Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 890
Filtrar
1.
Elife ; 132024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39206942

RESUMEN

Immunofluorescence localises proteins via fluorophore-labelled antibodies. However, some proteins evade detection due to antibody-accessibility issues or because they are naturally low abundant or antigen density is reduced by the imaging method. Here, we show that the fusion of the target protein to the biotin ligase TurboID and subsequent detection of biotinylation by fluorescent streptavidin offers an 'all in one' solution to these restrictions. For all proteins tested, the streptavidin signal was significantly stronger than an antibody signal, markedly improving the sensitivity of expansion microscopy and correlative light and electron microscopy. Importantly, proteins within phase-separated regions, such as the central channel of the nuclear pores, the nucleolus, or RNA granules, were readily detected with streptavidin, while most antibodies failed. When TurboID is used in tandem with an HA epitope tag, co-probing with streptavidin and anti-HA can map antibody-accessibility and we created such a map for the trypanosome nuclear pore. Lastly, we show that streptavidin imaging resolves dynamic, temporally, and spatially distinct sub-complexes and, in specific cases, reveals a history of dynamic protein interaction. In conclusion, streptavidin imaging has major advantages for the detection of lowly abundant or inaccessible proteins and in addition, provides information on protein interactions and biophysical environment.


Asunto(s)
Estreptavidina , Estreptavidina/química , Estreptavidina/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Anticuerpos/metabolismo , Humanos , Biotinilación , Microscopía Fluorescente/métodos , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/metabolismo
2.
J Biol Chem ; : 107657, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39128729

RESUMEN

Damage to the genetic material of the cell poses a universal threat to all forms of life. The DNA damage response is a coordinated cellular response to a DNA break, key to which is the phosphorylation signalling cascade. Identifying which proteins are phosphorylated is therefore crucial to understanding the mechanisms that underly it. We have used SILAC-based quantitative phosphoproteomics to profile changes in phosphorylation site abundance following double stranded DNA breaks, at two distinct loci in the genome of the single cell eukaryote Trypanosoma brucei. Here, we report on the Trypanosoma brucei phosphoproteome following a single double strand break at either a chromosome internal or subtelomeric locus, specifically the Bloodstream form expression site. We detected >6500 phosphorylation sites, of which 211 form a core set of double strand break responsive phosphorylation sites. Along with phosphorylation of canonical DNA damage factors, we have identified two novel phosphorylation events on Histone H2A and find that in response to a chromosome internal break, proteins are predominantly phosphorylated, while a greater proportion of proteins dephosphorylated following a DNA break at a subtelomeric bloodstream form expression site. Our data represents the first DNA damage phosphoproteome and provides novel insights into repair at distinct chromosomal contexts in Trypanosoma brucei.

3.
Int J Parasitol Drugs Drug Resist ; 26: 100557, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39163740

RESUMEN

Kinetoplastid organisms, including Trypanosoma brucei, are a significant health burden in many tropical and semitropical countries. Much of their metabolism is poorly understood. To better study kinetoplastid metabolism, chemical probes that inhibit kinetoplastid enzymes are needed. To discover chemical probes, we have developed a high-throughput flow cytometry screening assay that simultaneously measures multiple glycolysis-relevant metabolites in live T. brucei bloodstream form parasites. We transfected parasites with biosensors that measure glucose, ATP, or glycosomal pH. The glucose and ATP sensors were FRET biosensors, while the pH sensor was a GFP-based biosensor. The pH sensor exhibited a different fluorescent profile from the FRET sensors, allowing us to simultaneously measure pH and either glucose or ATP. Cell viability was measured in tandem with the biosensors using thiazole red. We pooled sensor cell lines, loaded them onto plates containing a compound library, and then analyzed them by flow cytometry. The library was analyzed twice, once with the pooled pH and glucose sensor cell lines and once with the pH and ATP sensor cell lines. Multiplexing sensors provided some internal validation of active compounds and gave potential clues for each compound's target(s). We demonstrated this using the glycolytic inhibitor 2-deoxyglucose and the alternative oxidase inhibitor salicylhydroxamic acid. Individual biosensor-based assays exhibited a Z'-factor value acceptable for high-throughput screening, including when multiplexed. We tested assay performance in a pilot screen of 14,976 compounds from the Life Chemicals Compound Library. We obtained hit rates from 0.2 to 0.4% depending on the biosensor, with many compounds impacting multiple sensors. We rescreened 44 hits, and 28 (64%) showed repeatable activity for one or more sensors. One compound exhibited EC50 values in the low micromolar range against two sensors. We expect this method will enable the discovery of glycolytic chemical probes to improve metabolic studies in kinetoplastid parasites.

4.
J Wildl Dis ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39166333

RESUMEN

During the opening of diplomatic relations in the 1990s, South Africa gifted 20 southern white rhinoceros (Ceratotherium simum simum) to Kenya. The species is not indigenous to Kenya, and management of the introduction was not clearly addressed in the legislation. Responsibility was left to the private sector and local authorities. Ten of the animals were introduced to land contiguous with the Maasai Mara National Reserve, an area with tsetse-trypanosomiasis challenges, and with rare cases of human sleeping sickness. Mortalities had been previously documented when indigenous naïve black rhinoceros were introduced to areas with tsetse; hence there was no consensus on the management of this introduction. Feasibility was only explored once before with the introduction of two animals in a monitored and managed translocation from Lewa Downs, Laikipia in 1992-1994. Ultimately, Kenyan experts were co-opted to address risk after trypanosomiasis occurred in many animals. Unfortunately, this finding was followed by gradual mortalities of most rhinoceros with only a few being saved by removal to highland private sanctuaries. This event was complicated by many factors. Samples were only sporadically collected, and mainly from sick animals. With no clear responsibility by government agencies, a collaboration between veterinarians and researchers resulted in characterization of the disease challenge, and when invited, assessment of health status. Laboratory diagnostics revealed common and sometimes severe infections with Trypanosoma brucei, a normally infrequent trypanosome. Infection was associated with disturbances in erythropoiesis, especially anemia. Symptoms varied from sudden death associated with intestinal atony, to a semiparalyzed animal that was partially responsive to treatment for trypanosomes. This event should be used as a caution to future movements of this species that are planned or ongoing in Africa, for conservation or other purposes.

5.
Infect Dis Poverty ; 13(1): 53, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978124

RESUMEN

BACKGROUND: Serological screening tests play a crucial role to diagnose gambiense human African trypanosomiasis (gHAT). Presently, they preselect individuals for microscopic confirmation, but in future "screen and treat" strategies they will identify individuals for treatment. Variability in reported specificities, the development of new rapid diagnostic tests (RDT) and the hypothesis that malaria infection may decrease RDT specificity led us to evaluate the specificity of 5 gHAT screening tests. METHODS: During active screening, venous blood samples from 1095 individuals from Côte d'Ivoire and Guinea were tested consecutively with commercial (CATT, HAT Sero-K-SeT, Abbott Bioline HAT 2.0) and prototype (DCN HAT RDT, HAT Sero-K-SeT 2.0) gHAT screening tests and with a malaria RDT. Individuals with ≥ 1 positive gHAT screening test underwent microscopy and further immunological (trypanolysis with T.b. gambiense LiTat 1.3, 1.5 and 1.6; indirect ELISA/T.b. gambiense; T.b. gambiense inhibition ELISA with T.b. gambiense LiTat 1.3 and 1.5 VSG) and molecular reference laboratory tests (PCR TBRN3, 18S and TgsGP; SHERLOCK 18S Tids, 7SL Zoon, and TgsGP; Trypanozoon S2-RT-qPCR 18S2, 177T, GPI-PLC and TgsGP in multiplex; RT-qPCR DT8, DT9 and TgsGP in multiplex). Microscopic trypanosome detection confirmed gHAT, while other individuals were considered gHAT free. Differences in fractions between groups were assessed by Chi square and differences in specificity between 2 tests on the same individuals by McNemar. RESULTS: One gHAT case was diagnosed. Overall test specificities (n = 1094) were: CATT 98.9% (95% CI: 98.1-99.4%); HAT Sero-K-SeT 86.7% (95% CI: 84.5-88.5%); Bioline HAT 2.0 82.1% (95% CI: 79.7-84.2%); DCN HAT RDT 78.2% (95% CI: 75.7-80.6%); and HAT Sero-K-SeT 2.0 78.4% (95% CI: 75.9-80.8%). In malaria positives, gHAT screening tests appeared less specific, but the difference was significant only in Guinea for Abbott Bioline HAT 2.0 (P = 0.03) and HAT Sero-K-Set 2.0 (P = 0.0006). The specificities of immunological and molecular laboratory tests in gHAT seropositives were 98.7-100% (n = 399) and 93.0-100% (n = 302), respectively. Among 44 reference laboratory test positives, only the confirmed gHAT patient and one screening test seropositive combined immunological and molecular reference laboratory test positivity. CONCLUSIONS: Although a minor effect of malaria cannot be excluded, gHAT RDT specificities are far below the 95% minimal specificity stipulated by the WHO target product profile for a simple diagnostic tool to identify individuals eligible for treatment. Unless specificity is improved, an RDT-based "screen and treat" strategy would result in massive overtreatment. In view of their inconsistent results, additional comparative evaluations of the diagnostic performance of reference laboratory tests are indicated for better identifying, among screening test positives, those at increased suspicion for gHAT. TRIAL REGISTRATION: The trial was retrospectively registered under NCT05466630 in clinicaltrials.gov on July 15 2022.


Asunto(s)
Sensibilidad y Especificidad , Trypanosoma brucei gambiense , Tripanosomiasis Africana , Humanos , Tripanosomiasis Africana/diagnóstico , Tripanosomiasis Africana/sangre , Côte d'Ivoire , Trypanosoma brucei gambiense/inmunología , Trypanosoma brucei gambiense/aislamiento & purificación , Adulto , Guinea , Estudios Prospectivos , Masculino , Adolescente , Femenino , Adulto Joven , Persona de Mediana Edad , Pruebas Serológicas/métodos , Niño , Ensayo de Inmunoadsorción Enzimática/métodos , Anciano , Preescolar , Anticuerpos Antiprotozoarios/sangre
6.
Arch Pharm (Weinheim) ; : e2400430, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982314

RESUMEN

Geraniol, a primary component of several essential oils, has been associated with broad-spectrum antiprotozoal activities, although moderate to weak. This study primarily concentrated on the synthesis of hydrazinated geraniol derivatives as potential antiprotozoal agents. The synthesised compounds were tested in vitro against different parasitic protozoans of clinical relevance, including Trypanosoma brucei brucei, Trypanosoma brucei rhodesiense, Trypanosoma cruzi and Leishmania infantum. Compounds 6, 8, 13, 14 and 15 demonstrated low micromolar activity against the different parasites. Compounds 8, 13, 14 and 15 had the highest efficacy against Trypanosoma brucei rhodesiense, as indicated by their respective IC50 values of 0.74, 0.56, 1.26 and 1.00 µM. Compounds 6, 14 and 15 displayed the best activity against Trypanosoma brucei brucei, with IC50 values of 1.49, 1.48 and 1.85 µM, respectively. The activity of compounds 6, 14 and 15 also extended to intracellular Trypanosoma cruzi, with IC50 values of 5.14, 6.30 and 4.90 µM, respectively. Compound 6, with an IC50 value of 11.73 µM, and compound 14, with an IC50 value of 8.14 µM, demonstrated some modest antileishmanial activity.

7.
Front Microbiol ; 15: 1445687, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39081885

RESUMEN

Faithful mRNA decoding depends on the accuracy of aminoacyl-tRNA synthetases (ARSs). Aminoacyl-tRNA proofreading mechanisms have been well-described in bacteria, humans, and plants. However, our knowledge of translational fidelity in protozoans is limited. Trypanosoma brucei (Tb) is a eukaryotic, protozoan pathogen that causes Human African Trypanosomiasis, a fatal disease if untreated. Tb undergoes many physiological changes that are dictated by nutrient availability throughout its insect-mammal lifecycle. In the glucose-deprived insect vector, the tsetse fly, Tb use proline to make ATP via mitochondrial respiration. Alanine is one of the major by-products of proline consumption. We hypothesize that the elevated alanine pool challenges Tb prolyl-tRNA synthetase (ProRS), an ARS known to misactivate alanine in all three domains of life, resulting in high levels of misaminoacylated Ala-tRNAPro. Tb encodes two domains that are members of the INS superfamily of aminoacyl-tRNA deacylases. One homolog is appended to the N-terminus of Tb ProRS, and a second is the major domain of multi-aminoacyl-tRNA synthetase complex (MSC)-associated protein 3 (MCP3). Both ProRS and MCP3 are housed in the Tb MSC. Here, we purified Tb ProRS and MCP3 and observed robust Ala-tRNAPro deacylation activity from both enzymes in vitro. Size-exclusion chromatography multi-angle light scattering used to probe the oligomerization state of MCP3 revealed that although its unique N-terminal extension confers homodimerization in the absence of tRNA, the protein binds to tRNA as a monomer. Kinetic assays showed MCP3 alone has relaxed tRNA specificity and promiscuously hydrolyzes cognate Ala-tRNAAla; this activity is significantly reduced in the presence of Tb alanyl-tRNA synthetase, also housed in the MSC. Taken together, our results provide insight into translational fidelity mechanisms in Tb and lay the foundation for exploring MSC-associated proteins as novel drug targets.

8.
Bio Protoc ; 14(13): e5026, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39007161

RESUMEN

Diseases caused by trypanosomatid parasites remain a significant unmet medical need for millions of people globally. Trypanosomatid parasites such as Trypanosoma cruzi and subspecies of Trypanosoma brucei cause Chagas disease and human African trypanosomiasis (HAT), respectively. Although efforts to find novel treatments have been successful for HAT, Chagas disease is still treated with decades-old therapies that suffer from long treatment durations and severe safety concerns. We recently described the identification and characterization of the cyanotriazole compound class that kills trypanosomes, in vitro and in vivo, by selective inhibition of the trypanosome nuclear topoisomerase II enzyme. To evaluate whether inhibition of the topoisomerase II enzyme led to parasite death due to lethal double-strand DNA breaks, we developed assays for detecting DNA damage in both intracellular amastigotes of T. cruzi and bloodstream-form T. brucei by using the canonical DNA damage marker γH2A. Herein, this article describes the protocols for detecting DNA damage using an immunofluorescence assessment of γH2A by microscopy in trypanosome parasites. Key features • Immunofluorescence-based assay to detect the γH2A response in T. brucei and T. cruzi parasites. • Robust DNA damage pathway-based cellular assays to evaluate topoisomerase II poisons' ability to cause DNA damage. • A 384-well plate-based T. cruzi protocol allows high-resolution and high-throughput evaluation of compounds that cause DNA damage by measuring γH2A in intracellular parasites. • This assay could be modifiable for evaluation of DNA damage responses in various intracellular and extracellular eukaryotic pathogens.

9.
ACS Infect Dis ; 10(8): 2755-2774, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-38953453

RESUMEN

Folate enzymes, namely, dihydrofolate reductase (DHFR) and pteridine reductase (PTR1) are acknowledged targets for the development of antiparasitic agents against Trypanosomiasis and Leishmaniasis. Based on the amino dihydrotriazine motif of the drug Cycloguanil (Cyc), a known inhibitor of both folate enzymes, we have identified two novel series of inhibitors, the 2-amino triazino benzimidazoles (1) and 2-guanidino benzimidazoles (2), as their open ring analogues. Enzymatic screening was carried out against PTR1, DHFR, and thymidylate synthase (TS). The crystal structures of TbDHFR and TbPTR1 in complex with selected compounds experienced in both cases a substrate-like binding mode and allowed the rationalization of the main chemical features supporting the inhibitor ability to target folate enzymes. Biological evaluation of both series was performed against T. brucei and L. infantum and the toxicity against THP-1 human macrophages. Notably, the 5,6-dimethyl-2-guanidinobenzimidazole 2g resulted to be the most potent (Ki = 9 nM) and highly selective TbDHFR inhibitor, 6000-fold over TbPTR1 and 394-fold over hDHFR. The 5,6-dimethyl tricyclic analogue 1g, despite showing a lower potency and selectivity profile than 2g, shared a comparable antiparasitic activity against T. brucei in the low micromolar domain. The dichloro-substituted 2-guanidino benzimidazoles 2c and 2d revealed their potent and broad-spectrum antitrypanosomatid activity affecting the growth of T. brucei and L. infantum parasites. Therefore, both chemotypes could represent promising templates that could be valorized for further drug development.


Asunto(s)
Antagonistas del Ácido Fólico , Tetrahidrofolato Deshidrogenasa , Triazinas , Trypanosoma brucei brucei , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/enzimología , Humanos , Tetrahidrofolato Deshidrogenasa/metabolismo , Tetrahidrofolato Deshidrogenasa/química , Antagonistas del Ácido Fólico/farmacología , Antagonistas del Ácido Fólico/química , Triazinas/farmacología , Triazinas/química , Tripanocidas/farmacología , Tripanocidas/química , Proguanil/farmacología , Proguanil/química , Timidilato Sintasa/antagonistas & inhibidores , Timidilato Sintasa/química , Timidilato Sintasa/metabolismo , Leishmania infantum/efectos de los fármacos , Leishmania infantum/enzimología , Bencimidazoles/farmacología , Bencimidazoles/química , Relación Estructura-Actividad , Antiprotozoarios/farmacología , Antiprotozoarios/química , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/química , Oxidorreductasas
10.
Open Res Eur ; 4: 87, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903703

RESUMEN

Background: Trypanosoma brucei is a protozoan parasite that evades the mammalian host's adaptive immune response by antigenic variation of the highly immunogenic variant surface glycoprotein (VSG). VSGs form a dense surface coat that is constantly recycled through the endosomal system. Bound antibodies are separated in the endosome from the VSG and destroyed in the lysosome. For VSGs it has been hypothesized that pH-dependent structural changes of the VSG could occur in the more acidic environment of the endosome and hence, facilitate the separation of the antibody from the VSG. Methods: We used size exclusion chromatography, where molecules are separated according to their hydrodynamic radius to see if the VSG is present as a homodimer at both pH values. To gain information about the structural integrity of the protein we used circular dichroism spectroscopy by exposing the VSG in solution to a mixture of right- and left-circularly polarized light and analysing the absorbed UV spectra. Evaluation of protein stability and molecular dynamics simulations at different pH values was performed using different computational methods. Results: We show, for an A2-type VSG, that the dimer size is only slightly larger at pH 5.2 than at pH 7.4. Moreover, the dimer was marginally more stable at lower pH due to the higher affinity (ΔG = 353.37 kcal/mol) between the monomers. Due to the larger size, the predicted epitopes were more exposed to the solvent at low pH. Moderate conformational changes (ΔRMSD = 0.35 nm) in VSG were detected between the dimers at pH 5.2 and pH 7.4 in molecular dynamics simulations, and no significant differences in the protein secondary structure were observed by circular dichroism spectroscopy. Conclusions: Thus, the dissociation of anti-VSG-antibodies in endosomes cannot be explained by changes in pH.

11.
Antimicrob Agents Chemother ; 68(7): e0167123, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38869301

RESUMEN

Neglected tropical diseases caused by trypanosomatid parasites have devastating health and economic consequences, especially in tropical areas. New drugs or new combination therapies to fight these parasites are urgently needed. Venturicidin A, a macrolide extracted from Streptomyces, inhibits the ATP synthase complex of fungi and bacteria. However, its effect on trypanosomatids is not fully understood. In this study, we tested venturicidin A on a panel of trypanosomatid parasites using Alamar Blue assays and found it to be highly active against Trypanosoma brucei and Leishmania donovani, but much less so against Trypanosoma evansi. Using fluorescence microscopy, we observed a rapid loss of the mitochondrial membrane potential in T. brucei bloodstream forms upon venturicidin A treatment. Additionally, we report the loss of mitochondrial DNA in approximately 40%-50% of the treated parasites. We conclude that venturicidin A targets the ATP synthase of T. brucei, and we suggest that this macrolide could be a candidate for anti-trypanosomatid drug repurposing, drug combinations, or medicinal chemistry programs.


Asunto(s)
ADN de Cinetoplasto , Macrólidos , Potencial de la Membrana Mitocondrial , Trypanosoma brucei brucei , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/genética , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Macrólidos/farmacología , ADN de Cinetoplasto/genética , ADN de Cinetoplasto/efectos de los fármacos , Tripanocidas/farmacología , Leishmania donovani/efectos de los fármacos , Leishmania donovani/genética , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/efectos de los fármacos
12.
Noncoding RNA ; 10(3)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38921833

RESUMEN

Telomerase is an enzyme involved in the maintenance of telomeres. Telomere shortening due to the end-replication problem is a threat to the genome integrity of all eukaryotes. Telomerase inside cells depends on a myriad of protein-protein and RNA-protein interactions to properly assemble and regulate the function of the telomerase holoenzyme. These interactions are well studied in model eukaryotes, like humans, yeast, and the ciliated protozoan known as Tetrahymena thermophila. Emerging evidence also suggests that deep-branching eukaryotes, such as the parasitic protist Trypanosoma brucei require conserved and novel RNA-binding proteins for the assembly and function of their telomerase. In this review, we will discuss telomerase regulatory pathways in the context of telomerase-interacting proteins, with special attention paid to RNA-binding proteins. We will discuss these interactors on an evolutionary scale, from parasitic protists to humans, to provide a broader perspective on the extensive role that protein-protein and RNA-protein interactions play in regulating telomerase activity in eukaryotes.

13.
Open Biol ; 14(6): 240025, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38862021

RESUMEN

Faithful transmission of genetic material is crucial for the survival of all organisms. In many eukaryotes, a feedback control mechanism called the spindle checkpoint ensures chromosome segregation fidelity by delaying cell cycle progression until all chromosomes achieve proper attachment to the mitotic spindle. Kinetochores are the macromolecular complexes that act as the interface between chromosomes and spindle microtubules. While most eukaryotes have canonical kinetochore proteins that are widely conserved, kinetoplastids such as Trypanosoma brucei have a seemingly unique set of kinetochore proteins including KKT1-25. It remains poorly understood how kinetoplastids regulate cell cycle progression or ensure chromosome segregation fidelity. Here, we report a crystal structure of the C-terminal domain of KKT14 from Apiculatamorpha spiralis and uncover that it is a pseudokinase. Its structure is most similar to the kinase domain of a spindle checkpoint protein Bub1. In addition, KKT14 has a putative ABBA motif that is present in Bub1 and its paralogue BubR1. We also find that the N-terminal part of KKT14 interacts with KKT15, whose WD40 repeat beta-propeller is phylogenetically closely related to a direct interactor of Bub1/BubR1 called Bub3. Our findings indicate that KKT14-KKT15 are divergent orthologues of Bub1/BubR1-Bub3, which promote accurate chromosome segregation in trypanosomes.


Asunto(s)
Cinetocoros , Proteínas Protozoarias , Cinetocoros/metabolismo , Cinetocoros/química , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Modelos Moleculares , Secuencia de Aminoácidos , Filogenia , Unión Proteica , Cristalografía por Rayos X , Segregación Cromosómica , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética
14.
Methods Cell Biol ; 188: 205-236, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38880525

RESUMEN

African trypanosomiases and leishmaniases are significant neglected tropical diseases (NTDs) that affect millions globally, with severe health and socio-economic consequences, especially in endemic regions. Understanding the pathogenesis and dissemination of Trypanosoma brucei and Leishmania spp. parasites within their hosts is pivotal for the development of effective interventions. Whole-body bioluminescence and fluorescence imaging systems (BLI and FLI, respectively), are powerful tools to visualize and quantify the progression and distribution of these parasites in real-time within live animal models. By combining this technology with the engineering of stable T. brucei and Leishmania spp. strains expressing luciferase and/or fluorescent proteins, crucial aspects of the infection process including the parasites' homing, the infection dynamics, the tissue tropism, or the efficacy of experimental treatments and vaccines can be deeply investigated. This methodology allows for enhanced sensitivity and resolution, elucidating previously unrecognized infection niches and dynamics. Importantly, whole-body in vivo imaging is non-invasive, enabling for longitudinal studies during the course of an infection in the same animal, thereby aligning with the "3Rs" principle of animal research. Here, we detail a protocol for the generation of dual-reporter T. brucei and L. major, and their use to infect mice and follow the spatiotemporal dynamics of infection by in vivo imaging systems. Additionally, 3D micro-computed tomography (µCT) coupled to BLI in T. brucei-infected animals is applied to gain insights into the anatomical parasite distribution. This Chapter underscores the potential of these bioimaging modalities as indispensable tools in parasitology, paving the way for novel therapeutic strategies and deeper insights into host-parasite interactions.


Asunto(s)
Modelos Animales de Enfermedad , Trypanosoma brucei brucei , Animales , Ratones , Trypanosoma brucei brucei/patogenicidad , Imagen Multimodal/métodos , Enfermedades Desatendidas/parasitología , Enfermedades Desatendidas/diagnóstico por imagen , Tripanosomiasis Africana/parasitología , Tripanosomiasis Africana/diagnóstico por imagen , Mediciones Luminiscentes/métodos
15.
Antimicrob Agents Chemother ; 68(7): e0026524, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38808999

RESUMEN

In order to predict the anti-trypanosome effect of carbazole-derived compounds by quantitative structure-activity relationship, five models were established by the linear method, random forest, radial basis kernel function support vector machine, linear combination mix-kernel function support vector machine, and nonlinear combination mix-kernel function support vector machine (NLMIX-SVM). The heuristic method and optimized CatBoost were used to select two different key descriptor sets for building linear and nonlinear models, respectively. Hyperparameters in all nonlinear models were optimized by comprehensive learning particle swarm optimization with low complexity and fast convergence. Furthermore, the models' robustness and reliability underwent rigorous assessment using fivefold and leave-one-out cross-validation, y-randomization, and statistics including concordance correlation coefficient (CCC), [Formula: see text] , [Formula: see text] , and [Formula: see text] . Among all the models, the NLMIX-SVM model, which was established by support vector regression using a nonlinear combination of radial basis kernel function, sigmoid kernel function, and linear kernel function as a new kernel function, demonstrated excellent learning and generalization abilities as well as robustness: [Formula: see text] = 0.9581, mean square error (MSE) = 0.0199 for the training set and [Formula: see text] = 0.9528, MSE = 0.0174 for the test set. [Formula: see text] , [Formula: see text] , CCC, [Formula: see text] , [Formula: see text], and [Formula: see text] are 0.9539, 0.8908, 0.9752, 0.9529, 0.9528, and 0.9633, respectively. The NLMIX-SVM method proved to be a promising way in quantitative structure-activity relationship research. In addition, molecular docking experiments were conducted to analyze the properties of new derivatives, and a new potential candidate drug molecule was ultimately found. In summary, this study will provide help for the design and screening of novel anti-trypanosome drugs.


Asunto(s)
Carbazoles , Relación Estructura-Actividad Cuantitativa , Máquina de Vectores de Soporte , Carbazoles/farmacología , Tripanocidas/farmacología
16.
Int Immunopharmacol ; 134: 112250, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38749335

RESUMEN

Trypanosoma brucei, a causative agent of human and animal trypanosomiasis, regularly switches its major surface antigen to avoid elimination by the immune system. Toll-like receptor 9 (TLR9) is a key modulator for resistance to host-infective trypanosomes; however, the underlying molecular mechanism remains indistinct. Thus, we first approached the issue using Tlr9-mutant mice that render them non-responsive to TLR9 agonists. After infection, T cells in the spleens of Tlr9-mutant mice were analyzed by flow cytometry and a reduction in CD8+, CD4+ T, and NKT cells was observed in Tlr9-mutant mice compared to WT mice. We further found that the responses of inflammatory cytokines in the sera were reduced in Tlr9-mutant mice after T. brucei infection. The underlying molecular mechanism was that T. b. brucei DNA activated TLR9, which consequently upregulated the expression of p38 and ERK/MAPK, resulting in host resistance to trypanosome infection. In conclusion, these findings provide novel insights into the TLR9-mediated host responses to trypanosome infection.


Asunto(s)
Citocinas , Transducción de Señal , Receptor Toll-Like 9 , Trypanosoma brucei brucei , Tripanosomiasis Africana , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/agonistas , Animales , Trypanosoma brucei brucei/inmunología , Tripanosomiasis Africana/inmunología , Ratones , Citocinas/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL , Humanos
17.
Curr Protoc ; 4(5): e1043, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38706422

RESUMEN

Trypanosoma brucei (Tb) is the causative agent of human African trypanosomiasis (HAT), also known as sleeping sickness, which can be fatal if left untreated. An understanding of the parasite's cellular metabolism is vital for the discovery of new antitrypanosomal drugs and for disease eradication. Metabolomics can be used to analyze numerous metabolic pathways described as essential to Tb. brucei but has some limitations linked to the metabolites' physicochemical properties and the extraction process. To develop an optimized method for extracting and analyzing Tb. brucei metabolites, we tested the three most commonly used extraction methods, analyzed the extracts by hydrophilic interaction liquid chromatography high-resolution mass spectrometry (HILIC LC-HRMS), and further evaluated the results using quantitative criteria including the number, intensity, reproducibility, and variability of features, as well as qualitative criteria such as the specific coverage of relevant metabolites. Here, we present the resulting protocols for untargeted metabolomic analysis of Tb. brucei using (HILIC LC-HRMS). © 2024 Wiley Periodicals LLC. Basic Protocol 1: Culture of Trypanosoma brucei brucei parasites Basic Protocol 2: Preparation of samples for metabolomic analysis of Trypanosoma brucei brucei Basic Protocol 3: LC-HRMS-based metabolomic data analysis of Trypanosoma brucei brucei.


Asunto(s)
Metabolómica , Trypanosoma brucei brucei , Trypanosoma brucei brucei/metabolismo , Metabolómica/métodos , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Tripanosomiasis Africana/parasitología
18.
Molecules ; 29(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38731562

RESUMEN

Leishmaniasis and Human African trypanosomiasis pose significant public health threats in resource-limited regions, accentuated by the drawbacks of the current antiprotozoal treatments and the lack of approved vaccines. Considering the demand for novel therapeutic drugs, a series of BODIPY derivatives with several functionalizations at the meso, 2 and/or 6 positions of the core were synthesized and characterized. The in vitro activity against Trypanosoma brucei and Leishmania major parasites was carried out alongside a human healthy cell line (MRC-5) to establish selectivity indices (SIs). Notably, the meso-substituted BODIPY, with 1-dimethylaminonaphthalene (1b) and anthracene moiety (1c), were the most active against L. major, displaying IC50 = 4.84 and 5.41 µM, with a 16 and 18-fold selectivity over MRC-5 cells, respectively. In contrast, the mono-formylated analogues 2b and 2c exhibited the highest toxicity (IC50 = 2.84 and 6.17 µM, respectively) and selectivity (SI = 24 and 11, respectively) against T. brucei. Further insights on the activity of these compounds were gathered from molecular docking studies. The results suggest that these BODIPYs act as competitive inhibitors targeting the NADPH/NADP+ linkage site of the pteridine reductase (PR) enzyme. Additionally, these findings unveil a range of quasi-degenerate binding complexes formed between the PRs and the investigated BODIPY derivatives. These results suggest a potential correlation between the anti-parasitic activity and the presence of multiple configurations that block the same site of the enzyme.


Asunto(s)
Antiprotozoarios , Compuestos de Boro , Leishmania major , Simulación del Acoplamiento Molecular , Trypanosoma brucei brucei , Compuestos de Boro/química , Compuestos de Boro/farmacología , Compuestos de Boro/síntesis química , Trypanosoma brucei brucei/efectos de los fármacos , Humanos , Antiprotozoarios/farmacología , Antiprotozoarios/química , Antiprotozoarios/síntesis química , Leishmania major/efectos de los fármacos , Diseño de Fármacos , Relación Estructura-Actividad , Línea Celular , Estructura Molecular , Tripanocidas/farmacología , Tripanocidas/química , Tripanocidas/síntesis química , Oxidorreductasas
19.
Elife ; 132024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564240

RESUMEN

The chromosomal passenger complex (CPC) is an important regulator of cell division, which shows dynamic subcellular localization throughout mitosis, including kinetochores and the spindle midzone. In traditional model eukaryotes such as yeasts and humans, the CPC consists of the catalytic subunit Aurora B kinase, its activator INCENP, and the localization module proteins Borealin and Survivin. Intriguingly, Aurora B and INCENP as well as their localization pattern are conserved in kinetoplastids, an evolutionarily divergent group of eukaryotes that possess unique kinetochore proteins and lack homologs of Borealin or Survivin. It is not understood how the kinetoplastid CPC assembles nor how it is targeted to its subcellular destinations during the cell cycle. Here, we identify two orphan kinesins, KIN-A and KIN-B, as bona fide CPC proteins in Trypanosoma brucei, the kinetoplastid parasite that causes African sleeping sickness. KIN-A and KIN-B form a scaffold for the assembly of the remaining CPC subunits. We show that the C-terminal unstructured tail of KIN-A interacts with the KKT8 complex at kinetochores, while its N-terminal motor domain promotes CPC translocation to spindle microtubules. Thus, the KIN-A:KIN-B complex constitutes a unique 'two-in-one' CPC localization module, which directs the CPC to kinetochores from S phase until metaphase and to the central spindle in anaphase. Our findings highlight the evolutionary diversity of CPC proteins and raise the possibility that kinesins may have served as the original transport vehicles for Aurora kinases in early eukaryotes.


Asunto(s)
Cinesinas , Trypanosoma , Humanos , Survivin , Citoesqueleto , Mitosis
20.
Mol Biol Rep ; 51(1): 578, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38668789

RESUMEN

Mg2+-independent phosphatidic acid phosphatase (PAP2), diacylglycerol pyrophosphate phosphatase 1 (Dpp1) is a membrane-associated enzyme in Saccharomyces cerevisiae. The enzyme is responsible for inducing the breakdown of ß-phosphate from diacylglycerol pyrophosphate (DGPP) into phosphatidate (PA) and then removes the phosphate from PA to give diacylglycerol (DAG). In this study through RNAi suppression, we have demonstrated that Trypanosoma brucei diacylglycerol pyrophosphate phosphatase 1 (TbDpp1) procyclic form production is not required for parasite survival in culture. The steady-state levels of triacylglycerol (TAG), the number of lipid droplets, and the PA content are all maintained constant through the inducible down-regulation of TbDpp1. Furthermore, the localization of C-terminally tagged variants of TbDpp1 in the lysosome was demonstrated by immunofluorescence microscopy.


Asunto(s)
Glicerol/análogos & derivados , Lisosomas , Trypanosoma brucei brucei , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/genética , Lisosomas/metabolismo , Lisosomas/enzimología , Triglicéridos/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Fosfatidato Fosfatasa/metabolismo , Fosfatidato Fosfatasa/genética , Interferencia de ARN , Difosfatos/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Diglicéridos/metabolismo , Ácidos Fosfatidicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA