, dose intensification, time on steroids, and long-term outcomes were compared. Receiver operator characteristic curves determined the optimal BW- and BSA-based dose to achieve a trough ≥10 µg/ml at dose 4 (IFX#4). Results: Forty-three children with VEO-IBD were identified. Receiver operator characteristic curves demonstrated optimal BW- and BSA-based doses to achieve IFX trough ≥10 µg/ml at IFX#4 were 7.5 mg/kg and 180mg/m2. Children were classified to standard BW dosing (22/43) and BSA dosing (10/43). IFX#4 trough was significantly higher in those who received BSA dosing (BSA 18.6 µg/ml [interquartile range 10.8-28.1] vs BW 5.1 µg/ml [interquartile range 2.6-10.7], P = .04). BSA dosing was more likely to achieve a target drug level >10 µg/ml at IFX#4 (BSA 70% vs BW 18%, P = .02). BW dosing was associated with a greater likelihood of dose escalation (BW 82% vs BSA 30%, P < .01) and a shorter time to first escalation. BSA dosing was associated with shorter time spent on steroids (P = .02). Conclusion: Young children require higher IFX dosing to achieve adequate drug exposure. Our data support the use of a BSA-based dose of 200 mg/m2 or, if a BW-based approach is used, 7.5 mg/kg. BSA dosing allows the use of a consistent dose over the age and weight spectrum.

17.
Heart Vessels ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39186093

RESUMEN

Left main (LM) percutaneous coronary intervention (PCI) has expanded rapidly in the past decade, with up to fourfold increase annually. Recent trials found that intravascular imaging (IVI)-guided LM PCI resulted in lower risks of cardiac death and stent failure due to suboptimal PCI compared to angiography-guided PCI. IVI usage has increased in recent years; however, its utilization remains variable across regions and is still incredibly low in developing countries. Furthermore, to date, there is no data about LM size in the Southeast Asian population. This study aims to determine the mean external elastic membrane (EEM) diameter, cross-sectional area (CSA) of LM, and its predictor. This is a cross-sectional observational study on 100 patients with coronary artery disease (CAD) who underwent IVUS-guided PCI with a pullback to LM in Dr. Hasan Sadikin General Hospital Bandung, Indonesia, from January 2020 until December 2022. Linear regression was used to determine the predictors of LM size. There were 100 segments of LM. LM's mean EEM diameter and CSA were 5.02 ± 0.43 mm and 19.93 ± 3.48 mm2. Body surface area (BSA) is an independent predictor of EEM diameter and CSA with a positive linear relationship (p 0.001 and p 0.0001). Hypertension is an independent predictor of EEM diameter with a positive linear relationship (p 0.034). The linear equation to predict EEM diameter and CSA were (2.741 + 1.272BSA(m2) + 0.165 hypertension (yes)) and (2.745 + 9.601BSA(m2)), respectively. The LM coronary artery size of the Southeast Asian population was comparable with the previous studies. BSA and hypertension are independent predictors of EEM diameter, with BSA being stronger than hypertension. Neither sex nor other cardiovascular risk factors affect the LM size. The knowledge of coronary artery size will help the clinician have a reference for intervention, especially when no intravascular imaging is available.

18.
J Chromatogr A ; 1734: 465268, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39191182

RESUMEN

Electrospun cellulose adsorbents are an emergent class of materials applied to a variety of bioprocess separations as an analogue to conventional packed bed chromatography. Electrospun adsorbents have proven to be effective as rapid cycling media, enabling high throughput separation of proteins and viral vectors without compromising selectivity and recovery. However, there is a current lack of knowledge in relation to the manipulation and control of electrospun adsorbent structure with function and performance to cater to the separation needs of emerging, diverse biological products. In this study, a series of electrospun cellulose adsorbents were fabricated by adjusting their manufacturing conditions. A range of fiber diameters (400 to 600 nm) was created by changing the electrospinning polymer solution. Additionally, a range of porosities (0.4 to 0.7 v/v) was achieved by varying the laminating pressures on the electrospun sheets. The adsorbents were functionalized with different degrees of quaternary amine ligand density to create 18 prototype anion exchangers. Their morphology was characterized by BET nitrogen adsorption surface area, X-ray computed tomography, capillary flow porometry and scanning electron microscopy measurements. The physical characteristics of the adsorbents were used in an adapted semi-empirical model and compared to measured permeability data. Permeabilities of prototypes ranged from 10-2 to 10-4 mDarcy. The measured data showed good adherence to modelled data with possible improvements in acquiring wet adsorbent characteristics instead of dried material. Finally, the electrospun adsorbents were characterized for their binding capacity of model proteins of different sizes (diameters of 3.5 nm and 8.9 nm) and plasmid DNA. Static binding capacities ranged from 5 mg/ml to 25 mg/ml for the proteins and plasmid DNA and showed <20 % deviation from monolayer coverage based on BET surface area. Therefore, it was concluded that the electrospun adsorbents most likely adsorb monolayers of proteins and plasmid DNA on the surface with minimal steric hindrance.

19.
J Chromatogr A ; 1734: 465289, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39181093

RESUMEN

This paper introduces a method for determining the specific surface area (SSA) of biomass activated carbon (BAC) using a tracer-based headspace gas chromatography (HS-GC) technique. The method relies on the adsorption equilibrium of methanol on BAC samples at elevated temperature. A mathematical model allows for the calculation of SSA from the methanol signal obtained during the headspace analysis. The results demonstrate high precision (relative standard deviation < 2.44%) and strong accuracy (correlation with the conventional BET-N2 adsorption method, R² = 0.986). This method offers several advantages over traditional techniques, including ease of operation, significant time efficiency, and the the ability to perform batch determinations of SSA, as multiple samples can be processed simultaneously during the phase equilibrium step.

20.
Plant Methods ; 20(1): 118, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095828

RESUMEN

BACKGROUND: Root systems are key contributors to plant health, resilience, and, ultimately, yield of agricultural crops. To optimize plant performance, phenotyping trials are conducted to breed plants with diverse root traits. However, traditional analysis methods are often labour-intensive and invasive to the root system, therefore limiting high-throughput phenotyping. Spectral electrical impedance tomography (sEIT) could help as a non-invasive and cost-efficient alternative to optical root analysis, potentially providing 2D or 3D spatio-temporal information on root development and activity. Although impedance measurements have been shown to be sensitive to root biomass, nutrient status, and diurnal activity, only few attempts have been made to employ tomographic algorithms to recover spatially resolved information on root systems. In this study, we aim to establish relationships between tomographic electrical polarization signatures and root traits of different fine root systems (maize, pinto bean, black bean, and soy bean) under hydroponic conditions. RESULTS: Our results show that, with the use of an optimized data acquisition scheme, sEIT is capable of providing spatially resolved information on root biomass and root surface area for all investigated root systems. We found strong correlations between the total polarization strength and the root biomass ( R 2 = 0.82 ) and root surface area ( R 2 = 0.8 ). Our findings suggest that the captured polarization signature is dominated by cell-scale polarization processes. Additionally, we demonstrate that the resolution characteristics of the measurement scheme can have a significant impact on the tomographic reconstruction of root traits. CONCLUSION: Our findings showcase that sEIT is a promising tool for the tomographic reconstruction of root traits in high-throughput root phenotyping trials and should be evaluated as a substitute for traditional, often time-consuming, root characterization methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA