Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
Food Chem ; 462: 140913, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39197241

RESUMEN

Grape processing generates large amounts of by-products, including seeds rich in hydrophilic and lipophilic antioxidants. This study demonstrates, for the first time, that subjecting grape seeds to a single ultrasound-assisted extraction (UAE) with aqueous ethanolic solutions yields both flavan-3-ols and tocochromanols in the final extract. Notably, the water content in ethanol significantly influences the extractability of tocochromanols more than flavan-3-ols. Solid-to-solvent ratios of 1:50 to 1:2 were tested for both analytical and industrial applications. A sustainable analytical approach for recovering flavan-3-ols and tocochromanols using 60% and 96.4% ethanol extractions was validated and employed to profile nineteen genotypes of lesser-studied interspecific grape crosses (Vitis spp.). Different genotypes showed a wide range of concentrations of tocopherols (1.6-6.3 mg/100 g), tocotrienols (1.0-17.4 mg/100 g), and flavan-3-ols (861-9994 mg/100 g). This indicated that the genetic background and maturity of the plant material are crucial factors from an industrial perspective due to the initial concentration of bioactive compounds. Finally, the study also discussed the fundamental aspects of hydrophobic antioxidant extractability from the lipid matrix with aqueous ethanol solutions and the limitations of the workflow, such as the non-extractable tocochromanols and their esters and the losses of these lipophilic antioxidants during extraction.


Asunto(s)
Flavonoides , Semillas , Vitis , Vitis/química , Semillas/química , Flavonoides/aislamiento & purificación , Flavonoides/química , Flavonoides/análisis , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Tocoferoles/aislamiento & purificación , Tocoferoles/química , Tocoferoles/análisis , Tocotrienoles/análisis , Tocotrienoles/aislamiento & purificación , Tocotrienoles/química
2.
F1000Res ; 13: 135, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39268057

RESUMEN

Background: Vitamin E from palm oil, known as the tocotrienol-rich fraction (TRF), has been shown to have immune-enhancing activity. To date, only one dose of TRF (400 mg daily) has been tested in a clinical trial. The proposed study will evaluate the immune-enhancing activity effects of lower doses (200, 100 and 50 mg) in a clinical trial using an influenza vaccine as the immunological challenge. Methods: A single-centre, randomised, parallel, double-blinded, placebo-controlled clinical trial with balance allocation involving five arms will be conducted. The healthy volunteers recruited will be randomly assigned to one of the arms, and they will be asked to take the respective supplements (400 mg, 200 mg, 100 mg, 50 mg of TRF or placebo) daily with their dinner. The volunteers will receive the influenza vaccine after four weeks. They will be asked to return to the study site four weeks later. A blood sample will be taken for the study at baseline, four and eight weeks. Primary outcome measures will be antibody levels to influenza, blood leucocyte profile and cytokine production. Secondary outcomes will be correlating plasma vitamin E levels with immune responses, plasma proteins and gene expression patterns. The findings from this study will be published in relevant peer-reviewed journals and presented at relevant national and international scientific meetings. Conclusions: The recent world events have created the awareness of having a healthy and functional immune system. Nutrition plays an important role in helping the immune system to function optimally. This study will show the effects of lower doses of TRF in boosting the immune response of healthy individuals and also elucidate the mechanisms through which TRF exerts its immune-enhancing effects. Clinical trial registration: Australian New Zealand Clinical Trials Registry (ANZCTR) [ ACTRN12622000844741] dated 15 June 2022. Protocol version: 2.


Asunto(s)
Suplementos Dietéticos , Voluntarios Sanos , Vacunas contra la Influenza , Aceite de Palma , Tocotrienoles , Humanos , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Tocotrienoles/administración & dosificación , Aceite de Palma/administración & dosificación , Gripe Humana/prevención & control , Gripe Humana/inmunología , Método Doble Ciego , Vacunación , Adulto , Masculino , Vitamina E , Femenino , Agentes Inmunomoduladores , Citocinas/sangre
3.
BMC Pediatr ; 24(1): 529, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39160468

RESUMEN

BACKGROUND: Childhood obesity is a growing concern, and non-alcoholic fatty liver disease (NAFLD) is a significant consequence. Currently, there are no approved drugs to treat NAFLD in children. However, a recent study explored the potential of vitamin E enriched with tocotrienol (TRF) as a powerful antioxidant for NAFLD. The aims of the present study were to investigate the effectiveness and safety of TRF in managing children with obesity and NAFLD. METHODS: A total of 29 patients aged 10 to 18 received a daily oral dose of 50 mg TRF for six months (January 2020 to February 2022), and all had fatty liver disease were detected by ultrasonography and abnormally high alanine transaminase levels (at least two-fold higher than the upper limits for their respective genders). Various parameters, including biochemical markers, FibroScan, LiverFASt, DNA damage, and cytokine expression, were monitored. RESULTS: APO-A1 and AST levels decreased significantly from 1.39 ± 0.3 to 1.22 ± 0.2 g/L (P = 0.002) and from 30 ± 12 to 22 ± 10 g/L (P = 0.038), respectively, in the TRF group post-intervention. Hepatic steatosis was significantly reduced in the placebo group from 309.38 ± 53.60 db/m to 277.62 ± 39.55 db/m (p = 0.048), but not in the TRF group. Comet assay analysis showed a significant reduction in the DNA damage parameters in the TRF group in the post-intervention period compared to the baseline, with tail length decreasing from 28.34 ± 10.9 to 21.69 ± 9.84; (p = 0.049) and with tail DNA (%) decreasing from 54.13 ± 22.1to 46.23 ± 17.9; (p = 0.043). Pro-inflammatory cytokine expression levels were significantly lower in the TRF group compared to baseline levels for IL-6 (2.10 6.3 to 0.7 1.0 pg/mL; p = 0.047 pg/mL) and TNF-1 (1.73 5.5 pg/mL to 0.7 0.5 pg/mL; p = 0.045). CONCLUSION: The study provides evidence that TRF supplementation may offer a risk-free treatment option for children with obesity and NAFLD. The antioxidant and anti-inflammatory properties of TRF offer a promising adjuvant therapy for NAFLD treatment. In combination with lifestyle modifications such as exercise and calorie restriction, TRF could play an essential role in the prevention of NAFLD in the future. However, further studies are needed to explore the long-term effects of TRF supplementation on NAFLD in children. TRIAL REGISTRATION: The study has been registered with the International Clinical Trial Registry under reference number (NCT05905185) retrospective registration on (15/06/2023).


Asunto(s)
Antioxidantes , Enfermedad del Hígado Graso no Alcohólico , Obesidad Infantil , Tocotrienoles , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Masculino , Femenino , Niño , Adolescente , Obesidad Infantil/complicaciones , Obesidad Infantil/tratamiento farmacológico , Tocotrienoles/uso terapéutico , Método Simple Ciego , Antioxidantes/uso terapéutico , Vitamina E/uso terapéutico , Resultado del Tratamiento
4.
Nutr Rev ; 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39181121

RESUMEN

Colorectal cancer (CRC) is a growing concern all over the world. There has been a concerted effort to identify natural bioactive compounds that can be used to prevent or overcome this condition. Tocotrienols (T3s) are a naturally occurring form of vitamin E known for various therapeutic effects, such as anticancer, antioxidant, neuroprotective, and anti-inflammatory activities. The literature evidence suggests that two T3 analogues, ie, gamma (γ)- and delta (δ)-T3, can modulate cancers via several cancer-related signaling pathways. The aim of this review was to compile and analyze the existing literature on the diverse anticancer mechanisms of γT3 and δT3 exhibited in CRC cells, to showcase the anticancer potential of T3s. Medline was searched for research articles on anticancer effects of γT3 and δT3 in CRC published in the past 2 decades. A total of 38 articles (26 cell-based, 9 animal studies, 2 randomized clinical trials, and 1 scoping review) that report anticancer effects of γT3 and δT3 in CRC were identified. The findings reported in those articles indicate that γT3 and δT3 inhibit the proliferation of CRC cells, induce cell cycle arrest and apoptosis, suppress metastasis, and produce synergistic anticancer effects when combined with well-established anticancer agents. There is preliminary evidence that shows that T3s affect telomerase functions and support anticancer immune responses. γT3 and δT3 have the potential for development as anticancer agents.

5.
Plant Sci ; 348: 112233, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39173886

RESUMEN

Tocochromanols, collectively known as Vitamin E, serve as natural lipid-soluble antioxidants that are exclusively obtained through dietary intake in humans. Synthesized by all plants, tocochromanols play an important role in protecting polyunsaturated fatty acids in plant seeds from lipid peroxidation. While the genes involved in tocochromanol biosynthesis have been fully elucidated in Arabidopsis thaliana, Oryza sativa and Zea mays, the genetic basis of tocochromanol accumulation in sweet corn remains poorly understood. This gap is a consequence of limited natural genetic diversity and harvest at immature growth stages. In this study, we conducted comprehensive genome-wide association studies (GWAS) on a sweet corn panel of 295 individuals with a high-density molecular marker set. In total, thirteen quantitative trait loci (QTLs) for individual and derived tocochromanol traits were identified. Our analysis identified novel roles for three genes, ZmCS2, Zmshki1 and ZmB4FMV1, in the regulation of α-tocopherol accumulation in sweet corn kernels. We genetically validated the role of Zmshki1 through the generation of a knock-out line using CRISPR-Cas9 technology. Further gene-based GWAS revealed the function of the canonical tyrosine metabolic enzymes ZmCS2 and Zmhppd1 in the regulation of total tocochromanol content. This comprehensive assessment of the genetic basis for variation in vitamin E content establishes a solid foundation for enhancing vitamin E content not only in sweet corn, but also in other cereal crops.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Vitamina E , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/crecimiento & desarrollo , Vitamina E/metabolismo , Sitios de Carácter Cuantitativo/genética , Fitomejoramiento , Semillas/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo
6.
Artículo en Inglés | MEDLINE | ID: mdl-38934283

RESUMEN

INTRODUCTION: Hydroxysteroid 17-beta dehydrogenase 4 (HSD17B4) is involved in the progression of hepatocellular carcinoma (HCC). AIMS: This study aimed to investigate the inhibitory effect of gamma-tocotrienol (γ-T3) on the proliferation and growth of HSD17B4-overexpressing HepG2 cells. METHODS: HepG2 cells were transfected with empty or HSD17B4-overexpressing plasmids, followed by vitamin E (VE) or γ-T3 treatment. MTS assay, Western blotting, qRT-PCR, and flow cytometry were employed to assess cell proliferation, protein expression, mRNA levels, and apoptosis. HSD17B4 interaction with γ-T3 was assessed by quantifying γ-T3 in the collected precipitate of HSD17B4 using anti-flag magnetic beads. Tumor xenografts were established in NSG mice, and tumor growth was monitored. RESULTS: HSD17B4 overexpression significantly promoted HepG2 cell proliferation, which was effectively counteracted by VE or γ-T3 treatment in a dose-dependent manner. VE and γ-T3 did not exert their effects through direct regulation of HSD17B4 expression. Instead, γ-T3 was found to interact with HSD17B4, inhibiting its activity in catalyzing the conversion of estradiol (E2) into estrone. Moreover, γ-T3 treatment led to a reduction in cyclin D1 expression and suppressed key proliferation signaling pathways, such as ERK, MEK, AKT, and STAT3. Additionally, γ-T3 promoted apoptosis in HSD17B4-overexpressing HepG2 cells. In an in vivo model, γ-T3 effectively reduced the growth of HepG2 xenograft tumors. CONCLUSION: In conclusion, our study demonstrates that γ-T3 exhibits potent anti-proliferative and anti-tumor effects against HepG2 cells overexpressing HSD17B4. These findings highlight the therapeutic potential of γ-T3 in HCC treatment and suggest its role in targeting HSD17B4-associated pathways to inhibit tumor growth and enhance apoptosis.

7.
Foods ; 13(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38790850

RESUMEN

Currently, Bixa orellana L. extracts are used as a color source in the food, pharmaceutical, and cosmetic industries because they are important as a potential source of antioxidant activity. The extraction is carried out by conventional methods, using alkaline solutions or organic solvents. These extraction methods do not take advantage of the lipid fraction of annatto (Bixa orellana L.) seeds, and the process is not friendly to the environment. In this work, the objective was to obtain an extract rich in nutraceuticals (bixin and tocols) of high antioxidant power from Peruvian annatto seeds as a potential source for a functional food or additive in the industry using supercritical fluid extraction (SFE). Experiments related to extraction yield, bixin, tocotrienols, tocopherols, and antioxidant activity were carried out. The SFE was performed at 40 °C, 50 °C, and 60 °C, and 100, 150, and 250 bar with 0.256 kg/h carbon dioxide as the supercritical solvent (solvent-to-feed ratio of 10.2). Supercritical extraction at 60 °C and 250 bar presented the best results in terms of global extraction yield of 1.40 ± 0.01 g/100 g d.b., extract concentration of 0.564 ± 0.005 g bixin/g extract, 307.8 mg α-tocotrienol/g extract, 39.2 mg ß-tocotrienol/g extract, 2 mg γ-tocopherol/g extract, and IC50 of 989.96 µg extract/mL. Economical evaluation showed that 60 °C, 250 bar, and 45 min presented the lowest cost of manufacturing (2 × 2000 L, COM of USD 212.39/kg extract). This extract is a potential source for functional food production.

8.
Free Radic Biol Med ; 216: 46-49, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458392

RESUMEN

Since the discovery of tocopherols a century ago, α-tocopherol has been distinguished for its unique biological functions. In this study, we aim to elucidate the unique characteristics of α-tocopherol from a chemical perspective. Utilizing density functional theory (DFT) calculations, we evaluated the thermodynamic and kinetic properties of tocopherols, tocotrienols and their oxidation products. Our findings highlight the superior thermodynamic and kinetic properties of α-tocopherol. Although tocopherol substrates generally exhibit similar reactivities, α-tocopherol is distinguished by a larger gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) in intermediates, indicating a potential for greater energy release and favoring reaction progression. Moreover, α-tocopherol shows enhanced efficiency in quenching radical intermediates, especially when combined with vitamin C. All these dates provide valuable support for the naming of vitamin E.


Asunto(s)
Antioxidantes , Tocotrienoles , Antioxidantes/química , Vitamina E , alfa-Tocoferol , Tocoferoles
9.
J Oleo Sci ; 73(4): 489-502, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38556283

RESUMEN

Skincare industries are growing rapidly around the globe but most products are formulated using synthetic chemicals and organic solvent extracted plant extracts, thus may be hazardous to the users and incur higher cost for purification that eventually leads to phytonutrient degradation. Therefore, this study aimed to formulate a stable natural formulation with antioxidant and antimicrobial activities by using supercritical carbon dioxide (SC-CO 2 ) extracted palm-pressed fiber oil (PPFO) as an active ingredient with virgin coconut oil (VCO) as a formulation base. PPFO was extracted from fresh palm-pressed fiber (PPF) while VCO was from dried grated coconut copra using SC-CO 2 before being subjected to the analyses of physicochemical properties, phytonutrient content and biological activities including antioxidant and antimicrobial. The nanoemulgel formulations were then developed and examined for their stability through accelerated stability study for 3 months by measuring their pH, particle size, polydispersity index and zeta potential. The results showed that PPFO contained a high amount of phytonutrients, especially total carotenoid (1497 ppm) and total tocopherol and tocotrienol (2269 ppm) contents. The newly developed nanoemulgels maintained their particles in nano size and showed good stability with high negative zeta potentials. Sample nanoemulgel formulated with 3% PPFO diluted in VCO as effective concentration showed significantly stronger antioxidant activity than the control which was formulated from 3% tocopheryl acetate diluted in mineral oil, towards DPPH and ABTS radicals, with IC 50 values of 67.41 and 44.28 µL/mL, respectively. For the antibacterial activities, the sample nanoemulgel was found to inhibit Gram positive bacteria S. aureus and S. epidermidis growth but not the Gram negative strain E. coli. Overall, this study revealed the potential of SF-extracted PPFO as an active ingredient in the antioxidant topical formulations thus future study on in vitro skin cell models is highly recommended for validation.


Asunto(s)
Antioxidantes , Hidrogeles , Antioxidantes/farmacología , Aceite de Palma/química , Aceite de Coco/química , Escherichia coli , Staphylococcus aureus , Emulsiones/química , Antibacterianos/farmacología , Fitoquímicos
10.
Genes Nutr ; 19(1): 3, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413846

RESUMEN

Tocotrienol-rich fraction (TRF) has been reported to protect the heart from oxidative stress-induced inflammation. It is, however, unclear whether the protective effects of TRF against oxidative stress involve the activation of farnesoid X receptor (fxr), a bile acid receptor, and the regulation of bile acid metabolites. In the current study, we investigated the effects of TRF supplementation on antioxidant activities, expression of fxr and its target genes in cardiac tissue, and serum untargeted metabolomics of high-fat diet-fed mice. Mice were divided into high-fat diet (HFD) with or without TRF supplementation (control) for 6 weeks. At the end of the intervention, body weight (BW), waist circumference (WC), and random blood glucose were measured. Heart tissues were collected, and the gene expression of sod1, sod2, gpx, and fxr and its target genes shp and stat3 was determined. Serum was subjected to untargeted metabolomic analysis using UHPLC-Orbitrap. In comparison to the control, the WC of the TRF-treated group was higher (p >0.05) than that of the HFD-only group, in addition there was no significant difference in weight or random blood glucose level. Downregulation of sod1, sod2, and gpx expression was observed in TRF-treated mice; however, only sod1 was significant when compared to the HFD only group. The expression of cardiac shp (fxr target gene) was significantly upregulated, but stat3 was significantly downregulated in the TRF-treated group compared to the HFD-only group. Biochemical pathways found to be influenced by TRF supplementation include bile acid secretion, primary bile acid biosynthesis, and biotin and cholesterol metabolism. In conclusion, TRF supplementation in HFD-fed mice affects antioxidant activities, and more interestingly, TRF also acts as a signaling molecule that is possibly involved in several bile acid-related biochemical pathways accompanied by an increase in cardiac fxr shp expression. This study provides new insight into TRF in deregulating bile acid receptors and metabolites in high-fat diet-fed mice.

11.
J Integr Med ; 22(1): 1-11, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38336507

RESUMEN

Tocotrienols are found in a variety of natural sources, like rice bran, annatto seeds and palm oil, and have been shown to have several health-promoting properties, particularly against chronic diseases such as cancer. The incidence of cancer is rapidly increasing around the world, not only a result of continued aging and population growth, but also due to the adoption of aspects of the Western lifestyle, such as high-fat diets and low-physical activity. The literature provides strong evidence that tocotrienols are able to inhibit the growth of various cancers, including breast, lung, ovarian, prostate, liver, brain, colon, myeloma and pancreatic cancers. These findings, along with the reported safety profile of tocotrienols in healthy human volunteers, encourage further research into these compounds' potential use in cancer prevention and treatment. The current review provided detailed information about the molecular mechanisms of action of different tocotrienol isoforms in various cancer models and evaluated the potential therapeutic effects of different vitamin E analogues on important cancer hallmarks, such as cellular proliferation, apoptosis, angiogenesis and metastasis. MEDLINE/PubMed and Scopus databases were used to identify recently published articles that investigated the anticancer effects of vitamin E derivatives in various types of cancer in vitro and in vivo along with clinical evidence of adjuvant chemopreventive benefits. Following an overview of pre-clinical studies, we describe several completed and ongoing clinical trials that are paving the way for the successful implementation of tocotrienols in cancer chemotherapy.


Asunto(s)
Neoplasias , Tocotrienoles , Humanos , Antioxidantes/farmacología , Apoptosis , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Tocotrienoles/farmacología , Tocotrienoles/uso terapéutico , Vitamina E/farmacología , Vitamina E/uso terapéutico , Ensayos Clínicos como Asunto
12.
Clin Nutr ESPEN ; 59: 343-354, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38220396

RESUMEN

Vitamin E is a lipid-soluble nutrient found mainly in vegetable oils and oilseeds. It is divided into eight homologous compounds; however, only α-tocopherol exhibits vitamin activity. Many advantages are related to these compounds, including cellular protection through antioxidant and anti-inflammatory activity, and improving lipid metabolism. Physiopathology of many diseases incepts with reduced antioxidant defense, characterized by an increased reactive oxygen species production and activation of transcription factors involved in inflammation, such as nuclear factor-kappa B (NF-κB), that can be linked to oxidative stress. Moreover, disorders of lipid metabolism can increase the risk of cardiovascular diseases. In addition, intestinal dysbiosis plays a vital role in developing chronic non-communicable diseases. In this regard, vitamin E can be considered to mitigate those disorders, but data still needs to be more conclusive. This narrative review aims to elucidate the mechanisms of action of vitamin E and if supplementation can be beneficial in a disease scenario regarding non-communicable diseases.


Asunto(s)
Enfermedades no Transmisibles , Vitamina E , Humanos , Antioxidantes/uso terapéutico , Antioxidantes/farmacología , Estrés Oxidativo , alfa-Tocoferol
13.
Phytochem Anal ; 35(3): 445-468, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38069552

RESUMEN

INTRODUCTION: The genus Clusia L. is mostly recognised for the production of prenylated benzophenones and tocotrienol derivatives. OBJECTIVES: The objective of this study was to map metabolome variation within Clusia minor organs at different developmental stages. MATERIAL AND METHODS: In total 15 organs/stages (leaf, flower, fruit, and seed) were analysed by UPLC-MS and 1H- and heteronuclear multiple-bond correlation (HMBC)-NMR-based metabolomics. RESULTS: This work led to the assignment of 46 metabolites, belonging to organic acids(1), sugars(2) phenolic acids(1), flavonoids(3) prenylated xanthones(1) benzophenones(4) and tocotrienols(2). Multivariate data analyses explained the variability and classification of samples, highlighting chemical markers that discriminate each organ/stage. Leaves were found to be rich in 5-hydroxy-8-methyltocotrienol (8.5 µg/mg f.w.), while flowers were abundant in the polyprenylated benzophenone nemorosone with maximum level detected in the fully mature flower bud (43 µg/mg f.w.). Nemorosone and 5-hydroxy tocotrienoloic acid were isolated from FL6 for full structural characterisation. This is the first report of the NMR assignments of 5-hydroxy tocotrienoloic acid, and its maximum level was detected in the mature fruit at 50 µg/mg f.w. Seeds as typical storage organ were rich in sugars and omega-6 fatty acids. CONCLUSION: To the best of our knowledge, this is the first report on a comparative 1D-/2D-NMR approach to assess compositional differences in ontogeny studies compared with LC-MS exemplified by Clusia organs. Results derived from this study provide better understanding of the stages at which maximal production of natural compounds occur and elucidate in which developmental stages the enzymes responsible for the production of such metabolites are preferentially expressed.


Asunto(s)
Clusia , Clusia/química , Frutas/química , Cromatografía Liquida , Espectrometría de Masas en Tándem , Benzofenonas/análisis , Benzofenonas/química , Benzofenonas/metabolismo , Flores/química , Hojas de la Planta/química , Metabolómica/métodos , Semillas/química , Azúcares/análisis
14.
Phytochemistry ; 217: 113921, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37952709

RESUMEN

Four undescribed modified tocotrienols, including two monomers, litchinols A (1) and B (2), and two walsurol dimers, δ,δ-walsurol (3) and γ,δ-bi-O-walsurol (4), as well as seven known compounds (5-11) were isolated from the roots of Litchi chinensis. The structures of the undescribed compounds were elucidated based on analyses of spectroscopic data and ECD spectra. All tocotrienol derivatives (1-6) were evaluated for their tyrosinase inhibition activity. Only monomers 1-2 and 5-6 displayed potent inhibitory activity and greater than kojic acid. Kinetic analysis revealed that the representative compound 2 was uncompetitive inhibitor with the inhibition constant value of 5.70 µM.


Asunto(s)
Litchi , Tocotrienoles , Litchi/química , Tocotrienoles/farmacología , Tocotrienoles/análisis , Monofenol Monooxigenasa , Cinética , Frutas/química
15.
Food Res Int ; 174(Pt 1): 113620, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37986473

RESUMEN

Carotenoids and Tocols in six genotypes of Triticum turgidum ssp. durum, five of Triticum turgidum ssp. dicoccum, four of Triticum aestivum ssp. aestivum, and six of Triticum aestivum ssp. spelta were investigated. The aim of the present study was to identify, quantify, and compare the content of tocopherols, tocotrienols, and carotenoids in different primitive and modern genotypes of wheat species in order to evaluate the lines with the highest content and possibly use them for selection and breeding programs. The Triticum durum group showed the highest mean content of total carotenoids, with lutein being the most abundant, accounting for 80.12 % (Triticum spelta) to 86.65 % (Triticum turgidum) of total carotenoids. Among the genotypes, Line 6 (Triticum durum) had the highest lutein content (12.17 µg g-1), significantly differing from the lines within its group and the other groups of dicoccum, aestivum, and spelta.Triticum dicoccum exhibited a lower average content of total tocols compared to other Triticum species. The tocols profile showed a prevalence of tocotrienols over tocopherols. ß + Î³-T3 was the most abundant individual tocol isomer in all Triticum genotypes, contributing for 50.40 % (Triticum ssp. aestivum) and 42.50 % (Triticum spelta) of the total content, respectively. The highest ß + Î³-T3 content (23.83 µg/g) was found in Line 6 of Triticum durum. Correlation, principal component, and cluster analyses revealed positive correlations between total tocols and ß/γ tocotrienols, significant differences between various groups of the same species, formation of six clusters labeled as I to VI, and the identification of genotypes from the same species grouped in different clusters.


Asunto(s)
Carotenoides , Tocotrienoles , Triticum/genética , Luteína , Fitomejoramiento , Tocoferoles
16.
Antioxidants (Basel) ; 12(11)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38001840

RESUMEN

Tocotrienols have powerful radioprotective properties in multiple organ systems and are promising candidates for development as clinically effective radiation countermeasures. To facilitate their development as clinical radiation countermeasures, it is crucial to understand the mechanisms behind their powerful multi-organ radioprotective properties. In this context, their antioxidant effects are recognized for directly preventing oxidative damage to cellular biomolecules from ionizing radiation. However, there is a growing body of evidence indicating that the radioprotective mechanism of action for tocotrienols extends beyond their antioxidant properties. This raises a new pharmacological paradigm that tocotrienols are uniquely efficacious radioprotectors due to a synergistic combination of antioxidant and other signaling effects. In this review, we have covered the wide range of multi-organ radioprotective effects observed for tocotrienols and the mechanisms underlying it. These radioprotective effects for tocotrienols can be characterized as (1) direct cytoprotective effects, characteristic of the classic antioxidant properties, and (2) other effects that modulate a wide array of critical signaling factors involved in radiation injury.

17.
Nutrients ; 15(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37686767

RESUMEN

Νon-alcoholic fatty liver disease (NAFLD) is a common cause of end-stage liver disease in developed countries. Oxidative stress plays a key role during the course of the disease and vitamin E supplementation has shown to be beneficial due to its antioxidative properties. We aim to investigate the effect of vitamin E supplementation on serum aminotransferase levels in patients with NAFLD. Three electronic databases (MEDLINE, CENTRAL, and Embase) were reviewed for randomized trials that tested vitamin E supplementation versus placebo or no intervention in patients with NAFLD, published until April 2023. A total of 794 patients from 12 randomized trials were included in this meta-analysis. Notwithstanding the studies' heterogeneity and moderate internal validity in certain cases, among studies testing vitamin E supplementation at 400 IU/day and above, the values of alanine aminotransferase (ALT) were reduced compared with placebo or no intervention [ALT Mean Difference (MD) = -6.99 IU/L, 95% CI (-9.63, -4.35), for studies conducted in Asian countries and MD = -9.57 IU/L, 95% CI (-12.20, -6.95) in non-Asian countries]. Regarding aspartate aminotransferase (AST), patients in the experimental group experienced a reduction in serum levels, though smaller in absolute values [AST MD = -4.65 IU/L, 95% CI (-7.44, -1.86) in studies conducted in Asian populations] and of lower precision in non-Asian studies [MD = -5.60 IU/L, 95% CI (-11.48, 0.28)].


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Alanina Transaminasa , Aspartato Aminotransferasas , Antioxidantes/uso terapéutico , Suplementos Dietéticos
18.
Free Radic Biol Med ; 207: 178-180, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37463635

RESUMEN

This position paper opens a discussion forum of this Journal dedicated to a scientific debate on Vitamin E nomenclature. With this article we provide the scientific and medical communities with what we consider relevant information in favor of revising the nomenclature of vitamin E. To our knowledge, only RRR-α-tocopherol has been medically used to protect against a deficiency disease in humans, and therefore, it would be appropriate to restrict the term vitamin to this molecule. The direct demonstration of a vitamin function to other tocochromanols (including other tocopherols, tocotrienols and eventually tocomonoenols), has not yet been scientifically shown. In fact, the medical prescription of a molecule against the deficiency disease only because it has been included in the "Vitamin E family", but not tested as vitamin E, could lead to ineffective therapy and potentially dangerous consequences for patients. The idea of this revision launched during the recent 3rd Satellite Symposium on Vitamin E of the 2022 SFRR-Europe meeting, offers a open platform of discussion for the scientists involved in vitamin E research and scientific societies interested to this subject.


Asunto(s)
Tocotrienoles , Vitamina E , Humanos , Antioxidantes , Tocoferoles , Vitaminas
19.
Adv Nutr ; 14(5): 1159-1169, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37321474

RESUMEN

There are a large number of studies that have reported benefits of tocotrienol-rich fraction (TRF) in various populations with different health status. To date, no systematic reviews have examined randomized controlled trials (RCTs) on the effect of TRF supplementations specifically in patients with type 2 diabetes mellitus (T2DM). This systematic review and meta-analysis aim to examine the changes in HbA1c (glycated hemoglobin), blood pressure, and serum Hs-CRP (C-reactive protein high sensitivity) levels at post-TRF supplementation. Online databases including PubMed, Scopus, OVID Medline, and Cochrane Central Register of Controlled Trials were searched from inception until March 2023 for RCTs supplementing TRF in patients with T2DM. A total of 10 studies were included in the meta-analysis to estimate the pooled effect size. The Cochrane Risk-of-Bias (RoB) Assessment Tool was utilized to evaluate the RoB in individual studies. The meta-analysis revealed that TRF supplementation at a dosage of 250-400 mg significantly decreased HbA1c (-0.23, 95% CI: -0.44, -0.02, P < 0.05, n = 754), particularly where the intervention duration is less than 6 mo (-0.47%, 95% CI: -0.90, -0.05, P < 0.05, n = 126) and where duration of diabetes is less than 10 y (-0.37, 95% CI: -0.68, -0.07, P < 0.05, n = 83). There was no significant reduction in systolic and diastolic blood pressure and serum Hs-CRP (P > 0.05). The present meta-analysis demonstrated that supplementing with TRF in patients with T2DM decreased HbA1c but does not decrease systolic and diastolic blood pressure and serum Hs-CRP.


Asunto(s)
Diabetes Mellitus Tipo 2 , Tocotrienoles , Humanos , Tocotrienoles/farmacología , Tocotrienoles/uso terapéutico , Hemoglobina Glucada , Proteína C-Reactiva/análisis , Ensayos Clínicos Controlados Aleatorios como Asunto , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Suplementos Dietéticos
20.
Food Res Int ; 171: 113048, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37330852

RESUMEN

Vitamin E is one of the most important essential vitamins to support the regulation of oxidative stress in human body. Tocotrienols are part of the vitamin E family. The potentials of tocotrienols as nutraceutical ingredient are largely understated due to low oral bioavailability, which is a common problem associated with fat-soluble bioactive compounds. Nanoencapsulation technology offers innovative solutions to enhance the delivery mechanisms of these compounds. In this study, the effect of nanoencapsulation on the oral bioavailability and tissue distribution of tocotrienols were investigated using two types of formulations, i.e. nanovesicles (NV-T3) and solid lipid nanoparticles (NP-T3). At least 5-fold increment in maximum plasma concentrations, evident with dual-peak pharmacokinetic profiles, were observed after oral administration of nano-encapsulated tocotrienols. Plasma tocotrienol composition showed a shift from α-tocotrienol dominant in control group (Control-T3) to γ-tocotrienol dominant after nanoencapsulation. Tissue distribution of tocotrienols was found to be strongly influenced by the type of nanoformulation. Both nanovesicles (NV-T3) and nanoparticles (NP-T3) showed elevated accumulation in the kidneys and liver (5-fold) compared to control group while selectivity for α-tocotrienol was evident for NP-T3. In brain and liver of rats given NP-T3, α-tocotrienol emerged as the dominant congener (>80%). Acute oral administration of nanoencapsulated tocotrienols did not show signs of toxicity. The study concluded enhanced bioavailability and selective tissue accumulation of tocotrienol congeners when delivered via nanoencapsulation.


Asunto(s)
Tocotrienoles , Ratas , Humanos , Animales , Distribución Tisular , Disponibilidad Biológica , Sistema de Administración de Fármacos con Nanopartículas , Vitamina E
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA