Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 324: 124594, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33453518

RESUMEN

Catalytic pyrolysis of ulva lactuca (UL) macroalgae was studied over a series of ZrO2 supported metal such as Co, Ni and Co-Ni metal catalysts at temperature range of 300-500 °C. Highest bio-oil yield (47.8 wt%) was found with Co-Ni/ZrO2 (10 wt%) catalyst while non-catalytic yielded 42.5 wt% bio-oil. Moreover with increases the metal amount to 15 wt%, the bio-oil yield slightly increased (49.2 wt%). The bio-oil quality significantly improved with using the catalysts compared to the non-catalytic pyrolysis. Catalytic pyrolysis also revealed that introducing Co-Ni into the ZrO2 could result in higher surface area and which increased active sites. Catalytic bio-oils were consisted of mainly long chain hydrocarbon in the range of C6-C16. Moreover, the catalytic bio-oils were showed the higher 'high heating value' (HHV) 38.1 MJ/kg as compare to non-catalytic bio-oils (29.4 MJ/kg). Catalysts have been showed excellent recyclability on bio-oil yield and compounds selectivity.


Asunto(s)
Algas Marinas , Ulva , Biocombustibles , Catálisis , Calor , Aceites de Plantas , Polifenoles , Pirólisis
2.
Bioresour Technol ; 319: 124163, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33254444

RESUMEN

Hydrothermal liquefaction (HTL) of Gracilaria corticata (GC) macroalgae was studied over a series of nickel-iron-layered double oxides (NiFe-LDO) supported on activated bio-char catalysts at 280 °C and different solvents medium. Maximum bio-oil yield (56.2 wt%) was found with 5%Ga/NiFe-LDO/AC catalyst at 280 °C under ethanol solvent. The catalytic HTL up-gradation decreased the bio-char yield significantly. However the bio-oil quality significantly improved with using the 5%Ga/NiFe-LDO/AC catalyst. Also, improved performance with higher amount of bio-oil and lower amounts of bio-char and gas were achieved, which is due the several reactions happening during the HTL process. Catalytic HTL also revealed that introducing NiFe-LDO nanosheets into the activated char could result in NiFe-LDO/AC catalysts of higher surface area and increased active sites. Being impregnated by 5%Ga, catalysts with improved acid sites and thereby, advanced deoxygenation and aromatization activities were achieved. Hence Ga/NiFe-LDO/AC could be considered as a promising catalyst HTL bio-oil upgrading.


Asunto(s)
Gracilaria , Algas Marinas , Biocombustibles , Biomasa , Aceites de Plantas , Polifenoles , Temperatura , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA