Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.348
Filtrar
1.
Methods Mol Biol ; 2850: 21-39, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39363064

RESUMEN

Modular cloning systems that rely on type IIS enzymes for DNA assembly have many advantages for construct engineering for biological research and synthetic biology. These systems are simple to use, efficient, and allow users to assemble multigene constructs by performing a series of one-pot assembly steps, starting from libraries of cloned and sequenced parts. The efficiency of these systems also facilitates the generation of libraries of construct variants. We describe here a protocol for assembly of multigene constructs using the modular cloning system MoClo. Making constructs using the MoClo system requires to first define the structure of the final construct to identify all basic parts and vectors required for the construction strategy. The assembly strategy is then defined following a set of standard rules. Multigene constructs are then assembled using a series of one-pot assembly steps with the set of identified parts and vectors.


Asunto(s)
Clonación Molecular , Vectores Genéticos , Biología Sintética , Clonación Molecular/métodos , Vectores Genéticos/genética , Biología Sintética/métodos , Biblioteca de Genes
2.
Methods Mol Biol ; 2850: 61-77, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39363066

RESUMEN

Golden Gate cloning enables the modular assembly of DNA parts into desired synthetic genetic constructs. The "one-pot" nature of Golden Gate reactions makes them particularly amenable to high-throughput automation, facilitating the generation of thousands of constructs in a massively parallel manner. One potential bottleneck in this process is the design of these constructs. There are multiple parameters that must be considered during the design of an assembly process, and the final design should also be checked and verified before implementation. Doing this by hand for large numbers of constructs is neither practical nor feasible and increases the likelihood of introducing potentially costly errors. In this chapter we describe a design workflow that utilizes bespoke computational tools to automate the key phases of the construct design process and perform sequence editing in batches.


Asunto(s)
Clonación Molecular , ADN , Edición Génica , ADN/genética , ADN/química , Edición Génica/métodos , Clonación Molecular/métodos , Sistemas CRISPR-Cas , Programas Informáticos , Biología Sintética/métodos , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
3.
Methods Mol Biol ; 2850: 89-104, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39363068

RESUMEN

Synthetic biology, also known as engineering biology, is an interdisciplinary field that applies engineering principles to biological systems. One way to engineer biological systems is by modifying their DNA. A common workflow involves creating new DNA parts through synthesis and then using them in combination with other parts through assembly. Assembly standards such as MoClo, Phytobricks, and Loop are based on Golden Gate, and provide a framework for combining parts. The Synthetic Biology Open Language (SBOL) has implemented a best practice for representing build plans to communicate them to other practitioners through whiteboard designs and in a machine-readable format for communication with lab automation tools. Here we present a software tool for creating SBOL representations of build plans to simulate type IIS-mediated assembly reactions and store relevant metadata.


Asunto(s)
Metadatos , Programas Informáticos , Biología Sintética , Biología Sintética/métodos , Lenguajes de Programación , ADN/química
4.
Methods Mol Biol ; 2850: 1-19, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39363063

RESUMEN

Efficient DNA assembly methods are an essential prerequisite in the field of synthetic biology. Modular cloning systems, which rely on Golden Gate cloning for DNA assembly, are designed to facilitate assembly of multigene constructs from libraries of standard parts through a series of streamlined one-pot assembly reactions. Standard parts consist of the DNA sequence of a genetic element of interest such as a promoter, coding sequence, or terminator, cloned in a plasmid vector. Standard parts for the modular cloning system MoClo, also called level 0 modules, must be flanked by two BsaI restriction sites in opposite orientations and should not contain internal sequences for two type IIS restriction sites, BsaI and BpiI, and optionally for a third type IIS enzyme, BsmBI. We provide here a detailed protocol for cloning of level 0 modules. This protocol requires the following steps: (1) defining the type of part that needs to be cloned, (2) designing primers for amplification, (3) performing polymerase chain reaction (PCR) amplification, (4) cloning of the fragments using Golden Gate cloning, and finally (5) sequencing of the part. For large standard parts, it is preferable to first clone sub-parts as intermediate level -1 constructs. These sub-parts are sequenced individually and are then further assembled to make the final level 0 module.


Asunto(s)
Clonación Molecular , Reacción en Cadena de la Polimerasa , Clonación Molecular/métodos , Reacción en Cadena de la Polimerasa/métodos , Biología Sintética/métodos , Vectores Genéticos/genética , Plásmidos/genética , Cartilla de ADN/genética
5.
Methods Mol Biol ; 2850: 149-169, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39363071

RESUMEN

Golden Gate cloning has become one of the most popular DNA assembly techniques. Its modular and hierarchical structure allows the construction of complex DNA fragments. Over time, Golden Gate cloning allows for the creation of a repository of reusable parts, reducing the cost of frequent sequence validation. However, as the number of reactions and fragments increases, so does the cost of consumables and the potential for human error. Typically, Golden Gate reactions are performed in volumes of 10-25 µL. Recent technological advances have led to the development of liquid handling robots that use sound to transfer liquids in the nL range from a source plate to a target plate. These acoustic dispensers have become particularly popular in the field of synthetic biology. The use of this technology allows miniaturization and parallelization of molecular reactions in a tip-free manner, making it sustainable by reducing plastic waste and reagent usage. Here, we provide a step-by-step protocol for performing and parallelizing Golden Gate cloning reactions in 1 µL total volume.


Asunto(s)
Acústica , Clonación Molecular , ADN , Miniaturización , ADN/genética , ADN/química , Clonación Molecular/métodos , Biología Sintética/métodos , Automatización , Robótica/métodos
6.
Methods Mol Biol ; 2850: 219-227, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39363074

RESUMEN

Gene synthesis efficiency has greatly improved in recent years but is limited when it comes to repetitive sequences and results in synthesis failure or delays by DNA synthesis vendors. Here, we describe a method for the assembly of small synthetic genes with repetitive elements: First, a gene of interest is split in silico into small synthons of up to 80 base pairs flanked by Golden Gate-compatible overhangs. Then synthons are made by oligo extension and finally assembled into a synthetic gene by Golden Gate assembly.


Asunto(s)
Secuencias Repetitivas de Ácidos Nucleicos , Secuencias Repetitivas de Ácidos Nucleicos/genética , Genes Sintéticos/genética , ADN/genética , Biología Sintética/métodos
7.
Methods Mol Biol ; 2850: 307-328, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39363079

RESUMEN

Bacterial small RNAs (sRNAs) are well known for their ability to modulate gene expression at the post-transcriptional level. Their rather simple and modular organization provides the user with defined building blocks for synthetic biology approaches. In this chapter, we introduce a plasmid series for Escherichia coli and describe protocols for fast and efficient construction of synthetic sRNA expression plasmids based on Golden Gate assembly. In addition, we present the G-GArden tool, which assists with the design of oligodeoxynucleotides and overhangs for scarless assembly strategies. We propose that the presented procedures are suitable for many applications in different bacteria, which are related to E. coli and beyond.


Asunto(s)
Clonación Molecular , Escherichia coli , Plásmidos , ARN Bacteriano , Plásmidos/genética , Clonación Molecular/métodos , Escherichia coli/genética , ARN Bacteriano/genética , Biología Sintética/métodos , ARN Pequeño no Traducido/genética
8.
Methods Mol Biol ; 2850: 345-363, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39363081

RESUMEN

Gene Doctoring is a genetic modification technique for E. coli and related bacteria, in which the Red-recombinase from bacteriophage λ mediates chromosomal integration of a fragment of DNA by homologous recombination (known as recombineering). In contrast to the traditional recombineering method, the integrated fragment for Gene Doctoring is supplied on a donor plasmid rather than as a linear DNA. This protects the DNA from degradation, facilitates transformation, and ensures multiple copies are present per cell, increasing the efficiency and making the technique particularly suitable for strains that are difficult to modify. Production of the donor plasmid has, until recently, relied on traditional cloning techniques that are inflexible, tedious, and inefficient. This protocol describes a procedure for Gene Doctoring combined with Golden Gate assembly of a donor plasmid, using a custom-designed plasmid backbone, for rapid and simple production of complex, multi-part assemblies. Insertion of a gene for superfolder green fluorescent protein, with selection by tetracycline resistance, into E. coli strain MG1655 is used as an example but in principle the method can be tailored for virtually any modification in a wide range of bacteria.


Asunto(s)
Escherichia coli , Plásmidos , Plásmidos/genética , Escherichia coli/genética , Ingeniería Genética/métodos , Bacteriófago lambda/genética , Recombinación Homóloga , Vectores Genéticos/genética , Clonación Molecular/métodos
9.
Methods Mol Biol ; 2850: 365-375, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39363082

RESUMEN

Vibrio natriegens is a gram-negative bacterium, which has received increasing attention due to its very fast growth with a doubling time of under 10 min under optimal conditions. To enable a wide range of projects spanning from basic research to biotechnological applications, we developed NT-CRISPR as a new method for genome engineering. This book chapter provides a step-by-step protocol for the use of this previously published tool. NT-CRISPR combines natural transformation with counterselection through CRISPR-Cas9. Thereby, genomic regions can be deleted, foreign sequences can be integrated, and point mutations can be introduced. Furthermore, up to three simultaneous modifications are possible.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Genoma Bacteriano , Vibrio , Vibrio/genética , Edición Génica/métodos , Ingeniería Genética/métodos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética
10.
Methods Mol Biol ; 2850: 451-465, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39363087

RESUMEN

Modern synthetic biology requires fast and efficient cloning strategies for the assembly of new transcription units or entire pathways. Modular Cloning (MoClo) is a standardized synthetic biology workflow, which has tremendously simplified the assembly of genetic elements for transgene expression. MoClo is based on Golden Gate Assembly and allows to combine genetic elements of a library through a hierarchical syntax-driven pipeline. Here we describe the assembly of a genetic cassette for transgene expression in the single-celled model alga Chlamydomonas reinhardtii.


Asunto(s)
Chlamydomonas reinhardtii , Clonación Molecular , Biología Sintética , Clonación Molecular/métodos , Chlamydomonas reinhardtii/genética , Biología Sintética/métodos , Transgenes , Vectores Genéticos/genética , Ingeniería Genética/métodos , Chlamydomonas/genética , Biblioteca de Genes
11.
Methods Mol Biol ; 2850: 467-479, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39363088

RESUMEN

The Golden Gate cloning technique is used to assemble DNA parts into higher-order assemblies. Individual parts containing compatible overhangs generated by type IIS restriction enzymes are joined together using DNA ligase. The technique enables users to assemble custom transcription units (TUs) for a wide array of experimental assays. Several Golden Gate cloning systems have been developed; however, they are typically used with a narrow range of organisms. Here we describe the Multi-Kingdom (MK) cloning system that allows users to generate DNA plasmids for use in a broad range of organisms.


Asunto(s)
Clonación Molecular , Plásmidos , Clonación Molecular/métodos , Plásmidos/genética , ADN/genética , ADN Ligasas/metabolismo , ADN Ligasas/genética , Vectores Genéticos/genética
12.
Methods Mol Biol ; 2850: 481-500, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39363089

RESUMEN

Researchers have dedicated efforts to refining genetic part assembly techniques, responding to the demand for complex DNA constructs. The optimization efforts, targeting enhanced efficiency, fidelity, and modularity, have yielded streamlined protocols. Among these, Golden Gate cloning has gained prominence, offering a modular and hierarchical approach for constructing complex DNA fragments. This method is instrumental in establishing a repository of reusable parts, effectively reducing the costs and proving highly valuable for high-throughput DNA assembly projects. In this review, we delve into the main protocol of Golden Gate cloning, providing refined insights to enhance protocols and address potential challenges. Additionally, we perform a thorough evaluation of the primary modular cloning toolkits adopted by the scientific community. The discussion includes an exploration of recent advances and challenges in the field, providing a comprehensive overview of the current state of Golden Gate cloning.


Asunto(s)
Clonación Molecular , Clonación Molecular/métodos , ADN/genética , Vectores Genéticos/genética
13.
Methods Mol Biol ; 2847: 193-204, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39312145

RESUMEN

Riboswitches are naturally occurring regulatory segments of RNA molecules that modulate gene expression in response to specific ligand binding. They serve as a molecular 'switch' that controls the RNA's structure and function, typically influencing the synthesis of proteins. Riboswitches are unique because they directly interact with metabolites without the need for proteins, making them attractive tools in synthetic biology and RNA-based therapeutics. In synthetic biology, riboswitches are harnessed to create biosensors and genetic circuits. Their ability to respond to specific molecular signals allows for the design of precise control mechanisms in genetic engineering. This specificity is particularly useful in therapeutic applications, where riboswitches can be synthetically designed to respond to disease-specific metabolites, thereby enabling targeted drug delivery or gene therapy. Advancements in designing synthetic riboswitches for RNA-based therapeutics hinge on sophisticated computational techniques, which are described in this chapter. The chapter concludes by underscoring the potential of computational strategies in revolutionizing the design and application of synthetic riboswitches, paving the way for advanced RNA-based therapeutic solutions.


Asunto(s)
Biología Computacional , Riboswitch , Biología Sintética , Riboswitch/genética , Biología Sintética/métodos , Biología Computacional/métodos , Humanos , ARN/genética , Ingeniería Genética/métodos , Aptámeros de Nucleótidos/genética , Ligandos , Conformación de Ácido Nucleico
14.
Synth Syst Biotechnol ; 10(1): 49-57, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39224149

RESUMEN

As a fundamental tool in synthetic biology, promoters are pivotal in regulating gene expression, enabling precise genetic control and spurring innovation across diverse biotechnological applications. However, most advances in engineered genetic systems rely on host-specific regulation of the genetic portion. With the burgeoning diversity of synthetic biology chassis cells, there emerges a pressing necessity to broaden the universal promoter toolkit spectrum, ensuring adaptability across various microbial chassis cells for enhanced applicability and customization in the evolving landscape of synthetic biology. In this study, we analyzed and validated the primary structures of natural endogenous promoters from Escherichia coli, Bacillus subtilis, Corynebacterium glutamicum, Saccharomyces cerevisiae, and Pichia pastoris, and through strategic integration and rational modification of promoter motifs, we developed a series of cross-species promoters (Psh) with transcriptional activity in five strains (prokaryotic and eukaryotic). This series of cross species promoters can significantly expand the synthetic biology promoter toolkit while providing a foundation and inspiration for standardized development of universal components The combinatorial use of key elements from prokaryotic and eukaryotic promoters presented in this study represents a novel strategy that may offer new insights and methods for future advancements in promoter engineering.

15.
Bioresour Technol ; : 131558, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362341

RESUMEN

Engineered strains of Yarrowia lipolytica with modified lipid profiles and other desirable properties for microbial oil production are widely reported but are almost exclusively characterized in synthetic laboratory-grade media. Ensuring translatable performance between synthetic media and industrially scalable lignocellulosic feedstocks is a critical challenge. Yarrowia lipolytica growth and lipid production were characterized in media derived from two-step acid-catalyzed glycerol pretreatment of sugarcane bagasse. Fermentation performance was benchmarked against laboratory-grade synthetic growth media, including detailed characterization of media composition, nitrogen utilization, biomass and lipid production, and fatty acid product profile. A Yarrowia lipolytica strain modified to enable xylose consumption consumed all sugars, glycerol, and acetic acid, accumulating lipids to 34-44 % of cell dry weight. Growth and lipid content when grown in sugarcane bagasse-derived media were equivalent to or better than that observed with synthetic media. These sugarcane bagasse-derived media are suitable for transferable development of Yarrowia lipolytica fermentations from synthetic media.

16.
Front Bioeng Biotechnol ; 12: 1437301, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39359265

RESUMEN

Over the past 2 decades, rapid advances in synthetic biology have enabled the design of increasingly intricate and biologically relevant systems with broad applications in healthcare. A growing area of interest is in designing bacteria that sense and respond to endogenous disease-associated signals, creating engineered theranostics that function as disease surveyors for human health. In particular, engineered cells hold potential in facilitating greatly enhanced temporal and spatial control over the release of a range of therapeutics. Such systems are particularly useful for targeting challenging, under-drugged disease targets in a more nuanced manner than is currently possible. This review provides an overview of the recent advances in the design, delivery, and dynamics of bacterial theranostics to enable safe, robust, and genetically tractable therapies to treat disease. It outlines the primary challenges in theranostic clinical translation, proposes strategies to overcome these issues, and explores promising future avenues for the field.

17.
J Biol Eng ; 18(1): 52, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39350178

RESUMEN

RNA recognition motifs (RRMs) are widespread RNA-binding protein domains in eukaryotes, which represent promising synthetic biology tools due to their compact structure and efficient activity. Yet, their use in prokaryotes is limited and their functionality poorly characterized. Recently, we repurposed a mammalian Musashi protein containing two RRMs as a translation regulator in Escherichia coli. Here, employing high-throughput RNA sequencing, we explored the impact of Musashi expression on the transcriptomic and translatomic profiles of E. coli, revealing certain metabolic interference, induction of post-transcriptional regulatory processes, and spurious protein-RNA interactions. Engineered Musashi protein mutants displayed compromised regulatory activity, emphasizing the importance of both RRMs for specific and sensitive RNA binding. We found that a mutation known to impede allosteric regulation led to similar translation control activity. Evolutionary experiments disclosed a loss of function of the synthetic circuit in about 40 generations, with the gene coding for the Musashi protein showing a stability comparable to other heterologous genes. Overall, this work expands our understanding of RRMs for post-transcriptional regulation in prokaryotes and highlight their potential for biotechnological and biomedical applications.

18.
Front Bioeng Biotechnol ; 12: 1447176, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39351063

RESUMEN

Cancer is a leading cause of mortality globally, often diagnosed at advanced stages with metastases already present, complicating treatment efficacy. Traditional treatments like chemotherapy and radiotherapy face challenges such as lack of specificity and drug resistance. The hallmarks of cancer, as defined by Hanahan and Weinberg, describe tumors as complex entities capable of evolving traits that promote malignancy, including sustained proliferation, resistance to cell death, and metastasis. Emerging research highlights the significant role of the microbiome in cancer development and treatment, influencing tumor progression and immune responses. This review explores the potential of live biotherapeutic products (LBPs) for cancer diagnosis and therapy, focusing on projects from the International Genetically Engineered Machines (iGEM) competition that aim to innovate LBPs for cancer treatment. Analyzing 77 projects from 2022, we highlight the progress and ongoing challenges within this research field.

19.
ACS Biomater Sci Eng ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352143

RESUMEN

The emerging field of synthetic morphogenesis implements synthetic biology tools to investigate the minimal cellular processes sufficient for orchestrating key developmental events. As the field continues to grow, there is a need for new tools that enable scientists to uncover nuances in the molecular mechanisms driving cell fate patterning that emerge during morphogenesis. Here, we present a platform that combines cell engineering with biomaterial design to potentiate artificial signaling in pluripotent stem cells (PSCs). This platform, referred to as PSC-MATRIX, extends the use of programmable biomaterials to PSCs competent to activate morphogen production through orthogonal signaling, giving rise to the opportunity to probe developmental events by initiating morphogenetic programs in a spatially constrained manner through non-native signaling channels. We show that the PSC-MATRIX platform enables temporal and spatial control of transgene expression in response to bulk, soluble inputs in synthetic Notch (synNotch)-engineered human PSCs for an extended culture of up to 11 days. Furthermore, we used PSC-MATRIX to regulate multiple differentiation events via material-mediated artificial signaling in engineered PSCs using the orthogonal ligand green fluorescent protein, highlighting the potential of this platform for probing and guiding fate acquisition. Overall, this platform offers a synthetic approach to interrogate the molecular mechanisms driving PSC differentiation that could be applied to a variety of differentiation protocols.

20.
Biosens Bioelectron ; 267: 116806, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39353369

RESUMEN

5-Aminolevulinic acid (5-ALA) is a non-protein amino acid widely used in agriculture, animal husbandry and medicine. Currently, microbial cell factories are a promising production pathway, but the lack of high-throughput fermentation strain screening tools often hinders the exploration of engineering strategies to increase cell factory yields. Here, mutant AC103-3H was screened from libraries of saturating mutants after response-specific engineering of the transcription factor AsnC of L-asparagine (Asn). Based on mutant AC103-3H, a whole-cell biosensor EAC103-3H with a specific response to 5-ALA was constructed, which has a linear dynamic detection range of 1-12 mM and a detection limit of 0.094 mM, and can be used for in situ screening of potential high-producing 5-ALA strains. With its support, overexpression of the C5 pathway genes using promoter engineering assistance resulted in a 4.78-fold enhancement of 5-ALA production in the engineered E. coli. This study provides an efficient strain screening tool for exploring approaches to improve the 5-ALA productivity of engineered strains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA